
www.cambridge.org/9780521514149

A P P L I E D G E O S T A T I S T I C S W I T H S G e M S

A User’s Guide

The Stanford Geostatistical Modeling Software (SGeMS) is an open-source computer
package for solving problems involving spatially related variables. It provides geostatis-
tics practitioners with a user-friendly interface, an interactive 3D visualization and a wide
selection of algorithms. With over 12,000 downloads in less than 2 years, SGeMS is used
in several research groups and companies.

This practical book provides a step-by-step guide to using SGeMS algorithms. It
explains the underlying theory, demonstrates the implementation of the various algo-
rithms, discusses their potential limitations, and helps the user make an informed decision
about the choice of one algorithm over another. Users can complete complex tasks using
the embedded scripting language, and new algorithms can be developed and integrated
through the SGeMS plug-in mechanism. SGeMS is the first software to provide algo-
rithms for multiple-point statistics and the book presents an up-to-date discussion of the
corresponding theory and applications.

Incorporating a CD-ROM with the full SGeMS software, this book is an essential user-
guide for professional practitioners of environmental, mining and petroleum engineering,
as well as graduate students and researchers in fields such as remote sensing, geography,
ecology, water resources and hydrogeology. Both beginners and more advanced users will
find answers in the book on how to use the software and more generally about geostatistical
practice.

NICOLAS REMY received a B.S. in Mathematics and Physics from École Nationale
Supérieure des Mines, Nancy, France, an M.S. in Petroleum Engineering from Stanford
University and a Ph.D. in Geostatistics from Stanford University. He is currently a Senior
Statistician at Yahoo!, leading the Data Mining and User Behavior Modeling group for the
Yahoo! Media and Yahoo! Communications and Communities business units. His research
interests include multiple-points statistics, machine learning, graph theory and data mining.

ALEXANDRE BOUCHER received a B.Eng. in Geological Engineering from the École
Polytechnique de Montréal, Montreal, QC, Canada, an M.Phil. degree from the Univer-
sity of Queensland, Brisbane, Australia, and a Ph.D. from Stanford University, Stanford,
CA. He teaches geostatistics in the Department of Environmental Earth System Science,
Stanford University, and has taught short courses on the subject in the USA and Japan.
His research interests include geostatistics, data integration, remote sensing, uncertainty
modeling, machine learning, and probabilistic modeling of spatio-temporal phenomena.

JIANBING WU received his Ph.D. in Petroleum Engineering in 2007 from Stanford
University, and his M.E. and B.S. degrees in Mechanical Engineering from University
of Science and Technology of China. He is a reservoir engineer with the Applied Reser-
voir Engineering group at ConocoPhillips, and his research focuses on static and dynamic
reservoir modeling. He is currently a member of SPE, IAMG and SEG.

APPLIED GEOSTATISTICS
WITH SGeMS

A User’s Guide

N I C O L A S R E M Y
Yahoo! Media and Yahoo! Communications and Communities

A L E X A N D R E B O U C H E R
Stanford University

and

J I A N B I N G W U
ConocoPhillips

C A M B R I D G E U N I V E R S I T Y P R E S S

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521514149

c© N. Remy, A. Boucher and J. Wu 2009

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-51414-9 hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

All material contained within the CD-ROM is protected by copyright and other intellectual property laws. The
customer acquires only the right to use the CD-ROM and does not acquire any other rights, express or implied,

unless these are stated explicitly in a seperate licence.
To the extent permitted by applicable law, Cambridge University Press is not liable for direct damages or loss

of any kind resulting from the use of this product or from errors or faults contained in it, and in every
case Cambridge University Press’s liability shall be limited to the amount actually paid by the customer

for the product.

Contents

Foreword by Albert Tarantola page ix
Preface xi
List of programs xiii
List of symbols xv
1 Introduction 1
2 General overview 5

2.1 A quick tour of the graphical user interface 5
2.2 A typical geostatistical analysis using SGeMS 5

2.2.1 Loading data into an SGeMS project 8
2.2.2 Exploratory data analysis (EDA) 10
2.2.3 Variogram modeling 10
2.2.4 Creating a grid 12
2.2.5 Running a geostatistics algorithm 13
2.2.6 Displaying the results 14
2.2.7 Post-processing the results with Python 19
2.2.8 Saving the results 21
2.2.9 Automating tasks 21

2.3 Data file formats 23
2.4 Parameter files 24
2.5 Defining a 3D ellipsoid 26

3 Geostatistics: a recall of concepts 29
3.1 Random variable 30
3.2 Random function 33

3.2.1 Simulated realizations 34
3.2.2 Estimated maps 37

3.3 Conditional distributions and simulations 38
3.3.1 Sequential simulation 40
3.3.2 Estimating the local conditional distributions 42

v

vi Contents

3.4 Inference and stationarity 44
3.5 The variogram, a 2-point statistics 48
3.6 The kriging paradigm 50

3.6.1 Simple kriging 51
3.6.2 Ordinary kriging and other variants 54
3.6.3 Kriging with linear average variable 57
3.6.4 Cokriging 59
3.6.5 Indicator kriging 61

3.7 An introduction to mp statistics 62
3.8 Two-point simulation algorithms 65

3.8.1 Sequential Gaussian simulation 66
3.8.2 Direct sequential simulation 67
3.8.3 Direct error simulation 68
3.8.4 Indicator simulation 69

3.9 Multiple-point simulation algorithms 71
3.9.1 Single normal equation simulation (SNESIM) 71
3.9.2 Filter-based algorithm (FILTERSIM) 72

3.10 The nu/tau expression for combining conditional
probabilities 74

3.11 Inverse problem 79
4 Data sets and SGeMS EDA tools 80

4.1 The data sets 80
4.1.1 The 2D data set 80
4.1.2 The 3D data set 81

4.2 The SGeMS EDA tools 84
4.2.1 Common parameters 85
4.2.2 Histogram 85
4.2.3 Q-Q plot and P-P plot 87
4.2.4 Scatter plot 87

5 Variogram computation and modeling 90
5.1 Variogram computation in SGeMS 92

5.1.1 Selecting the head and tail properties 92
5.1.2 Computation parameters 93
5.1.3 Displaying the computed variograms 98

5.2 Variogram modeling in SGeMS 98
6 Common parameter input interfaces 101

6.1 Algorithm panel 101
6.2 Selecting a grid and property 102
6.3 Selecting multiple properties 103
6.4 Search neighborhood 104

Contents vii

6.5 Variogram 104
6.6 Kriging 105
6.7 Line entry 105
6.8 Non-parametric distribution 106
6.9 Errors in parameters 108

7 Estimation algorithms 109
7.1 KRIGING: univariate kriging 109
7.2 INDICATOR KRIGING 113
7.3 COKRIGING: kriging with secondary data 119
7.4 BKRIG: block kriging estimation 122

8 Stochastic simulation algorithms 132
8.1 Variogram-based simulations 132

8.1.1 LUSIM: LU simulation 133
8.1.2 SGSIM: sequential Gaussian simulation 135
8.1.3 COSGSIM: sequential Gaussian co-simulation 139
8.1.4 DSSIM: direct sequential simulation 143
8.1.5 SISIM: sequential indicator simulation 147
8.1.6 COSISIM: sequential indicator

co-simulation 153
8.1.7 BSSIM: block sequential simulation 157
8.1.8 BESIM: block error simulation 163

8.2 Multiple-point simulation algorithms 168
8.2.1 SNESIM: single normal equation simulation 169
8.2.2 FILTERSIM: filter-based simulation 191

9 Utilities 215
9.1 TRANS: histogram transformation 215
9.2 TRANSCAT: categorical transformation 218
9.3 POSTKRIGING: post-processing of kriging

estimates 222
9.4 POSTSIM: post-processing of realizations 224
9.5 NU-TAU MODEL: combining probability fields 227
9.6 BCOVAR: block covariance calculation 228
9.7 IMAGE PROCESSING 233
9.8 MOVING WINDOW: moving window statistics 234
9.9 TIGENERATOR: object-based image generator 237

9.9.1 Object interaction 239
10 Scripting, commands and plug-ins 245

10.1 Commands 245
10.1.1 Command lists 246
10.1.2 Execute command file 248

viii Contents

10.2 Python script 249
10.2.1 SGeMS Python modules 250
10.2.2 Running Python scripts 250

10.3 Plug-ins 252
Bibliography 254
Index 260

Foreword

Geostatistics is a science. It is also an art.
Geostatistics is not simply the application of statistical methods to geology-

driven spatial distributions, it also provides a conceptual framework for making
inferences from Earth sciences data – data which are, more often than not,
incomplete.

Some may say, as I would, that most of the problems addressed in geostatis-
tics are inverse problems, in the sense that data are used to infer parameters of
the prior model. However, a gap exists between inverse problems and geostatis-
tical problems: in inverse problems modeling the observations can be computer
intensive, but the a priori model is typically simple (or simplistic); in a geostatisti-
cal problem the data are directly related to the model parameters, this allows one
to consider prior models that encapsulate properties of the real Earth, sometimes
with breathtaking realism. The gap is narrowing and will disappear in the near
future. For the time being, we should try to do the best we can in each of the two
fields.

Most geostatistical solutions involve random functions, and a long way has been
trod since the simple Gaussian models used in the beginning. The Stanford team
has been at the origin of many non-Gaussian developments that have now become
standard. They are at it again with the multiple-point geostatistical concept and
related algorithms, which allow defining truly complex random functions.

If a painter has no brushes, or no paints, she/he can not produce art. The same
happens here: in order to deal with difficult problems calling for non-simplistic
priors and working out practical solutions (the art), one needs computer software.
The equations underwriting geostatistics can be laid on paper, but even the sim-
plest application requires dedicated computer software. This is where the Stanford
Geostatistical Modeling Software (SGeMS) shines. With this book the reader will
learn how to use the software towards solving non-trivial problems.

ix

x Foreword

Nothing can replace my repeated stays at Stanford and interaction with the peo-
ple there at the Center for Reservoir Forecasting – with, among others, the authors
of this book and my dear friend André Journel. Having this book with me is the
closest thing to being at Stanford.

Albert Tarantola
Pasadena

Preface

This book is not an introduction to geostatistics and its theory. Although some
elements of geostatistics theory are recalled, the text assumes a reasonable level of
familiarity with the main concepts of geostatistics: notions of a random function,
stationarity or variogram should not leave you wondering.

The main purpose of this book is to back up the Stanford Geostatistical Modeling
Software (SGeMS) and, hopefully, widen the reader’s comprehension of geostatis-
tics beyond its theory into its very diverse applications. In that perspective, the
emphasis is on practical aspects (in what context should one tool be preferred over
another one) and implementation considerations (to what extent do the algorithm
implementations deviate from the theory, what are the assumptions and limitations
of the implementation). However, this book is not a reference manual to program-
ming in SGeMS and no details about the source code of SGeMS or its APIs are
given. If you are interested in learning how to contribute code to SGeMS please
refer to the SGeMS web site, http://sgems.sourceforge.net, where a
description of the SGeMS APIs and several tutorials are available.

The geostatistics tools of SGeMS were designed to provide enough flexibility
to adapt to very different problems. As a result, the number of available control
parameters may seem daunting to the novice practitioner. Don’t be intimidated!
Most of the advanced parameters have default values, and the best way to build
up your understanding of those parameters is to repeat the example runs and
experiment on your own.

While most of the tools in SGeMS are based on classical geostatistics (krig-
ing, Gaussian simulation, indicator simulation, etc.), a large portion of the book
is devoted to the concept of multiple-points statistics. Multiple-points statistics
being a new and promising area of geostatistics, its underlying theory is exposed
in greater detail, and two multiple-point algorithms are thoroughly described.

This book has had a long gestation. The idea of a generic geostatistics pro-
gramming library (the GsTL library), accompanied by a simple showcase software

xi

xii Preface

dates back to 2001 and was started with the collaboration of Professor Arben
Schtuka, then at École Nationale Supérieure de Géologie (France), and the support
of Professor Jef Caers at Stanford University. What was supposed to be a sim-
ple software, however, turned into a very involved programming effort. SGeMS
is now a full fledged software that provides a modern, convenient and powerful
platform for new developments of geostatistics. Thanks to the support of Jef Caers
and André Journel, the SGeMS software gained traction at the Stanford Center for
Reservoir Forecasting (SCRF), then with its industrial affiliates and collaborating
universities.

This book wouldn’t have existed without the support of André Journel, his
untiring cheer-leading, dedicated supervision and his obsessive proof-reading. We
are also very grateful to Dr. Mohan Srivastava, Dr. Ricardo Olea and Dr. Pierre
Goovaerts who carefully reviewed the early drafts of the manuscript and meticu-
lously tracked the inconsistencies and many bugs of the software. The text and
software greatly benefited from their many suggestions and remarks. We would
like to thank Dr. Sébastien Strebelle, Professor Sanjay Srinivasan and Professor
Guillaume Caumon, who carefully reviewed the final versions of the manuscript.
Finally, we are very grateful to Professor Jef Caers for initiating and strongly
believing in the GsTL project: without his support, SGeMS wouldn’t have been
written.

By design, SGeMS is not a static and complete software. New algorithms
will be added, and its underlying API may change. We welcome comments on
it, reports of bugs, valuable enhancement ideas or source code. You can send
comments to the SGeMS mailing-lists and refer to the SGeMS web site at
http://sgems.sourceforge.net for updates and code documentation.

List of programs

Exploratory data analysis

Histogram: histogram plot and statistics, 85
QQ/pageref-plot: Q-Q or P-P plot and statistics, 87
Scatter-plot: scattergram plot and statistics, 87
Variogram: variogram computation and modeling, 90

Estimation

BKRIG: block kriging, 122
COKRIGING: kriging with secondary data, 59
INDICATOR KRIGING: indicator kriging, 113
KRIGING: kriging, 109

Simulation

BESIM: block error simulation, 163
BSSIM: block sequential simulation, 157
COSGSIM: sequential Gaussian co-simulation, 139
COSISIM: sequential indicator co-simulation, 153
DSSIM: direct sequential simulation, 143
FILTERSIM: filter-based simulation, 191
LUSIM: LU simulation, 133
SGSIM: sequential Gaussian simulation, 135
SISIM: sequential indicator simulation, 147
SNESIM: single normal equation simulation, 169

xiii

xiv List of programs

Utility

BCOVAR: block covariance calculation, 228
IMAGE PROCESSING: image manipulation, 233
MOVING WINDOW: moving window statistics, 234
NU-TAU MODEL: combining conditional probabilities, 227
POSTKRIGING: post-processing of kriging estimates, 222
POSTSIM: post-processing of realizations, 224
TIGENERATOR: training image generator, 237
TRANS: continuous histogram transformation, 215
TRANSCAT: categorical histogram transformation, 218

List of symbols

cdf Cumulative distribution function
E-type Conditional expectation estimate obtained by point-wise

averaging of simulated realizations
EDA Elementary data analysis
FFT Fast Fourier Transform
GSLIB Geostatistical software library, as in Deutsch and Journel

(1998)
IK Indicator kriging
KT Kriging with a trend
LVM Kriging with a local varying mean
M-type Conditional median estimate
MM1 Markov Model 1
MM2 Markov Model 2
mp Multiple-point
OK Ordinary kriging
P-P plot Probability–probability plot
pdf Probability density function
Q-Q plot Quantile–quantile plot
RF Random function
RV Random variable
SGeMS Stanford Geostatistical Modeling Software
SK Simple kriging
Ti Training image

⊥ Orthogonal
∀ Whatever

xv

xvi List of symbols

α, β, γ Rotation angles for -azimuth, -dip and rake
γ (h) Stationary semivariogram model
γ (Z(uα), Z(uβ)) Semivariogram value between any two random variables

Z(uα) and Z(uβ)

γ ∗(h) Experimental semivariogram
γ (l) lth component of a nested semivariogram model
γi j (h) Cross semi-variogram model between any two random vari-

ables Zi (u) and Z j (u + h)

λα, λα(u) Kriging weight associated to datum location uα for estima-
tion at location u. The superscripts (SK), (OK), (KT) are
used when necessary to differentiate between various types
of kriging

� Kriging weights matrix
� Scaling matrix
λ Column matrix of the n(u) kriging weights
� Rotation matrix
νi nu parameter for the i th attribute
ω Parameter of a power function; or a servosystem factor
φlti(·) Low tail extrapolation function
φuti(·) Upper tail extrapolation function
ρ(h) Stationary correlogram ∈ [−1,+1]
σ 2 Variance
σ 2

SK(u) Kriging variance of Z(u). The subscripts (SK), (OK), (KT)
are used when necessary to differentiate between various
types of kriging

T g
J Expanded search template in the gth multiple grid

τi tau parameter for the i th attribute
TJ A search template with J nodes

C̄B B′, C̄(V, V ′) Block-to-block covariance model
C̄P B, C̄(u, V (s)) Point-to-block covariance model
h Coordinates offset vector, or a lag vector
h j Offset of the j th node in the search template from its center
D Column matrix of n(u) residual data values z(uα) − m
Di Data vector involving i multiple data locations

{Di = di , i = 1, . . . , n}
K Data-to-data square covariance matrix
k Data-to-unknown covariance matrix
prot Prototype of a categorical variable
Ã No-A

List of symbols xvii

u Coordinates vector
uα, uβ Data locations
v Block volume, or a set of points
a Range parameter
ai (u) Coefficient of component number k of the trend model
B Block data
B(vα) A linear average value within a block volume vα

BV (s) A linear average value within a block V centered at location
s

C(0) Covariance value at separation vector h = 0. It is also the
stationary variance of random variable Z(u)

C(h) Covariance between any two random variables Z(u) and
Z(u + h) separated by vector h

cl Variance contribution of the lth nested semi-variogram model
CR Error covariance matrix
Ci j (h) Cross covariance between any two random variables Zi (u)

and Z j (u) separated by vector h
cmin Minimum number of pattern replicates
dev Local conditioning data event
devJ Local conditioning data event found by search template TJ

E {·} Expected value
Exp(·) Exponential semi-variogram function
F Number of filters
f (h j) Filter weight associated with the j th template node
F(u, z) Cumulative distribution function of random variable Z(u)

F(z) Cumulative histogram of RV
f (z) Probability density function or histogram
F−1(p) Inverse cumulative distribution function or quantile function

for the probability value p ∈ [0, 1]
fx , fy, fz Affinity factor in each X/Y/Z direction
FZ Marginal cdf of random function Z
G(·) Standard normal cumulative distribution function
G−1(p) Standard normal quantile function such that

G(G−1(p)) = p ∈ [0, 1]
hx , hy, hz Variogram ranges in X/Y/Z directions
I (u; zk) Binary indicator random function at location u and for

cutoff zk

i(u; zk) Binary indicator value at location u and for cutoff zk

I ∗(u; zk) Indicator estimator for cutoff zk

i∗(u; zk) Indicator kriging estimated value for cutoff zk

xviii List of symbols

I ∗
SK(u) Indicator kriging estimator of categorical indicator Ik(u)

Ik(u) Binary indicator random function at location u and for
category k

ik(u) Binary indicator value at location u and for category k
K Number of categories
Lα A known linear averaging function
M Median of an RF
m Mean value of a random variable
m(u) Mean function at location u; expected value of random vari-

able Z(u); or trend component model in the decomposition
Z(u) = m(u)+ R(u), where R(u) is the residual component
model

m∗(u) Estimate of the trend component or locally varying mean at
location u

N (h) Number of data pairs separated by vector h
n(u) n conditioning data found in a neighborhood centered at u
nk Number of patterns whose center takes a specific value k
P Point data
p Probability value
pc

k Current proportion of category k simulated so far
pt

k Target proportion of category k
p0 Prior probability of the event occurring
pat Training pattern
Prob {·} Probability function
prot Prototype of a continuous variable
q(p) = F−1(p) Quantile function for the probability value p ∈ [0, 1]
R(u) Residual random function model at location u in the decom-

position Z(u) = m(u) + R(u), where m(u) is the trend
component model

r(u) Residual value at location u
r i Azimuth rotation angle in rotation region i
rs(u) Simulated residual value at location u
S A set of locations u, or a deposit
Sk

T (u) The kth+ filter score value of pattern pat (u) found by search
template T

Sph(·) Spherical semi-variogram function
t (u) Training image nodal value at location u
V, V (u) A block centered at location u
Var {·} Variance
xi Prior distance to a given probability, used in the tau model

List of symbols xix

Z(u) Generic random variable at location u, or a generic random
function of location u

z(u) Generic variable function of location u
z(uα) z datum value at location uα

Z∗(u) Kriging estimator of Z(u). The subscripts (SK), (OK), (KT)
are used when necessary to differentiate between various
types of kriging

z∗(u) An estimate of value z(u)

z∗
E(u) Conditional expectation, or E-type, obtained as point-wise

arithmetic average of multiple realizations z(l)(u)

z∗
M(u) M-type estimated value, where z∗

M(u) has a 50% chance to
be higher (or lower) than the actual unknown value

z∗
Ks(u) Kriging estimate built from the simulated value zs(uα)

z∗
LVM(u) Estimated value with local varying mean at location u

z(l)(u) lth realization of the random function Z(u)

z(l)
V (u) The simulated value over a block V averaged from the lth

point support realization z(l)(u)

zk kth threshold value for the continuous attribute z
Zcs(u) Conditional simulated random variable at location u
zcs(u) Conditional simulated value at location u

1

Introduction

SGeMS, the Stanford Geostatistical Modeling Software, is a software developed at
Stanford University that implements several geostatistics algorithms for the mod-
eling of earth systems and more generally space-time distributed phenomena. It
was written with two goals in mind. The first one, geared toward the end-user,
is to provide a user-friendly software which offers a large range of geostatistics
tools: the most common geostatistics algorithms are implemented, in addition to
more recent developments such as multiple-point statistics simulation. The user-
friendliness of SGeMS comes from its non-obtrusive graphical user interface, and
the possibility to directly visualize data sets and results in a full 3D interactive
environment.

The second objective was to design a software that would cater to the needs
of power-users. In SGeMS, most of the operations performed using the graphical
interface can also be executed programmatically. The integrated support for the
Python scripting language enables the creation of simple macros all the way to
complete nested applications with an independent graphical interface. New features
can conveniently be added into SGeMS through a system of plug-ins, i.e. pieces of
software which can not be run by themselves but complement a main software.
In SGeMS, plug-ins can be used to add new geostatistics tools, add new grid data
structures (faulted stratigraphic grids for example) or define new import/export file
filters. SGeMS is used as a development platform for geostatistics at the Stanford
Center for Reservoir Forecasting (SCRF).

The book structure

Chapter 2 begins with a concise tutorial that walks the reader through the main
steps involved in a simple geostatistical study. The aim of this tutorial is to give an

1

2 Introduction

overview of the capabilities of SGeMS and direct the reader to the different parts of
the book for more details. The second part of Chapter 2 gives the conventions used
throughout the book, for example, how 3D ellipsoids are defined, how Cartesian
grids are defined and the details of data file formats.

Chapter 3 recalls the fundamental geostatistics concepts used in the book. Apart
from classical aspects of geostatistics such as variograms and kriging, this chapter
also introduces the concept of multiple-points statistics, at the root of two major
algorithms presented in Section 8.2.

Chapter 4 presents the main data sets used throughout the rest of the book.
All these data sets are available on the CD included with this book. As the
data sets are described, the tools for elementary data exploration are introduced:
histograms, scatterplots, quantile–quantile and probability–probability plots. Vari-
ograms being of particular importance in geostatistics are described in a separate
chapter: Chapter 5 details the tools to compute experimental variograms and
model them.

Chapters 6 through 9 constitute a reference manual to the SGeMS geostatistics
algorithms. For each algorithm, practical aspects and implementation considera-
tions are reviewed, the required input parameters are exhaustively described, and
a brief example run is presented. The reader is encouraged to try to reproduce the
runs to get familiar with the algorithm and its parameters. Chapter 6 introduces
the main graphical interfaces used to input parameters to the SGeMS algorithms.
For example, many algorithms such as kriging, sequential Gaussian simulation and
direct sequential simulation require a variogram and a search ellipsoid. The var-
iogram and search ellipsoid input interfaces used by these three algorithms are
described in this chapter.

Chapter 7 describes the estimation algorithms available in SGeMS: sim-
ple kriging, ordinary kriging, kriging with a trend or a locally varying mean,
indicator kriging and cokriging. The theory behind each algorithm is briefly
recalled and implementation considerations are discussed. All the controlling
parameters are then thoroughly described. Practical considerations are isolated in
gray-background boxes.

Chapter 8 is divided into two main parts. Section 8.1 is dedicated to variogram-
based simulation algorithms: sequential Gaussian simulation, sequential indicator
simulation, direct sequential simulation and their co-simulation variants. The
second half of Chapter 8 (Section 8.2) introduces two recently developed sim-
ulation algorithms: SNESIM and FILTERSIM. These two algorithms are based
on the multiple-points statistics paradigm presented in Chapter 3. Because these
algorithms are recent, a large portion of the text is devoted to the description of
best practices and the impact of the input parameters on runtime performance and
quality of the final results.

Source code and compilation 3

Chapter 9 presents service algorithms, called utilities, useful to prepare the input
data of the estimation and simulation algorithms, and then analyze their output.

The last chapter (Chapter 10) teaches the advanced user how to automate
tasks in SGeMS, using either its system of commands or the embedded Python
scripting language. Describing Python would be a book topic of its own; this
chapter just describes how SGeMS and Python cooperate, and directs the reader
who wants to learn Python to outside sources. Last, a major feature of SGeMS
is introduced: SGeMS supports a plug-in mechanism to augment its function-
alities, allowing for example the addition of new geostatistics algorithms or
adding support for new types of grids on which geostatistics could be performed.
As for Python, a tutorial on C++ and SGeMS plug-ins development is beyond
the scope of this book, and the advanced user is pointed to several on-line
resources.

Contents of the disc

The disc distributed with this book is organized in four folders:

• the SGeMS executable and the corresponding source code
• the data sets, parameter files and scripts used in the tutorial of Chapter 2
• the data sets introduced in Chapter 4 and used throughout the book
• script files to generate most of the figures included in the book. Each sub-folder

corresponds to a section of the book and contains a script that, when run through
SGeMS, creates the figures of that section.

Source code and compilation

SGeMS is currently available on both Linux and Microsoft Windows platforms.
Although it has also been successfully compiled on other Unix platforms
(BSD and Solaris) and Mac OSX, no binaries are currently available for
those operating systems. The code is distributed under the GNU Gen-
eral Public License (GPL). For more information about the GPL, refer to
http://www.gnu.org/copyleft/gpl.html.

The source code and a Microsoft Windows executable are distributed
on the accompanying disc, and can also be downloaded from the web at
http://sgems.sourceforge.net.

To compile SGeMS, the following third-party libraries are required.

• GsTL (Geostatistics Template Library)
• Qt (GUI library) version 3.x (version 4 and higher is not supported yet)
• Coin3D (OpenInventor library), version 2.x

4 Introduction

• SoQt (Qt bindings for OpenInventor), version 1.x
• SimVoleon (Volume rendering extension for Coin3D), version 2.x

A compiler that correctly supports C++ templates (e.g. member templates and
template specialization) is also required. SGeMS has been successfully compiled
with gcc-2.96, gcc-3.3.4, gcc-4, Intel C++ compiler, Visual C++ 2003 and Visual
C++ 2005.

2

General overview

2.1 A quick tour of the graphical user interface

The graphical user interface (GUI) of SGeMS is divided into three main parts, see
Fig. 2.1.

The Algorithm Panel The user selects in this panel which geostatistics tool to
use and inputs the required parameters (Fig. 2.2). The top part of that panel
shows a list of available algorithms, e.g. kriging, sequential Gaussian sim-
ulation. When an algorithm from that list is selected, a form containing the
corresponding input parameters appears below the tools list.

The Visualization Panel This panel is an interactive 3D environment in which
one or multiple objects, for example a Cartesian grid and a set of points, can
be displayed. Visualization options such as color-maps are also set in the Visu-
alization Panel. The Visualization Panel is shown in more detail in Fig. 2.3.

The Command Panel This panel gives the possibility to control the software
from a command line rather than from the GUI. It displays a history of all
previously executed commands and provides an input field where new com-
mands can be typed (Fig. 2.4). See tutorial Section 2.2 and Chapter 10 for
more details about the Command Panel. Note that the Command Panel is not
shown by default when SGeMS is started: select Command Panel from the
View menu to display it.

2.2 A typical geostatistical analysis using SGeMS

This short tutorial gives an overview of the capabilities of SGeMS and can serve
as a “getting started” guide. It is rather fast paced and some beginners may find it
overwhelming. If that is the case, we suggest you skim through it and come back to
it later. The tutorial describes a SGeMS session in which a variable, rock porosity,
is estimated at several unsampled locations using the “simple kriging” algorithm.

5

6 General overview

Figure 2.1 SGeMS’s graphical interface. The three main panels are highlighted.
The top left panel is the Algorithm Panel, top right is the Visualization Panel and
bottom panel is the Command Panel

The data set used in this tutorial relates to a (synthetic) oil reservoir that displays
sand channels aligned in the North–South direction, with a proportion of sand (net-
to-gross ratio) of 33%. The reservoir is discretized into 100 × 130 × 10 identical
parallelipedic blocks (cells) in the X, Y and Z directions respectively. In the rest
of the book, this type of discretization is referred to as a Cartesian grid. The vari-
ations of rock porosity within a cell are considered negligible, and the problem of
estimating rock porosity in each block is simplified to estimating porosity at the
center of the cells (cell-centered grid).

Figure 2.5 shows a 3D view of the reference model with the sand channels in
black.

SGeMS provides several estimation tools, most of them based on the kriging
algorithm. In this tutorial simple kriging is used to estimate the porosity of the sand
channels. The reader unfamiliar with simple kriging is invited to refer to Section 3.6
for a brief presentation of kriging and references.

Here, 563 samples of porosity values were collected in the sand areas. The steps
involved in estimating porosity in the sand channels are as follows.

2.2 A typical geostatistical analysis using SGeMS 7

Figure 2.2 The three parts of the Algorithm Panel are highlighted. The top part
displays the list of available algorithms. The middle section is where the input
parameters for the selected algorithm are entered. The bottom part contains the
controls to load/save the algorithms’ parameters, and run the selected algorithm

1. Load the 563 samples data set in SGeMS.
2. Elementary data analysis: visualize the experimental porosity distribution and

compute statistics such as quartiles, experimental mean and variance.
3. Compute the experimental variogram of porosity and model it.
4. Create the Cartesian grid on which kriging will be performed. Porosity is esti-

mated at every node of that grid, whether or not the node belongs to a sand
channel.

5. Select the simple kriging tool and enter the necessary parameters.
6. Display the results.
7. Post-process the results to retain only the region of interest (sand channels).
8. Save the results.

8 General overview

Figure 2.3 The Visualization Panel. The left-hand side controls which objects
(e.g. grids) are visible in the right-hand side window. It is also used to set display
options, such as which color-map to use

Figure 2.4 The Command Panel

2.2.1 Loading data into an SGeMS project

SGeMS calls project the set of all the objects currently loaded in its objects
database. When SGeMS starts, it creates an empty project by default. Any object
(Cartesian grid or set of points) later loaded into SGeMS is added to that project.

File sample data.gslib on the CD contains the X, Y, Z coordinates and the
porosity of each of the 563 random samples. It is an ASCII file, following the
GSLIB format. Refer to Section 2.3 for a description of the GSLIB file format and
other available data file formats.

2.2 A typical geostatistical analysis using SGeMS 9

Figure 2.5 3D view of the tutorial oil reservoir

Figure 2.6 Load GSLIB point-set file wizard

To load the file, click Objects → Load Object and browse to the file location (or
drag-and-drop the file onto the Visualization Panel). Since the GSLIB file format
does not provide all the information required by SGeMS, a wizard prompting for
the additional information pops up (see Fig. 2.6). The first screen of the wizard
prompts for the type of the object, a set of points or a Cartesian grid, described by
the file. Choose “Point set” and click Next. In the second screen, give a name for
the point-set, e.g. sample data, and indicate which columns contain the X, Y and
Z coordinates of the points (in this case, columns 1, 2 and 3).

Once the object is loaded a new entry called sample data appears in the Objects
section of the Visualization Panel, as shown in Fig. 2.7.

10 General overview

Figure 2.7 Object list after the data set is loaded

The eye indicates
that object “sample data”
is currently displayed

The eye indicates
that property “porosity”
is currently displayed

Figure 2.8 Showing/hiding an object or a property

Click in the square before the point-set name to display it. Displayed objects
have a little eye painted inside the rectangle before their names. The plus sign
before the square indicates that the object contains properties. Click on the plus
sign to display the list of properties. Click in the square before the property name
to paint the object with the corresponding property (see Fig. 2.8).

2.2.2 Exploratory data analysis (EDA)

SGeMS provides several exploratory data analysis tools, such as histograms,
scatterplots and quantile–quantile plots. These tools are available under the
Data Analysis menu. Section 4.2 provides examples of an EDA for several data
sets, with more details on the data analysis tools of SGeMS.

The histogram of the sample porosity data is shown in Fig. 2.9.

2.2.3 Variogram modeling

Estimating porosity with simple kriging requires knowledge of the mean and the
semi-variogram of the porosity variable. This semi-variogram can be modeled from
the experimental variogram computed from the 563 sample points of point-set
sample data.

The semi-variogram measures the average dissimilarity between two variables,
for example between the porosity at location u and at location u + h. Assum-
ing stationarity, the semi-variogram γ (Z(u), Z(u + h)) depends only on lag

2.2 A typical geostatistical analysis using SGeMS 11

0.22 0.24 0.26 0.28

porosity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.3 0.32

Mean:
Variance:

0.28755
0.000549915

0.34

Data count: 563

Maximum:
Upper quartile:
Median:
Lower quartile:
Minimum:

0.3537
0.303
0.29
0.273
0.2026

Figure 2.9 Histogram of the sample porosity

vector h: γ (Z(u), Z(u + h)) = γ (h). The experimental semi-variogram γ (h)

is computed as:

γ (h) = 1

2N(h)

N(h)∑
α=1

[z(uα) − z(uα + h)]2

where z(u) is the (porosity) value at location u and N (h) is the number of data
pairs separated by vector h.

In the rest of the text, the term variogram will liberally be used in place of the
more precise semi-variogram. More background and references on variograms are
provided in Section 3.5 and Chapter 5.

To compute the experimental variogram of porosity, open the variogram com-
putation and modeling wizard by clicking Data Analysis → Variogram. The
variogram computation wizard is thoroughly described in Chapter 5.

Select sample data and porosity as both head and tail properties. Select-
ing two different properties for head and tail would compute the cross-variogram
between the two properties. On the next screen load the variogram parameters from
file variogram.par, using the Load Parameters. . . button. Clicking Next, SGeMS
computes the porosity variogram in two directions, azimuth 0◦ and azimuth 90◦

from North as well as an omni-directional variogram. All these parameters are
discussed in Chapter 5.

The last screen of the wizard (see Fig. 2.10) shows the resulting variograms
and provides controls to interactively fit a variogram model. The top left plot

12 General overview

Figure 2.10 Last screen of the variogram modeling wizard

shows together all three experimental variograms. Each experimental variogram
is also displayed in its own plot window. The controls in the right hand side panel
interactively update the variogram model fit, overlaid on each plot.

An isotropic spherical variogram of range 20 and sill 0.00055 provides an
acceptable fit to demonstrate the estimation/kriging process.

2.2.4 Creating a grid

The next step is to create the grid on which simple kriging will be performed. In this
case a 3D Cartesian grid with 100 × 130 × 10 cells is specified. Cartesian grids in
SGeMS are 3D regular grids, i.e. all cells have orthogonal edges, and same dimen-
sions. The grid is completely characterized by nine parameters (see Section 2.3 for
more details):

• the number of cells in the X, Y and Z directions,
• the size of a cell in the X, Y and Z directions,
• the x, y, z coordinates of the origin of the grid.

Click Objects → New Cartesian Grid to open the grid creation dialog. Enter the
dimensions of the grid, the coordinates of the grid origin, here (0,0,0), and the

2.2 A typical geostatistical analysis using SGeMS 13

Figure 2.11 Object list after the Cartesian grid is created

0.3537

0.3285

0.3033

0.2782

0.253

0.2278

0.2026

Figure 2.12 The 563 sample data and grid kriging grid in wire-frame

dimensions of each grid cell. Give a name for the new grid, kriging grid for
example, and click Create Grid to create the grid. A new entry called kriging

grid appears in the Objects panel of the Visualization Panel, as shown in Fig. 2.11.
The objects database now contains two objects: a point-set with the rock

porosity property (and another property), and a Cartesian grid with no property
attached yet.

Figure 2.12 gives the outline of the grid with the 563 sample data points inside.

2.2.5 Running a geostatistics algorithm

At this point, everything is ready to run the simple kriging algorithm: the sample
data and the working grid are available to SGeMS and a variogram model has been
created.

Select the kriging tool from the list in the Algorithm Panel. A form prompting for
the kriging parameters appears below the algorithms list. The required parameters
for simple kriging are:

14 General overview

• the name of the working grid, kriging grid in this case
• the name of the property which will contain the results of the kriging
• the simple kriging mean. We will use the sample mean m∗ = 0.2875, which was

computed during the EDA, see Fig. 2.9
• the name of the object containing the sample data: sample data, property

porosity

• the size of the ellipsoid in which to search for conditioning data: data will be
searched within a sphere of radius 80, more than twice the range of the vari-
ogram. Search ellipsoids in SGeMS are characterized by six parameters: three
ranges and three angles: azimuth, dip and rake, see Section 2.5. For a sphere of
radius 80, set all three ranges to 80 and leave the angles at 0◦

• the variogram model: isotropic spherical variogram of range 20, zero nugget
effect and sill 0.00055.

Chapters 7, 8 and 9 provide the description of all the geostatistics tools available
in SGeMS and the parameters they require. The theory of kriging is briefly recalled
in Section 3.6 and the SGeMS kriging tool is detailed in Section 7.1.

The parameters can either be typed in or loaded from a file. Click the Load but-
ton at the bottom of the Algorithm Panel (Fig. 2.2) and browse to parameter file
kriging.par, or drag-and-drop the parameter file on the Algorithm Panel. Param-
eter files are ASCII files in the XML (eXtended Markup Language) format, as
shown in Fig. 2.13. Refer to Section 2.4 for more details on XML and SGeMS
parameter files.

Once all parameters are entered, click the Run Algorithm button at the bottom of
the Algorithm Panel. If some parameters are not correctly set, they are highlighted
in red; a description of the error will appear if the mouse is left a few seconds on the
offending parameter. Correct any error and click the Run Algorithm button again.

If kriging was run with the parameters shown on Fig. 2.13, the grid named
kriging grid now contains two new properties: estimated porosity, and
estimated porosity krig var, the associated kriging variance.

2.2.6 Displaying the results

The kriging results have been placed in property estimated porosity. Click
on the plus sign before the kriging grid entry in the objects list to show the
list of properties attached to that grid, and click in the square before estimated

porosity to display the new property. Figure 2.14 shows a top view of grid
kriging grid with property estimated porosity painted.

The Visualization Panel is an interactive 3D environment that enables objects
to be viewed (e.g. grid kriging grid) from different angles, zoom-in/out, etc.
Imagine a camera that can be moved freely in space around static objects. The Visu-
alization Panel operates in two different modes: a camera mode, where the mouse

2.2 A typical geostatistical analysis using SGeMS 15

<parameters> <algorithm name="kriging" />

<Grid_Name value="kriging grid" />
<Property_Name value="estimated porosity" />

<Kriging_Type type="Simple Kriging (SK)" >
<parameters mean="0.27" />
</Kriging_Type>

<Hard_Data grid="sample data" property="porosity"/>
<Search_Ellipsoid value="80 80 80 0 0 0" />
<Min_Conditioning_Data value="0" />
<Max_Conditioning_Data value="20" />

<Variogram nugget="0" structures_count="1" >
<structure_1 contribution="0.003" type="Spherical" >
<ranges max="38" medium="38" min="38" />
<angles x="0" y="0" z="0" />
</structure_1>
</Variogram>

</parameters>

Figure 2.13 Kriging parameter file

0.33

0.31

0.29

0.27

0.25

0.24

0.22

X
Z

Y

Figure 2.14 Kriging results – top view

16 General overview

controls the movements of the camera, and a selection mode, where the mouse
can be used to select a displayed object. In camera mode, the mouse cursor looks
like two curved arrows forming a circle, while in selection mode, the cursor is a
standard pointer arrow. Press the Escape key to toggle between the two modes.

Controlling the camera

The camera is controlled with the mouse.

Rotation: left button click and drag in any direction to “turn” the objects in that
direction (the camera moves in the opposite direction, giving the illusion that
the objects were turned in the direction the mouse moved).

Translation: middle button click (or Shift + Left Click) and drag to translate
the objects.

Zoom: mouse wheel (or Shift + Ctrl + Left Click) and drag to zoom in/out.

The bottom of the Visualization Panel provides several buttons (see Fig. 2.15) to
further control the camera:

1. place the camera such that all displayed objects are visible
2. align the camera with the X axis
3. align the camera with the Y axis
4. align the camera with the Z axis (top view)
5. place the camera in the previously saved position (see button 6)
6. save the current position of the camera
7. take a snapshot of the current view. The image can be saved in multiple for-

mats, including PostScript, PNG or BMP. The image captured is exactly what is
displayed in the current view.

1 2 3 4 5 6 7

Figure 2.15 Camera control buttons

The Preference tab of the Visualization Panel contains several controls to cus-
tomize the way objects are displayed. The Preferences for drop-down list lets
the user pick which object to set preferences for (see Fig. 2.16). There is one
entry for each object currently loaded in the SGeMS object database, as well as
a <General> preference panel.

The <General> preference panel has controls to:

2.2 A typical geostatistical analysis using SGeMS 17

Figure 2.16 Selecting the object for which to set preferences

Figure 2.17 The Volume Explorer section of the preference panel for a Cartesian grid

• exaggerate the scale along the Z axis
• change the perspective mode: in Perspective view, the front face of a cube

appears bigger than the back face, while in Orthotropic view distances and
angles are conserved

• toggle the color of the background between white and black
• display the colorbar used for a given object. Although it is possible to display

several objects at the same time, only one colorbar can be shown. By default
the colorbar is placed on the right hand side of the view and can be moved with
Alt + arrow keys or resized with Ctrl + arrow keys.

When visualizing the results of our simple kriging run, only the outer faces of
the grid can be seen by default. However, the preference panel for kriging grid

contains options to display only slices or part of the grid (using volume rendering).
Select kriging grid in the Preferences for list. The preference panel is divided
into three sections: General, Properties and Volume Explorer. The Volume Explorer
section is shown in Fig. 2.17.

18 General overview

Figure 2.18 Four slices of kriging grid

We will first explore the grid by slicing it. Display kriging grid and check
Use Volume Explorer. Check Hide Volume so that only slices are visible. Since we
have not displayed any slice yet, nothing is visible in the view. By default only
three slices can be viewed simultaneously, those orthogonal to X, Y and Z. Check
the box next to a slice to display it and use the cursor to move the slice. If more
slices are needed, select the orthogonal axis and click the Add button. Figure 2.18
shows four slices of kriging grid, two orthogonal to X, one orthogonal to Y and
one orthogonal to Z.

Another useful application of the Volume Explorer is to hide parts of the grid.
For example, it can be used to show only the grid cells with extreme porosity value
and hide all the others. Uncheck Hide Volume and enter interval 0.255, 0.303 in the
Transparent Ranges line. All cells with a porosity value between 0.255 and 0.303
are hidden as illustrated by Fig. 2.19.

It is possible to enter multiple intervals; each interval must be separated by a
semi-colon. For example 0.2, 0.25; 0.3, 0.35 would hide all cells with a porosity
value in the interval [0.2, 0.25] or the interval [0.3, 0.35].

2.2 A typical geostatistical analysis using SGeMS 19

Figure 2.19 Volume rendering – all cells with a porosity value between 0.255 and
0.303 are hidden (almost completely transparent)

2.2.7 Post-processing the results with Python

Not all the cells of kriging grid may be of interest. The reservoir modeled by
kriging grid features two main rock types: sand channels aligned in the North–
South direction and background shales (see Fig. 2.5). All the 563 data points were
sampled in the sand bodies, and were used to estimate porosity in the sand chan-
nels. This section demonstrates how to apply a mask and remove the non-sand
channel cells from kriging grid.

File mask.gslib contains the mask data: it is a Cartesian grid in GSLIB for-
mat with a single property attached to each cell. The property is equal to 1 if
the cell is in a channel, 0 otherwise. Click Objects → Load Object and browse to
the mask file location (or drag-and-drop the file on the Visualization Panel). Since
the GSLIB file format does not provide all the information required by SGeMS, a
wizard prompting for additional information is popped up. The first screen of the
wizard prompts for the type of the object, a Cartesian grid in this case. In the sec-
ond screen, provide a name for the grid, e.g. mask, and indicate the number of cells
in the grid (100 × 130 × 10), the size of each cell (1 × 1 × 1) and the origin of the

20 General overview

grid (0,0,0). Refer to Section 2.3 for more details on the parameters characterizing
a Cartesian grid in SGeMS.

To apply the mask, SGeMS needs to

1. loop over all cells u1, . . . , un of kriging grid

2. for a given cell uk , check if the corresponding cell uk in mask has a facies

property equal to 0
3. if yes, remove the porosity value of uk . SGeMS uses value −9966699 as a

no-data-value code.

This can easily be accomplished by writing a script. SGeMS can execute
scripts written in Python, a very popular and powerful programming language
(www.python.org provides background on Python as well as tutorials). Although
Python is briefly introduced in this section and in Section 10.2, the reader is invited
to refer to the Documentation section of www.python.org to learn more on writing
Python scripts.

Click Scripts → Show Scripts Editor to bring up the scripts editor. From the
scripts editor, load script file apply mask.py. The script is reproduced below:

1 import sgems
2

3 mask=sgems.get_property(’mask’, ’facies’)
4 porosity=sgems.get_property(’kriging grid’,’estimated porosity’)
5

6 for i in range(len(mask)):
7 if mask[i] == 0:
8 porosity[i]= -9966699
9 sgems.set_property(’kriging grid’,’estimated porosity’,porosity)

Following is the line-by-line explanation of the script.

Line 1 tells Python to load SGeMS specific commands (see Section 10.2), such
as sgems.get property and sgems.set property.

Line 3 transfers the facies property of grid mask into an array called mask

Line 4 transfers the estimated porosity property of grid kriging grid into
an array called porosity

Line 6 creates a loop, i will go from 0 to the size of array mask −1
Line 7 tests if the i th cell of grid mask is background shale
Line 8 if the i th cell is background shale, discard the estimated porosity value

by setting it to SGeMS’s not-a-number (NaN) code: −9966699
Line 9 transfers array porosity into property estimated porosity of grid

kriging grid, overwriting the previous values in estimated porosity

Press the Run button at the bottom of the editor to execute the script. Any mes-
sage from the script or error message is printed in the lower half of the editor, titled
Script Output Messages.

2.2 A typical geostatistical analysis using SGeMS 21

(a) 3D view (b) 3D view with volume rendering

Figure 2.20 Final results of kriging, after applying the mask

Note that it is not required to use the SGeMS script editor. A script can be typed
in more feature-rich editors and executed using command Scripts → Run Script.

The results of the apply mask.py script are shown in Fig. 2.20.

2.2.8 Saving the results

File → Save Project saves the project into a folder with the .prj extension,
e.g. tutorial.prj. Folder tutorial.prj will contain one file for each object
in the project, in SGeMS format (see Section 2.3 for a description on the
SGeMS object file format). The project can later be loaded into SGeMS using
File → Open Project or by dragging-and-dropping the project folder on the
Visualization Panel.

Objects can also be saved individually: click Object → Save Object and provide
a file name, the name of the object to save, e.g. kriging grid, and the file format
to use (see Section 2.3).

2.2.9 Automating tasks

In the previous simple kriging run, SGeMS used at most 20 conditioning data to
estimate the porosity at each cell (see parameter Max Conditioning Data of Krig-
ing, Section 7.1). One may want to study the impact of that parameter on the results
of kriging, for example varying the maximum number of conditioning data from 10
to 100 in increments of 5. Performing 19 simple kriging runs one at a time would
be tedious.

SGeMS provides a solution to this problem through its command line interface.
Most actions in SGeMS can either be performed with mouse clicks or by typing

22 General overview

commands in the Command Panel. For example, loading the data set in step 1 of
the tutorial could have been achieved by typing the following command (assuming
the file is stored in D:/Tutorial):

LoadObjectFromFile D:/Tutorial/stanfordV_sample_data.gslib::All

Each command has the following format:

• the name of the command, e.g. LoadObjectFromFile
• a list of parameters, separated by two colons “::”. In the previous example two

parameters were supplied: the name of the file to load, and the file format All
(meaning that SGeMS should try every available file format).

Every command performed in SGeMS, either typed or resulting from mouse
clicks, is recorded to both the “Commands History” section of the Command Panel
and to a file called sgems history.log. Hence if one does not remember a
command name, one can use the GUI to perform the corresponding action and
check the command name and syntax in the command history.

It is possible to combine several commands into a single file and have SGeMS
execute them all sequentially. For the sensitivity study example, one could write a
macro file containing 19 kriging commands, each time changing the
Max Conditioning Data parameter. Or better yet, write a Python script with
a loop that executes the kriging command 19 times while updating the
Max Conditioning Data parameter. File sensitivity analysis.py, reproduced
below, is an example of such a script.

1 import sgems
2

3 for i in range(0,19):
4 sgems.execute(’RunGeostatAlgorithm
5 kriging::/GeostatParamUtils/XML::<parameters>
6 <algorithm name="kriging" />
7 <Grid_Name value="kriging grid"/>
8 <Property_Name value="titi"/>
9 <Kriging_Type type="Simple Kriging (SK)">
10 <parameters mean="0.27"/>
11 </Kriging_Type>
12 <Hard_Data grid="sample data" property="porosity"/>
13 <Search_Ellipsoid value="80 80 80 0 0 0"/>
14 <Min_Conditioning_Data value="0"/>
15 <Max_Conditioning_Data value="’ + str(10+5*i) +’"/>
16 <Variogram nugget="0" structures_count="1">
17 <structure_1 contribution="0.003" type="Spherical">
18 <ranges max="38" medium="38" min="38"/>
19 <angles x="0" y="0" z="0"/>
20 </structure_1>
21 </Variogram>
22 </parameters>’)

2.3 Data file formats 23

Although it looks lengthy, this script has only three statements: the
import statement, the for loop, and the call to sgems.execute which executes
the RunGeostatAlgorithm. The RunGeostatAlgorithm command is followed by
all the parameters required by kriging on a single line, in XML format (see Sec-
tion 2.4 for a description of SGeMS XML parameter files, and Section 7.1 for
details on each parameter). The line of interest is line 15, where the value of
parameter Max Conditioning Data is set to str(10+5*i) : Python evaluates
10 + 5 ∗ i and turns the result into a string, which is concatenated with the rest of
the parameters using the + operators.

2.3 Data file formats

In SGeMS, a Cartesian grid is defined by nine parameters:

• the number of cells nx, ny, nz in each direction
• the dimensions of a cell, xsi ze, ysi ze, zsi ze
• the coordinates of the origin.

This is illustrated in Fig. 2.21.
SGeMS supports two file formats by default to describe grids and sets of points:

the GSLIB format and the SGeMS binary format.

The GSLIB file format

It is a simple ASCII format used by the GSLIB software (Deutsch and Journel,
1998, p.21). It is organized by lines:

• the first line gives a title. This line is ignored by SGeMS
• the second line is a single number n indicating the number of properties in the

object, i.e. the number of columns of data

The origin is the
center of this cell

xsizezsize

ysize

nx = 4
ny = 3
nz = 3X

Z
Y

Figure 2.21 Parameters characterizing a Cartesian grid

24 General overview

1 2 3 4

0 1 2 3

5 6 7 8

9

0

1

2 10 11 12

Figure 2.22 Implicit node coordinates of Cartesian grids, here a 4 × 3 grid. The
numbers in the margin are the X and Y coordinates. The number in each cell
indicates on which line the properties of that node should be entered

• the n following lines contain the names of each property (one property name per
line)

• each remaining line contains the values of each property (n values per line) sep-
arated by spaces or tabulations. The order of the property values along each line
is given by the order in which the property names were entered.

Note that the same format is used for describing both point-sets and Cartesian
grids. When a GSLIB file is loaded into SGeMS the user has to supply all the
information that is not provided in the file itself, such as the name of the object or
the number of cells in each direction if it is a Cartesian grid.

In a Cartesian grid file, the X, Y, Z coordinates of each point are implicit. The
first line of properties corresponds to the origin cell, which is the lower bottom left
corner of the grid. Properties for node (i, j, k), the i th node in X, j th in Y and kth
in Z (the origin is i = 0, j = 0, k = 0) are on line k × nx × ny + j × nx + i , where
nx, ny, nz are the number of cells in the X, Y and Z directions respectively. This
is illustrated in Fig. 2.22.

The SGeMS binary file format

SGeMS uses an uncompressed binary file format to store objects. Binary formats
have two main advantages over ASCII files: they occupy less disk space and they
can be loaded and saved faster. The drawback is that they can not be easily edited
with a text editor. The SGeMS binary format is self-contained, hence the user needs
not provide any additional information when loading such a file.

2.4 Parameter files

When an algorithm is selected from the Algorithm Panel (see step 3 of Tutorial 2.2),
several parameters are called for. It is possible to save those parameters to a file,
and later retrieve them.

2.4 Parameter files 25

The format of a parameter file in SGeMS is based on the eXtended Markup Lan-
guage (XML), a standard formatting language of the World Wide Web Consortium
(www.w3.org). Figure 2.13 shows an example of such a parameter file.

In a parameter file, each parameter is represented by an XML element. An ele-
ment consists of an opening and a closing tag, e.g. <tag> and </tag>, and one or
several attributes. Following is the example of an element called algorithm which
contains a single attribute “name”:

<algorithm name="kriging"> </algorithm>

Elements can themselves contain other elements:

<Variogram nugget="0.1" structures_count="1">
<structure_1 contribution="0.9" type="Spherical">

<ranges max="30" medium="30" min="30"> </ranges>
<angles x="0" y="0" z="0"> </angles>

</structure_1>
</Variogram>

Here the element Variogram contains an element structure 1, which itself con-
tains two elements: ranges and angles. Each of these elements have attributes:
element Variogram has a nugget and a structures count attribute, set here
respectively to 0.1 and 1. Note that if an element only contains attributes, i.e. it has
no nested elements, the closing tag can be abbreviated: in the previous example,
element ranges only contains attributes and could have been written:

<ranges max="30" medium="30" min="30"/>

The /> sequence indicates the end of the element.
A SGeMS parameter file always has the two following elements.

• Element parameters. It is the root element: it contains all other elements.
• Element algorithm. It has a single attribute name which gives the name of the

algorithm for which parameters are specified.

All other elements are algorithm-dependent and are described in Chapter 7 and
Chapter 8.

Such an XML formatted parameter file has several advantages.

• Elements can be entered in any order.
• Comments can be inserted anywhere in the file. A comment block starts with

<!-- and end with -->. They can span multiple lines, as shown by the following
example.

26 General overview

<!-- An example of a comment block spanning
multiple lines -->

<parameters> <algorithm name="kriging" />

<!-- the name of the working grid -->
<Grid_Name value="working_grid" />

</parameters>

2.5 Defining a 3D ellipsoid

Many algorithms in SGeMS require the user to specify a 3D ellipsoid, for example
to represent a search volume through three anisotropy directions and affinity coef-
ficients. In SGeMS, a 3D ellipsoid is represented by six parameters: the three radii
of the ellipsoid rmax, rmed, rmin, and three angles, α, β, θ positioning the ellipsoid in
space (see Figs. 2.23, 2.24 and 2.25).

Let (X, Y, Z) be the three orthogonal axes of a Cartesian coordinate system. The
position of the ellipsoid is obtained by three successive rotations. Initially, before
any rotation, the major axis Y ′ of the ellipsoid is aligned with Y , the medium axis
X ′ with X , and the minor axis Z ′ with Z , see Fig. 2.23.

First rotation about Z ′ The ellipsoid is first rotated about axis Z ′, by angle
−α, where α is traditionally called azimuth, see Fig. 2.24. Looking in the
direction of Z ′, the azimuth is measured counter-clockwise.

m
ax range

medium
range

Z = Z ′
X

Y

Y ′

X ′

Figure 2.23 Starting point

2.5 Defining a 3D ellipsoid 27

Z = Z ′ X

Y

az
im

ut
h

X ′

Y ′

Figure 2.24 First rotation about Z ′

X

X ′

Y

Y ′

Z ′

Z

dip

dip

Figure 2.25 Second rotation about X ′

Second rotation about X ′ The ellipsoid is then rotated about axis X ′, by angle
−β, where β is called the dip, see Fig. 2.25. Looking in the direction of X ′,
the dip is measured counter-clockwise.

Third rotation about Y ′ Last, the ellipsoid is rotated about axis Y ′ by angle θ ,
called the plunge or rake angle. Looking in the direction of Y ′, the plunge is
measured clockwise.

The final transformation matrix, product of three rotations, is:

T =
⎡⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤⎦ ⎡⎣ 1 0 0
0 cos β sin β

0 − sin β cos β

⎤⎦ ⎡⎣ cos α sin α 0
− sin α cos α 0

0 0 1

⎤⎦

28 General overview

Note that the order in which the rotations are performed is important. In the
SGeMS parameter files, the six parameters, three radius and three angles, defining
an ellipsoid must be given in the following order: rmax, rmed, rmin, azimuth, dip and
rake; rmax is the dimension of the major axis, rmed the dimension of the medium
axis, and rmin is the dimension of the minor axis.

3

Geostatistics: a recall of concepts

This user’s manual is no place for another presentation of the theory of geostatis-
tics. Many excellent books and reference papers are available to such purpose:
Journel and Huijbregts (1978); Isaaks and Srivastava (1989); Cressie (1993);
Wackernagel (1995); Goovaerts (1997); Deutsch and Journel (1998); Chilès and
Delfiner (1999); Olea (1999); Lantuéjoul (2002); Mallet (2002). In this chapter
we will only review the basic concepts and geostatistical principles underlying the
algorithms offered in SGeMS. The more recent developments of multiple-point
geostatistics are presented in relatively greater length because they are less known.
Engineering-type presentations are preferred over more rigorous but less intuitive
developments. These presentations point to programs coded into SGeMS whenever
available.

A warning about references. We have limited citations to a few most relevant
and easily accessible references. We give page numbers only to the three books by
Goovaerts (1997), Deutsch and Journel (1998) and Chilès and Delfiner (1999).
For an extensive list of references the reader may turn to the list proposed by
Cressie (1993) and that of Chilès and Delfiner (1999).

Section 3.1 introduces the concept of random variable to model the uncertainty
about a single variable. That concept is extended in Section 3.2 to a random
function modeling the joint uncertainty about several interdependent variables dis-
tributed in space. The various possible outcomes of a random variable or random
function are controlled by probability distribution functions made conditional to
the data available; simulated outcomes can then be drawn from these conditional
distributions, as discussed in Section 3.3. Conversely, a set of simulated outcomes
can define a random function which is then seen as algorithm-driven, the algorithm
being that used to generate these outcomes. At the core of any random function
is a structural model that indicates how the various constitutive random variables
relate to each other and to the data; inference of such model necessarily requires

29

30 Geostatistics: a recall of concepts

a prior decision of stationarity, as discussed in Section 3.4. In Section 3.5 we see
that the structural model can be limited to a variogram-type relation between any
two variables or involve many more than two variables at a time. In the latter
case, inference of the corresponding multiple-point statistics calls for a training
image. Section 3.6 presents the kriging paradigm which is at the origin of most
geostatistical algorithms whether aimed at estimation or simulation. Section 3.7
introduces the theory underlying the multiple-point geostatistical algorithms. The
traditional variogram-based simulation algorithms, SGSIM, DSSIM and SISIM are
presented in Section 3.8. The two multiple-point simulation algorithms, SNESIM
and FILTERSIM, are presented in Section 3.9. The nu/tau expression for combin-
ing probabilities conditional to different data events is given in Section 3.10; this
non-traditional yet exact expression of the fully conditioned probability provides a
useful separation of data information content and data redundancy.

3.1 Random variable

The conceptual model at the root of geostatistics, and for that matter of all of statis-
tics and probability theory, is that of a random variable or random function. This is
the model that allows making uncertainty assessment about an imperfectly known
attribute or variable.

A deterministic variable takes only one outcome; that outcome is either known
or unknown leaving no flexibility for uncertainty. Conversely, a random variable
(RV) is a variable that can take a series of possible outcomes, each with a certain
probability or frequency of occurrence (Goovaerts, 1997, p.63; Deutsch and Jour-
nel, 1998, p.11; Jensen et al., 1997). A random variable is traditionally denoted
with a capital letter, say, Z . Its possible outcomes are denoted with the correspond-
ing small case letter, say, {zi , i = 1, . . . , n} for a discrete variable with n outcomes,
or {z ∈ [zmin, zmax]} for a continuous variable valued in the interval bounded by a
maximum and minimum value.

In the discrete case, to each outcome zi is attached a probability value

pi = Prob{Z = zi } ∈ [0, 1] , with:
n∑

i=1

pi = 1. (3.1)

In the continuous case, the distribution of probability values can take the form of

• a cumulative distribution function (cdf), pictured as a cumulative histogram, pro-
viding the probability for the RV not to exceed a given threshold value z, see
Fig. 3.1a:

F(z) = Prob {Z ≤ z} ∈ [0, 1] (3.2)

• a probability density function (pdf), pictured as a histogram, defined as the
derivative or the slope of the previous cdf at z-values where F is differentiable:
f (z) = d F(z)/dz.

3.1 Random variable 31

F (z) f (z)

z0

(a) Cumulative distribution function
 (cdf)

(b) Probability density function (pdf)

zmin zminzmax zmaxz
(l)

p
(l)

M

1

0.5

z0 a b

F (b)–F (a)

Figure 3.1 Probability distribution function

From such pdf or cdf, probability intervals can be derived, see Fig. 3.1b:

Prob {Z ∈ (a, b]} = F(b) − F(a) =
∫ b

a
f (z)dz. (3.3)

The key to a probabilistic interpretation of a variable z is the modeling of the
distribution function, cdf or pdf, of the corresponding random variable Z . Note
that such modeling does not mean necessarily fitting a parametric function to either
the cdf or pdf; a series of classes with attached probability values is a valid model
(Deutsch and Journel, 1998, p.16). That distribution function should account for all
information available; it then provides all that is needed to quantify the uncertainty
about the actual outcome of the variable z. For example,

• probability intervals can be derived as in Eq. (3.3);
• quantile values can be derived such as the 0.1 quantile or 1st decile:

q0.10 = F−1(0.10) = z-outcome value such that Prob {Z ≤ q0.10} = 0.10

• simulated values can be drawn by reading quantile values z(l) corresponding to
a series of random numbers p(l), l = 1, . . . , L uniformly distributed in [0, 1]:

z(l) = F−1(p(l)), l = 1, . . . , L (3.4)

This process, called Monte Carlo drawing, ensures that the cdf of the L val-
ues z(l) will reproduce the Z -cdf F(z), see Fig. 3.1a and Goovaerts (1997,
p.351), Deutsch and Journel (1998, p.154). Conversely, a random variable Z
can be modeled by the distribution of a number L of simulated values z(l) gen-
erated from a process initiated with equally probable uniform random numbers
p(l): this is the concept of algorithm-driven random variable, see hereafter and
Section 3.3, Deutsch (1994).

From the distribution of Z , specific moments or characteristic values can be
derived such as,

• the mean m, or expected value of the RV Z , which can be retained as an estimate
of the unknown value z, best in a least squared error sense. This mean is here

32 Geostatistics: a recall of concepts

written for a continuous variable Z in terms of its cdf, pdf, or as the arithmetic
mean of L equiprobable realizations z(l) if the RV is so defined:

m = E {Z} =
∫ zmax

zmin

zd F(z) =
∫ zmax

zmin

z f (z)dz

= 1

L

L∑
l=1

z(l) (3.5)

• the median, or 0.5 quantile q0.50, a z-value which leaves 50% of the possible out-
come values above it and 50% below it, see Fig. 3.1a. The median can be used as
yet another estimate of the unknown value z, best in a least absolute error sense:

M = q(0.50) : value such that Prob {Z ≤ M} = 0.50 (3.6)

• the variance which can be used as a single summary of the uncertainty around
the mean estimate m:

σ 2 = Var {Z} = E
{
(Z − m)2

} =
∫ zmax

zmin

(z − m)2 f (z)dz

= 1

L

L∑
l=1

(
z(l) − m

)2
. (3.7)

Beware that the two most-used moments, mean and variance, generally do not
suffice by themselves to define a distribution, hence to define probability intervals
such as given in relation (3.3). Often a Gaussian-related distribution is adopted
to provide the missing information. The problem is that errors associated to the
various data integration processes involved in spatial interpolation are almost never
Gaussian-distributed as opposed to direct errors due to measurement devices.

One definite advantage of an RV modeled through a set of L realizations z(l)

is that probability intervals can be defined directly without going through any
variance calculation. Also these probability intervals are independent of the par-
ticular estimated value retained, as opposed to the variance (Eq. (3.7)) which is
specific to the mean estimate m. If one accepts that there is no unique “best in
absolute” estimated value for any unknown, probability intervals and uncertainty
measures should indeed be independent of the particular estimated value retained
(Srivastava, 1987; Goovaerts, 1997, p.340; Isaaks and Srivastava, 1989).

Algorithm-driven random variable

One can argue that all of predictive geostatistics amounts to the determination of a
probability distribution model, a model that accounts for all information available
about the unknown value(s) z. A distribution model cannot be reduced to its mean
and variance unless some two-parameter distribution is adopted; one must then
question why mean and variance should be carefully determined if the far more

3.2 Random function 33

consequential distribution type retained is not appropriate. Instead of determining
mean and variance of the possible outcomes of an unknown, modern geostatistics
aims at building a process (an algorithm) mimicking the data environment of that
unknown; that algorithm then allows generating many (L) alternative outcomes of
that unknown, although possibly not all of them. These L simulated realizations
z(l), l = 1, . . . , L , define an algorithm-driven random variable from which prob-
ability intervals for the unknown can be retrieved, as well as an estimated value
which need not be the mean (Journel, 1994; Deutsch, 1994).

The number L of realizations can be as large as can be comfortably processed
(Deutsch and Journel, 1998, p.133; Chilès and Delfiner, 1999, p.453). Note that a
different set of L ′ realizations, with possibly L = L ′, actually defines a different
random variable. The number L and the specific L realizations retained are part of
the defining algorithm.

This book and the SGeMS software provide tools for building these models
of uncertainty. The details are in the “how to” and in the presentation, mostly
graphical (maps), of the results.

Beware that a model of uncertainty is just that, a model, and there could be alter-
native models, each delivering possibly different results such as different estimates
of the unknown, yet using the same original information (data) but in a different
manner. There is no unique model of uncertainty, and most troublesome, there is
neither a “best” model nor a fully objective model. We will return repeatedly to
that point. Geostatistics, and for that matter all of probability theory, can only pro-
vide consistency with a prior model necessarily partly subjective, it cannot provide
fully objective decisions (Goovaerts, 1997, p.442; Chilès and Delfiner, 1999, p.22;
Matheron, 1978; Journel, 1994; Dubrule, 1994).

3.2 Random function

Most applications of geostatistics in the earth sciences involve mapping, which
is the joint consideration of variables at several locations in space and/or time.
Some of these variables are known through sampling; most others are unknown
with varying degrees of uncertainty, they should therefore be modeled as random
variables. However, we are not interested in evaluating each unknown indepen-
dently of the others nearby; we are interested in an assessment of the joint spatial
distribution of all unknowns, which is an assessment of their relation and connec-
tivity in space. The uncertainty modeling should therefore consider all unknown
variables together. The concept of a random function answers that requirement
(Goovaerts, 1997, p.68; Chilès and Delfiner, 1999, p.12).

A random function (RF), denoted Z(u), is a set of dependent random variables
{Z(u), u ∈ S}, each marked with a coordinate vector u spanning a field or study

34 Geostatistics: a recall of concepts

area S. That field is typically a 3D physical volume, in which case u = (x, y, z)
is the vector of the three Cartesian coordinates; the common notation (z) for the
variable and the vertical coordinate does not usually pose a problem. The variable
could also be time in which case u = t , or it could involve both space and time as
for atmospheric pressure in which case u = (x, y, z, t).

Just like a single random variable Z is characterized by a distribution function,
say its cdf F(z) for a continuous variable, an RF Z(u) would be characterized by
its multivariate distribution function:

Prob {Z(u) ≤ z, u ∈ S} (3.8)

a function of many parameters, any number N of locations u in S and the
corresponding threshold values z possibly all different from one location to another.

The analytical expression of such multivariate distribution is impractical on
a sizeable grid; there can be many millions of locations in a 3D grid. Excep-
tions are analytical distributions defined from a very small number of parame-
ters, e.g. Gaussian-related (Anderson, 2003; Goovaerts, 1997, p.265; Chilès and
Delfiner, 1999, p.404). But parameter-poor distributions are very specific in their
properties, hence very restrictive. Last and not least, any advantage provided by an
analytical definition diminishes when data locations and values are included into
the field S, unless these data are consistent with the prior RF (unlikely in prac-
tice). This process of including into the RF Z(u) random variables that are actually
sampled is known as “data conditioning.”

3.2.1 Simulated realizations

Just as a single RV can be defined by a finite set of simulated realizations, an RF
Z(u) is displayed and used through its realizations

{
z(l)(u), u ∈ S

}
, l = 1, . . . , L

(Lantuéjoul, 2002; Goovaerts, 1997, p.369; Chilès and Delfiner, 1999, p.449;
Deutsch and Journel, 1998, p.119). In practice these realizations take the form of
a finite number L of simulated maps, each providing an alternative, equally proba-
ble, representation of the unknown “true” map z(u), u ∈ S, see Fig. 3.2a. Any one
specific such realization is denoted z(l)(u), u ∈ S, where the upper script l indi-
cates the realization number. A realization can be seen as a numerical model of the
possible distribution in space of the z-values. That numerical model can be used
to different purposes, including visualization and input to some transfer function
representing the process under study, e.g. mining out the z-grade values.

Ideally, one would like to have access to an RF such that one of its realizations
identifies the actual distribution of the true values z(u), u ∈ S; this is very unlikely
if S contains millions or even only thousands of unknown values z(u). In practice,
this latter limitation is not a matter of concern if the L realizations available allow

3.2 Random function 35

(a) simulated realizations

(b) E-type map

(c) loss-type map

Figure 3.2 Simulated realizations and different estimation maps: (a) alternative
equiprobable realizations of a random function; (b) E-type estimated map mini-
mizing local squared error; (c) estimated map minimizing a specific loss function
of the local error

a reasonable assessment of the consequent uncertainty on any processing of these
unknown values. Recall the previous warning that an RF model is just a model, and
asking that this model includes the unknown reality is naive.

It is the set of all such L simulated realizations, not any single realization, which
provides an uncertainty assessment of the spatial distribution of the z-values over
the study area. From a set of L realizations one could get the following.

• The probability distribution of the unknown z(u) at any particular location u can
be retrieved from the L simulated values z(l)(u) at that same location u. This
is much more than a mere estimation of z(u), even if attached with an error
variance since an error variance does not suffice to specify an error distribution.
In a spatial interpolation setting, one could easily check through cross-validation
that the cdf of the L simulated error values

[
z(l)(u) − z∗(u)

]
, l = 1, . . . , L , takes

very different shapes depending on the data environment of location u and these
shapes could be quite non-Gaussian.

• The probability that two nearby unknown values z(u) and z(u′) be simultane-
ously greater than any given threshold z0 can be evaluated by the proportion of
the L realizations which display simultaneously high simulated values at these
two locations.

36 Geostatistics: a recall of concepts

The reader should convince himself that this result could not be obtained, in
general, from sole knowledge of the two cdfs

F(u, z0) = Prob {Z(u) ≤ z0} and F(u′, z0) = Prob
{

Z(u′) ≤ z0
} ;

indeed the uncertainties related to two nearby values z(u) and z(u′) are not in
general independent, hence the two RVs Z(u) and Z(u′) are not independent,
and their two cdfs cannot be combined straightforwardly.

• The probability that a connected path of high z-values exists between two distant
locations u and u′ can be similarly evaluated by the proportion of simulated
realizations (out of the L available) displaying such connected paths.

A great part of the SGeMS software deals with the generation of simulated reali-
zations of the type shown in Fig. 3.2a, and their utilization in assessing spatial
uncertainty, that is, uncertainty involving many different locations in space taken
jointly.

The issue of equiprobable realizations

Through the cdf F(z) = Prob{Z ≤ z} of a single analytically defined RV, one
can define the probability of any outcome value z or class thereof. The case of
an algorithm-driven RF is more delicate, if only because an analytical multivari-
ate cdf characterizing that RF is rarely available; in practice it is never available
after data conditioning. Indeed real and reasonably complex data are rarely per-
fectly consistent with a necessarily restrictive analytically defined RF model, hence
conditioning that model to these data changes the model in an unpredictable way
depending on the algorithm retained for the conditioning process.

In the vast majority of practical applications, the RF is defined through a finite
number L of simulated realizations

{
z(l)(u), u ∈ S

}
, l = 1, . . . , L . If any number

n ≤ L of realizations are exactly identical, these n realizations can be collated
into a single one with probability n/L . However, in most practical applications
no two realizations would be exactly identical, in which case all realizations are
equiprobable, each with probability 1/L .

How many realizations?

How many realizations (L) should be drawn from a given RF model (Chilès and
Delfiner, 1999, p.453; Deutsch and Journel, 1998, p.133)? Since there is no refer-
ence model to approach, the number L should be chosen large enough to ensure
stability of the results and small enough to allow the intended processing of the L
simulated realizations.

Consider as “result” a specific function ϕ
(
z(l)(u), u ∈ S

)
built from any one sim-

ulated realization. The number L of realizations should be large enough such that

3.2 Random function 37

statistics such as the variance of the L ′ values
{
ϕ

(
z(l)(u), u ∈ S

)
, l = 1, . . . , L ′}

stabilizes as L ′ increases towards L .

3.2.2 Estimated maps

There can be applications where values z(u) are dealt with one at a time inde-
pendently of the next one z(u′), no matter how close the locations u and u′ are.
We will argue that those applications are few; even the most selective mining or
environmental cleaning of single values z(u) do account for close-by values z(u′),
e.g. for reason of cost and/or accessibility (Journel and Huijbregts, 1978; Isaaks
and Srivastava, 1989). Notwithstanding, consider the derivation of a single-valued
estimate z∗(u) at each unsampled location u.

Since the L simulated realizations of any single unsampled RV z(u) are equi-
probable, their point-wise arithmetic average provides a single estimated value, of
least squared error-type, also called the E-type estimated value where E is short
for “expected value”, more precisely “conditional expectation” (Goovaerts, 1997,
p.341; Deutsch and Journel, 1998, p.81):

z∗
E(u) = 1

L

L∑
l=1

zl(u). (3.9)

The E-type map corresponding to the L realizations of Fig. 3.2a is shown in
Fig. 3.2b. Note how much “smoother” the estimated map is compared to any one
of the L simulated realizations. What is missing in an estimated map is the joint
dependency between the many variables Z(u), u ∈ S, beyond their sharing com-
mon data. Far away from the data locations two estimated values would typically be
identical; in the case of simple kriging they would be equal to the data mean value
(Isaaks and Srivastava, 1989; Goovaerts, 1997, pp.130, 369). Clearly, geological or
physical heterogeneity should not vanish just because there are no data nearby!

As a consequence, the probability that two nearby unknown values z(u) and
z(u′) be simultaneously greater than any given threshold z0 cannot be evaluated
from an estimated map. More generally any assessment or estimation involving
more than one location at a time should not be made based on an estimated map,
particularly if that estimation is based on sparse data which is the case in many
earth sciences applications.

In all rigor a set of estimated values should only be tabulated, not displayed
as a map; a map entices the user to read relations between estimated z∗-values at
different locations when these relations may not reflect that between the actual
z-values. Only simulated values z(l)(u) should be mapped because a simulated
realization is precisely a representation of the RF modeling the joint distribution in
space of all random variables Z(u), u ∈ S. Beware, however, that if an estimated

38 Geostatistics: a recall of concepts

map is unique, there are many alternative equiprobable simulated realizations for
any given data set. A simulation workflow forces the user to face uncertainty as
represented by the L simulated realizations generated.

Alternative estimation criteria

Instead of the mean value defining the E-type estimated map as in expression (3.9),
one could have retained the median z∗

M(u) of the L simulated values z(l)(u) at
each location u. This would define an M-type estimated map, where each esti-
mated value z∗

M(u) has a 50% chance to be higher (or lower) than the actual
unknown value. It can be shown that such M-type estimate is “best” in a least
absolute error sense. In any particular application where single-location estimated
values are needed, there is no a priori reason to minimize the squared error (e2)
or the absolute error (|e|); one may want to minimize an application-specific loss
function �(e), for example, in environmental applications using a non-linear func-
tion that penalizes underestimation of a lethal pollutant more than overestimation.
Availability of the L simulated maps

{
z(l)(u), u ∈ S

}
, l = 1, . . . , L , allows con-

sidering such loss function-specific estimate, see Fig. 3.2c; Srivastava (1987),
Goovaerts (1997, p.340).

Kriging could provide directly and faster an estimated map, similarbut not
identical to the E-type map but it does not allow the flexibility to consider
other types of estimates. In addition, the kriging variance map is an incom-
plete, when not misleading, measure of uncertainty as opposed to the distribution
provided by the L simulated maps

{
z(l)(u), u ∈ S

}
, l = 1, . . . , L; see later dis-

cussion in Section 3.6.1, and Goovaerts (1997, p.180, Journel (1986), Chilès and
Delfiner (1999, p.178).

3.3 Conditional distributions and simulations

As already stated, the main task of any probabilistic assessment is to build a
model for the probability distribution of the unknown(s), either taken one at a
time as displayed by the histogram of Fig. 3.1b, or altogether as displayed by
the set of simulated realizations of Fig. 3.2a. The uncertainty of any unknown,
or any number of unknowns taken jointly, necessarily depends on the amount and
types of data available and their assumed relation to the unknown(s) considered.
Take the simple example of a single unsampled continuous variable at location
u, and denote by n(u) the set of data informing it. The relevant cdf providing an
assessment of the uncertainty about the unsampled value z(u) is specific to the
location u and the data set n(u) and is written (Chilès and Delfiner, 1999, p.380;
Goovaerts, 1997, p.69):

F(u; z|n(u)) = Prob {Z(u) ≤ z|n(u)} ,

3.3 Conditional distributions and simulations 39

in words, the probability that the unknown Z(u) be valued no greater than the
threshold value z conditional to (knowing) the data set n(u).

That conditional probability is, by definition, equal to the following ratio, with
as numerator the probability of the event to be assessed Z(u) ≤ z occurring jointly
with the data event, and as denominator the probability of that data event occurring:

Prob {Z(u) ≤ z|n(u)} = Prob {Z(u) ≤ z, n(u)}
Prob {n(u)} . (3.10)

Expression (3.10) makes explicit the dependence of that cdf on the location u, more
precisely, the relation of that location with the n(u) data retained. In all rigor, one
should also make explicit the type, location and value of each datum constituting
the set n(u). Indeed if any aspect of that data set changes, the distribution (3.10) is
changed.

Distribution (3.10) is called the conditional cumulative distribution func-
tion (ccdf) of the specific RV Z(u) given the data set n(u). When many
unknowns {z(u), u ∈ S} are jointly involved, the conditional probability required
becomes multivariable; it is written as (Goovaerts, 1997, p.372; Anderson, 2003;
Johnson, 1987):

Prob {Z(u) ≤ z, u ∈ S|n(u)} = Prob {Z(u) ≤ z, u ∈ S, n(u)}
Prob {n(u)} . (3.11)

Probability distributions of type (3.1) or (3.2) which are not made conditional to
the data available are of little practical interest. Similarly, it is the moments of
the conditional distributions which are of practical interest, and only those should
be used for estimation. For example it is the mean of the ccdf F(u; z|(n)) which
should be used as the least squared error estimate of the unknown z(u) at location
u, not the mean of the marginal distribution F(z) as defined in Eq. (3.2) since that
marginal distribution does not account for the specific dependence of location u
with the data.

Similarly, the L realizations
{
z(l)(u), u ∈ S

}
, l = 1, . . . , L , displayed in

Fig. 3.2a are useful only if they are outcomes of the multivariate probability dis-
tribution (Eq. (3.11)) conditioned to all relevant data available over the study
field S (Goovaerts, 1997, p.372). For example, the arithmetic average of the
L simulated values z(l)(u) at any given location u provides an estimate of the
unknown z(u) at that location; the cumulative histogram of these L simulated val-
ues provides a discrete representation of the ccdf (Eq. (3.10)), itself a measure of
uncertainty about z(u) (Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989;
Goovaerts, 1997, p.180).

Consider a specific zone or block V within S; each simulated map provides a
simulated value for the average z-value over V denoted z(l)

V . Then the histogram of
the L simulated values z(l)

V , l = 1, . . . , L provides a measure of uncertainty about

40 Geostatistics: a recall of concepts

the unknown average value zV (Journel and Kyriakidis, 2004). Instead of a mere
average taken over the zone V , any complex non-linear function of the z-values
over all or part of the field S could be considered.

3.3.1 Sequential simulation

How does one go about building a complex distribution such as that in expression
(3.11) involving jointly many unknowns and many data possibly of different types?
This is indeed the main challenge of geostatistics. A solution to such a formidable
task is provided by the “divide and conquer” paradigm.

1. Divide the problem into a series of easier problems involving only one
unknown at a time, that is, address the easier problem of determining the
ccdf (Eq. (3.10)) of each unknown z(u). The task of recombining these
elementary conditional probabilities accounting for spatial dependence under-
lies the sequential simulation algorithm (Deutsch and Journel, 1998, p.125;
Goovaerts, 1997, p.390; Chilès and Delfiner, 1999, p.462; Rosenblatt, 1952).

2. Divide the possibly large and complex data set n(u) constituted of many dif-
ferent data types into a set of smaller more homogeneous data sets nk(u),
k = 1, . . . , K , and address the easier problem of determining the K ccdfs
Prob{Z(u) < z|nk(u)} conditioned to each of the smaller data set nk(u). The
nu/tau model presented in Section 3.9 addresses the problem of combining
these K ccdfs into a single one of type (3.10) (Journel, 2002; Krishnan, 2004;
Bordley, 1982; Polyakova and Journel, in press).

We will develop the first divide paradigm by considering the case of only three
interdependent unknowns z(u1), z(u2), z(u3), at different locations u1, u2, u3.
These three interdependent variables could also relate to three different attributes,
say the grades of three different metals. The generalization to more than three
unknowns is immediate. The joint pdf of three random variables conditional to
the same data set (n) can be decomposed as Goovaerts, 1997, p.376:

Prob {Z(u1) = z1, Z(u2) = z2, Z(u3) = z3|(n)} =
Prob {Z(u1) = z1|(n)} ·
Prob {Z(u2) = z2|(n), Z(u1) = z1} ·
Prob {Z(u3) = z3|(n), Z(u1) = z1, Z(u2) = z2} .

(3.12)

In words, the tri-variate joint pdf has been decomposed into the product of three
univariate conditional pdfs, each involving only one variable, Z(u1) first, then
Z(u2), last Z(u3), but with increased data conditioning.

3.3 Conditional distributions and simulations 41

Provided that the problem of conditioning to the available data set (n) can be
solved (see hereafter), each of these three single variable conditional pdfs can be
determined. Decomposition (3.12) then allows the process of sequential simulation
(Deutsch and Journel, 1998, p.125) more precisely, as follows.

• A value for Z(u1) is drawn from the first pdf Prob {Z(u1) = z1|(n)}, say that
simulated value is z(l)

1 .
• Next a value for Z(u2) is drawn from the second pdf

Prob
{

Z(u2) = z2|(n), Z(u1) = z(l)
1

}
, say that value is z(l)

2 .

• Last a value for Z(u3) is drawn from the third pdf

Prob
{

Z(u3) = z3|(n), Z(u1) = z(l)
1 , Z(u2) = z(l)

2

}
, say that value is z(l)

3 .

The three simulated values z(l)
1 , z(l)

2 , z(l)
3 , although drawn in sequence one after

the other, stem from the joint tri-variate distribution conditional to the common
data set (n).

• If another set of three simulated values is needed, one can repeat the process
using different random numbers for the drawings.

The interdependence between the three variables z(l)
1 , z(l)

2 , z(l)
3 , has been taken

into account by conditioning the simulation of each single variable to values of all
previously simulated variables. We have traded the problem of simulating jointly
many variables for that of simulating only one variable at a time but with an increas-
ing conditioning data set, from (n) to (n + 1) then (n + 2). In practice, the problem
created by the increasing data set size is solved by retaining into the condition-
ing data set of each variable only the closest or most related previously simulated
values (Gómez-Hernández and Cassiraga, 1994; Goovaerts, 1997, pp.390, 400).

Retaining only the n(u) closest data to inform any unknown location u amounts
to an approximation of Eq. (3.12) since not all the previously simulated variables
are taken into consideration. On the other hand, retaining only the closest data
allows tighter local conditioning. A consequence of retaining only the closest pre-
viously simulated values is that the sequence along which the nodes are visited
matters. That sequence is called the simulation path, it is usually random to avoid
artifacts (Daly and Verly, 1994).

The joint-pdf in Eq. (3.12) using the sequence {u1, u2, u3} and retaining only
one previously simulated value in addition to the original (n) becomes, with u2

being closer to u3 than u1:

Prob {Z(u1) = z1, Z(u2) = z2, Z(u3) = z3|(n)} ≈
Prob {Z(u1) = z1|(n)} ·
Prob {Z(u2) = z2|(n), Z(u1) = z1} ·
Prob {Z(u3) = z3|(n), Z(u2) = z2} .

(3.13)

42 Geostatistics: a recall of concepts

Another realization could be obtained by changing the uniform random num-
bers used for the drawing and/or changing the sequence in which the locations
{u1, u2, u3} are visited and simulated.

3.3.2 Estimating the local conditional distributions

The critical step in sequential simulation consists of estimating at each location u
along the simulation path the conditional distribution given a specific conditioning
data set (n(u)). There have been essentially two avenues for approaching the deter-
mination of conditional pdf Prob {Z(u) = z|n(u)} the single variable Z(u), both
calling for a multiple-point (mp) RF model.

1. The traditional 2-point statistics approach consists of evaluating the relation of
the single unknown Z(u) with one datum Z(uα) at a time; thus no more than 2
locations or 2 variables are involved at any time. Such relation typically takes
the form of a covariance/correlation or, equivalently, a variogram; these are
2-point statistics. Then calling on a prior multiple-point model requiring only 2-
point stats for its calibration, the previous conditional pdf Prob {Z(u) = z|(n)}
is determined through some form of kriging. Examples of such simple RF
models that can be calibrated from only 2-point statistics are:
• the multivariate Gaussian model underlying the sequential Gaussian simula-

tion algorithm (SGeMS program SGSIM, Section 8.1.2), Goovaerts (1997,
p.380); Anderson (2003); Chilès and Delfiner (1999, p.462); Gómez-
Hernández and Journel (1993)

• the truncation at order two of an expansion of the exact conditional prob-
ability in the discrete case. Such truncation underlies the indicator simu-
lation algorithm (SGeMS program SISIM), see decomposition (3.12) and
Section 3.8.4, Goovaerts (1997, p.393), Journel and Alabert (1989).

In short, a 2-point statistics approach aims at dividing the data set (n) into
single locations or variables. First each single data variable is related to the
single unknown (1 + 1 = 2-point statistics), then these elementary results are
pieced together through kriging using some simple prior multiple-point (mp)
probabilistic model. The results are no better than this prior mp model, be it
Gaussian-related or algorithm-driven.

2. The second approach avoids such extreme division of the conditioning data
event. Instead it consists of using an explicit multiple-point (mp) model, which
allows considering the (n) data altogether, or a set n(u) of neighbor data. The
necessary n(u) + 1 multiple-point statistics are lifted from replicates of the
n(u)-data event found in a visually explicit training image (Ti) (Guardiano and
Srivastava, 1993; Srivastava, 1994; Strebelle, 2000, 2002; Zhang et al., 2006).
The results of such explicit mp geostatistics application are no better than the

3.3 Conditional distributions and simulations 43

prior model implicit to the Ti used. The consideration of training images, if
available, allows making use of mp structural information much beyond the
variograms of these Tis.

A training image is a representation of how z values are jointly distributed
in space (Farmer, 1992; Strebelle, 2002; Journel, 2002; Zhang, 2006). A train-
ing image (Ti) is essentially an unconditional realization of an RF model Z(u),
that is a prior conceptual depiction of the distribution in space of z-values, a
depiction that need not honor at their location any of the data values included
in the set (n). The joint distribution in space of the actual unknown values
{z(u), u ∈ S} is assumed to “look like” the Ti but would also honor the data
(n). The role of an mp simulation is strictly one of data conditioning, “mor-
phing” the Ti to honor the conditioning data (n). A 2-point simulation aims at
generating simulated realizations that honor the data and a variogram model.
An mp simulation aims at generating simulated realizations that honor the data
and the multiple-point structures present in the training image.

The necessity of an mp model

It is important to understand that there cannot be any probabilistic estimation or
simulation without the necessary multiple-point (mp) statistics linking the data
taken altogether to the unknown(s) (Journel, 1994). Those mp statistics are either
delivered explicitly through an analytical multivariate model or a training image,
or they are implicitly provided by the specific simulation algorithm retained. Tra-
ditional algorithms that call for input of only 2-point statistics (variograms) adopt
implicitly the higher order statistics in-built into the simulation algorithm retained,
and these are most often of high entropy character. High or maximum entropy leads
to maximizing disorder beyond the input variogram model(s) (Goovaerts, 1997,
p.335; Journel and Alabert, 1989; Journel and Deutsch, 1993). An implicit model
that maximizes disorder beyond specified 2-point statistics is no less a model than
a training image with its specific (lower entropy) structures and patterns much
beyond the reach of a mere variogram. Also it can be argued that a high entropy
model is often inappropriate for an earth sciences application where complex curvi-
linear structures simultaneously involving many more than 2 locations in space are
known to exist, even if these structures are not immediately apparent from the
limited local data available. The 2-point statistics-based realizations are consistent
with the implicit maximum entropy hypothesis beyond the input variogram model.
If, however, one has any inkling of the existence of definite structures or patterns,
this is precious structural information that must be accounted for in addition to the
local data in the exercise of building alternative representations of the true image
(Journel and Zhang, 2006). Two-point statistics, covariance or variogram, do not
suffice to carry such mp information.

44 Geostatistics: a recall of concepts

3.4 Inference and stationarity

The concept of stationarity is at the basis of all probabilistic inference: you try to
associate the (data) environment of any unknown value to “similar” environments
for which you know the outcome of the variable, this allows you to make pre-
diction of the unknown from the known outcomes. The critical decision is that
of similarity of the data environments, a decision which is never fully objec-
tive even though it defines the probabilistic model and thus impacts critically
the predictions made (Goovaerts, 1997, p.70; Chilès and Delfiner, 1999, p.16;
Deutsch and Journel, 1998, p.12; Wackernagel, 1995; Journel and Huijbregts,
1978).

Consider the most elementary problem of inferring the possible outcomes of a
single unknown value z, which is inference of the distribution of the correspond-
ing random variable Z . To be more specific, consider a petroleum reservoir and
say that z is the unsampled porosity value at a given location u, in which case
the corresponding RV is denoted Z(u). Many alternative decisions, all somewhat
subjective, are possible.

• One may associate broadly the environment of the unknown z(u) to the entire
reservoir S which includes the location u; in which case the distribution of Z(u)

could be inferred from the histogram of all samples z(uα) available in S whether
the sample location uα belongs or not to the lithofacies prevailing at location u.
The decision of stationarity then encompasses the whole reservoir.

• If one knows that the unsampled location u is within a sand facies, it would make
sense to restrict the previous histogram to only those samples known to have
been collected in a sand facies. The decision of stationarity is now restricted to
the sand facies. There is one caveat, however: there should be enough sand sam-
ples in S for their porosity histogram to be deemed representative; if not, one
may have to pool samples from different lithofacies into the same histogram,
or consider using sand porosity samples coming from reservoirs other than S
but deemed similar. Thus, the decision of stationarity is necessarily subjective,
conditioned in particular by data availability; that decision will change as the
reservoir S matures, becoming better known and sampled. Yet, a different deci-
sion of stationarity implies a different probabilistic model, different data and
different estimation results. The reservoir S is the same, it is our model of it
which has changed.

• Consider the favorable case of a well sampled reservoir S where enough sand
porosity samples are available to build a histogram deemed reliable. Should that
histogram be considered as the probabilistic model for the location-specific RV
Z(u)? Among those sand samples, one may want to give more weight to sam-
ples z(uα) at locations uα closer to the unsampled location u, and also give more

3.4 Inference and stationarity 45

weight to isolated sample locations as opposed to clustered sample locations
to reduce the impact of preferential over-sampling (data clustering) in certain
zones. This suggestion is at the basis of the concept of kriging (Krige, 1951;
Matheron, 1970; Journel and Huijbregts, 1978). In the process of kriging, the
Euclidean distance between any two (sand) locations |u − u′| is replaced by a
variogram distance γ (u, u′) read from a variogram model, itself inferred from
the sand porosity samples. Inference of that variogram model calls for extending
the decision of stationarity to pairs of sample values z(uα) and z(uβ) separated
by approximately the same distance vector h = uβ − uα (Deutsch and Jour-
nel, 1998, p.43; Goovaerts, 1997, p.50). A model of isotropy, whereby only the
modulus of vector h is retained, actually corresponds to yet another extension
of the stationarity decision allowing the pooling of sample pairs with the same
separation distance |uβ − uα| irrespective of the direction of the vector uβ − uα.
In the end, not just the kriging is important, but also the series of decisions of
stationarity which allowed implementing that kriging, in our case stationarity
of porosity in sand, then stationarity (of order 2) allowing inference of the var-
iogram model, last and not least the local stationarity decision used to specify
how far away from location u should one go (within sand) to define the data
event n(u) informing that location u.

In many applications involving subsurface deposits where local data are sparse,
inference of a variogram is difficult particularly if the decision of stationarity
restricts samples to one specific facies, rock type or sub zone. Yet without a vario-
gram there is no kriging, hence no traditional geostatistics. In the presence of sparse
data, the necessary variogram is often borrowed from deposits or outcrops that are
analogous to the spatial phenomenon under study, or it is simply drawn to reflect
the geologist’s appreciation of correlation ranges. The problem is that the spatial
variability of many earth systems do not lend themselves well to a variogram char-
acterization: very different patterns of variability may share the same variogram,
see Fig. 3.3, Fig. 3.4, and Strebelle (2000) and Caers (2005). As for borrowing or
drawing a variogram to depict the spatial variability of a variable z(u), u ∈ S,
why not borrow or draw a more relevant conceptual image of that variability?
Geologists do not think in terms of variograms or covariance matrix, their exper-
tise is best expressed in the form of pictures, sketches, cartoons, as is evident to
anyone opening a structural geology book. One could consider an outcrop photo-
graph or a geological sketch as a training image, which is a realization of a random
function model. The corresponding decision of stationarity is that the actual data
environment of the unsampled value z(u) in S, has approximate replicates over that
training image (Strebelle, 2002; Journel and Zhang, 2006).

46 Geostatistics: a recall of concepts

snesim realization 1 sisim realization 1

snesim realization 2 sisim realization 2

Figure 3.3 The two SNESIM generated images have more continuous and
smoother features than the SISIM generated images, nevertheless they share the
same variogram model

sisim r1

sisim r2

snesim r1

snesim r2

0.2

0.4

0.6

0.8

1

200 40 60
distance

80 100 120

TI

Figure 3.4 Reproduction of the E–W training images variogram by the two
SNESIM and two SISIM generated images shown in Fig. 3.3

3.4 Inference and stationarity 47

The subjectivity of model decision

It does take some effort for accepting the fact that stationarity, which is theoret-
ically defined as invariance by translation of spatial statistics (Goovaerts, 1997,
p.70; Chilès and Delfiner, 1999, p.16), is a modeling decision, not some hypothe-
sis or property of the data which could be tested (Matheron, 1978; Journel, 1986).
Such a decision is necessarily subjective and can only be judged after the fact by
evaluating whether or not the resulting model has helped in achieving the task at
hand. Stationarity is at the source of any prediction process, it defines the repeti-
tion process that provides replicates; without such repetition there is no inference
possible. Unless a prior model is given fully determined, stationarity is a neces-
sary decision that allows building the random function model and the inference of
its characteristic moments. Accepting a fully defined model, such as the indepen-
dence model, or a Gaussian model with a given covariance, or accepting a specific
training image, amounts to different decisions of stationarity.

• In the case of a training image, its selection represents a decision of station-
arity, which allows its scanning to find replicates of any specific data event
and retrieval of the corresponding replicates of the central value informed by
that data event. The histogram of these central value replicates is then taken as
the conditional distribution of the actual unknown. This is the inference pro-
cess underlying the SNESIM mp simulation algorithm; see Section 3.7, and
Guardiano and Srivastava (1993) and Strebelle (2000).

• Accepting a Gaussian model allows building a kriging system to retrieve by
kriging the two conditional moments (mean and variance) which suffice to spec-
ify the Gaussian conditional distribution; see Section 3.6, and Goovaerts (1997,
p.266), Anderson (2003) and Chilès and Delfiner (1999, p.381).

A priori, one decision is no better than another. There is no universality attached
to the Gaussian model or any theoretical aura attached to the task of solving a sys-
tem of equations (kriging) as opposed to the more trivial task of scanning a training
image (Ti) for replicates. Conversely, the patterns described by the Ti retained may
not be the ones relevant to the actual deposit S. Adopting a wrong Ti may lead to
severe errors, all the more dangerous that one is comforted by the final numerical
representation of S fitting both the data and one’s prior (and possibly erroneous)
vision of the structures of variability. Hence, we insist on the absolute necessity
of considering alternative different structural models, whether these are explicit
training images or implicit models anchored on variogram models; these differ-
ent structural models should reflect the range of possible different (geological)
scenarios for the spatial variability.

48 Geostatistics: a recall of concepts

Which model, 2-point or mp?

The better model is that which delivers the “deemed” better result: did mimicking
the training image patterns yield a “more” satisfactory result than the simpli-
fied structures result yielded by variogram-based geostatistics? Again, the final
judgment is necessarily case- and application-dependent and is in part subjective.

One could leave aside some critical data, of a global nature as opposed to the
local data used for conditioning, and check which of the final numerical represen-
tations of S fits best these “check” data. Examples of such test data could be some
of the production data in a producing hydrocarbon reservoir or mining deposit, they
could be a subset of “ground truth” data in an environmental application (Caers and
Hoffman, 2006; Goovaerts, 1997, p.105; Journel and Zhang, 2006).

There is place in a geostatistical toolbox for both sets of algorithms, 2-point and
mp statistics are complementary: SGeMS proves it.

3.5 The variogram, a 2-point statistics

The main tool for traditional geostatistics, and for that matter, most statistical
prediction algorithms, is the variogram or its equivalent (when defined) the covari-
ance. Consider a stationary random function Z(u), and any two of its random
variables Z(u) and Z(u + h) separated by vector h. The relation between these
two RVs is characterized by any one of the following 2-point statistics, functions
of the separation vector h (Anderson, 2003; Goovaerts, 1997, p.28; Journel and
Huijbregts, 1978; Matheron, 1970):

• the covariance:

C(h) = E
{

[Z(u) − m] [Z(u + h) − m]
}

(3.14)

• the correlogram, or coefficient of correlation:

ρ(h) = C(h)/C(0) ∈ [−1,+1]

• the variogram:

2γ (h) = E
{
[Z(u + h) − Z(u)]2}

= 2 [C(h) − C(0)] , if C(h) exists,

where m = E {Z(u)}, C(0) = σ 2 = Var {Z(u)} are the stationary marginal 1-point
statistics.

Any of these 2-point moments can be inferred by the corresponding experi-
mental statistics, say from n(h) pairs of data z(uα + h), z(uα), α = 1, . . . , n(h)

approximately distant of h. For example, the experimental variogram is given by
(Goovaerts, 1997, p.28; Wackernagel, 1995; Isaaks and Srivastava, 1989):

3.5 The variogram, a 2-point statistics 49

2γ ∗(h) = 1

n(h)

n(h)∑
α=1

[z(uα + h) − z(uα)]
2. (3.15)

Modeling

In practice, available information only provides enough data pairs for a few dis-
tances |h| and along a few directions. However, that statistics, say γ (h), is needed
for all vectors h = u − uα linking an unsampled location u to any nearby datum
location uα; thus there is a need to interpolate/extrapolate experimental statistics
such as γ ∗(h) into a model γ (h) available for all h. Because covariance and vari-
ogram are used to calculate variances and these variances are non-negative, not all
analytical function g(h) can be used as a covariance or a variogram model (Chilès
and Delfiner, 1999, p.59; Goovaerts, 1997, p.87; Journel and Huijbregts, 1978;
Christakos, 1984). Positive linear combinations of basic acceptable (licit) mod-
els g(h) are also acceptable, this allows defining a large family of acceptable
covariance/variogram models sufficient for most practical studies. SGeMS allows
consideration of any positive linear combination of the three most commonly
used basic variogram models, the spherical, exponential and Gaussian models
introduced in Chapter 5 (Deutsch and Journel, 1998, p.25).

The reader is referred to Goovaerts (1997, p.87) and other relevant papers and
publications (Matheron, 1962, 1962; David, 1977; Journel and Huijbregts, 1978;
Journel and Froidevaux, 1982; Chauvet, 1982; Cressie, 1993; Yao and Jour-
nel, 1998) for the practice of modeling experimental variograms, a sometimes
delicate task in presence of directional anisotropy, sparse data and prior non-
quantitative information.

Cross-variogram

In the previous expressions (3.14) and (3.15), the two RVs may relate to two dif-
ferent attributes, say Z1(u) is porosity at location u and Z2(u + h) is seismic
impedance measured at location u + h. The corresponding 2-point statistics is then
a cross-variogram defined as (Goovaerts, 1997, p.46, Chilès and Delfiner, 1999,
p.328, Journel and Huijbregts, 1978; Wackernagel, 1995):

2γ12(h) = E
{

[Z1(u + h) − Z1(u)] [Z2(u + h)) − Z2(u)]
}
. (3.16)

In presence of only two different attributes Z1, Z2, one must model a matrix of
four (cross) covariance functions, C11(h), C12(h), C21(h), C22(h), or only three
(cross) variogram functions γ11(h), γ12(h) = γ21(h), γ22(h), under restrictive con-
ditions of positive definiteness, see Goovaerts (1997, p.108). In presence of N
different attributes Z1, . . . , Z N , there would be N 2 (cross) covariance functions
or N (N + 1)/2 (cross) variogram functions to model! Subsurface data are rarely

50 Geostatistics: a recall of concepts

enough to allow inference of statistics involving more than N = 2 attributes simul-
taneously, even if these statistics are only 2-point statistics involving only 2 space
locations at a time, u and u + h.

Multiple-point statistics

To characterize the relation between two patterns of data, say, n1 data on attribute
Z1: {z1(u + hα); α = 1, . . . , n1} and n2 data on attribute Z2: {z2(u′ + h′

β);
β = 1, . . . , n2}, one would need much more than cross-covariances or cross-
variograms. One needs in all rigor the joint distribution of the (n1 + n2) RVs
Z1(u + hα), Z2(u′ + h′

β); α = 1, . . . , n1; β = 1, . . . , n2 (Goovaerts, 1997,
p.72). No experimental data would be ever enough to infer such multiple-variable,
multiple-point statistics; not to mention the nightmare of their modeling. There are
two escape avenues.

1. Assume a parameter-poor random function model
{

Z1(u), Z2(u′)
}

fully
defined from a few low-order statistics that can be inferred from data. Most
often such models are related to the multivariate Gaussian model fully charac-
terized by the sole covariance matrix

[
Ci j ; i, j = 1, . . . , N

]
, with N = 2 for

the example above (Anderson, 2003; Goovaerts, 1997, p.265).
2. Build training images depicting the relation in space of the two variables z1(u)

and z2(u′). These training images should reflect whatever physics or geol-
ogy is known to control the joint spatial distributions of these two variables
(Strebelle, 2000; Arpat, 2004; Zhang, 2006; Journel and Zhang, 2006).

In both cases, most of the structural (n-point statistics) information capitalized
upon for estimation or simulation of an unsampled value (or set of values) is com-
ing not from the data but from the model, multivariate Gaussian in case 1, the
training image in case 2.

It would be a severe error, though both naive and common, to believe that one
could do away with models falling in either of the two previous categories. The
reason is that, whenever maps of estimated or simulated values are used, one nec-
essarily draws from such maps much more than the 2-point or lower order statistics
actually modeled from data; this “much more” comes from the n-point statistics of
the RF model, whether Gaussian-related or training image-based (Journel, 1994).

3.6 The kriging paradigm

Kriging has been historically at the source of acceptance of geostatistics
(Krige, 1951; Matheron, 1970; Journel and Huijbregts, 1978); it remains a major
data integration tool and is used in most geostatistical estimation and simulation
algorithms. In its simplest indicator kriging form with a single (normal) equation,

3.6 The kriging paradigm 51

it identifies Bayes relation and the very definition of a conditional probability
(Journel, 1983).

Kriging is in essence a generalized linear regression algorithm (Goldberger, 1962;
Luenberger, 1969), extending the data-to-unknown correlation to data-to-data
correlation through a non-diagonal kriging matrix. It is a regression with non-
independent data: actually it can be shown that kriging consists, first of de-
correlating the data by defining linear combinations of the original data that are
orthogonal for a given covariance/variogram model, then of a traditional linear
regression from these “independent” data transforms (Journel, 1989).

The practice of geostatistics in very diverse earth sciences fields has led to a large
number of variants from the theoretically rigorous yet simplest “simple kriging.”

3.6.1 Simple kriging

Because kriging is at the source of so many geostatistical algorithms it is worth
briefly recalling here the basic simple kriging (SK) system, then its multiple
variants (Goovaerts, 1997, p.127; Deutsch and Journel, 1998, p.77; Chilès and
Delfiner, 1999, p.154).

Consider within a stationary field S the estimation of an unsampled value z(u)

from n(u) neighboring data values z(uα), α = 1, . . . , n(u). If the estimate z∗
SK (u)

is restricted to be a linear combination of the data, it is written:

z∗
SK(u) − m =

n(u)∑
α=1

λSK
α (u) [z(uα) − m] = λt · D, (3.17)

where λ is the column vector of the n(u) kriging weights λSK
α (u) and D is the

column vector of the n(u) residual data values [z(uα) − m] built from the stationary
and assumed known mean value m. Consideration of the residual variables rather
than the original Z -variables ensures unbiasedness defined as zero expected error:

E
{

Z∗
SK(u) − Z(u)

} = 0. (3.18)

Remarks

• The zero expected error should be understood as a zero average error if the same
geometric configuration of n(u) data were applied elsewhere in the stationary
zone, therefore in effect averaging over all possible combinations of the n(u)

data values. Ideally, one should ensure unbiasedness conditional to both data
configuration and data values (the z(uα)s), that is:

E
{

Z∗
SK(u) − Z(u)|Z(uα) = z(uα), α = 1, . . . , n(u)

} = 0. (3.19)

52 Geostatistics: a recall of concepts

Conditional unbiasedness for all possible combinations of data values z(uα)

entails unbiasedness as in relation (3.18), not the reverse (Journel and Hui-
jbregts, 1978; Goovaerts, 1997, p.182; Deutsch and Journel, 1998, p.94). SK, as
most other linear estimators such as inverse distance-based, ensures unbiased-
ness, not conditional unbiasedness. This limitation of the unbiasedness property
is at the source of many disappointments (David, 1977; Isaaks, 2005; Isaaks and
Srivastava, 1989).

• A critical decision affecting the quality of estimate (3.17) is the choice of the
n(u) data retained to estimate any unsampled location u. Consistency with
the stationarity decision made to infer the covariance model would call for
all locations u ∈ S to be estimated from the same data set (n) including all
samples available over S. Such kriging with a “global” neighborhood is rarely
implemented in practice, precisely because of defiance towards the decision of
stationarity (Deutsch and Journel, 1998, p.32; Goovaerts, 1997, p.178). Not only
must one decide the extent of the neighborhood within which the n(u) data
should be collected, but one may want to privilege certain directions, for example
the direction of maximum continuity starting from u (Deutsch and Journel, 1998,
p.33; Goovaerts, 1997, p.178).

Convexity issue

A definite advantage of kriging over traditional linear interpolators is that it is non-
convex: the kriging estimate need not be valued in the interval of the data values
retained (Goovaerts, 1997, p.177). For example, the SK estimate z∗

SK(u) may be
valued greater than the largest datum value max {z(uα), α = 1, . . . , n(u)}.

This advantage can turn into an inconvenience if the estimate z∗
SK(u) is val-

ued outside the z-physical bounds, for example a negative estimate for a positive
variable such as a metal grade. One solution (not the best) to ensure convexity
is to enforce the kriging weights to be all positive and sum up to 1; ordi-
nary kriging weights do add up to 1 but are not necessarily all positive, see
hereafter Section 3.6.2; and Barnes and Johnson (1984) and Rao and Journel
(1996).

Simple kriging system

If the estimation criterion is chosen to be “least squared error,” often a decision of
mere convenience, the weights λSK

α (u) are given by a kriging system of linear equa-
tions built from a covariance model (Luenberger, 1969; Matheron, 1970; Journel
and Huijbregts, 1978; Goovaerts, 1997, p.127):

K · λ = k (3.20)

3.6 The kriging paradigm 53

where kT = [C(u − uα), α = 1, . . . , n(u)] is the data-to-unknown row covariance
vector, K = [

C(uα − uβ), α, β = 1, . . . , n(u)
]

is the data-to-data square covari-
ance matrix; both matrices are built from the prior stationary covariance model:

C(h) = Cov {Z(u), Z(u + h)} = C(0) − γ (h), (3.21)

C(0) = Var {Z(u)} is the stationary variance, and 2γ (h) = V ar {Z(u) − Z(u + h)}
is the corresponding stationary variogram model.

The two main contributions of kriging to estimation are (Journel and Hui-
jbregts, 1978) as follows.

1. The utilization of a variogram distance γ (h) specific to the variable Z(u) and
the stationary zone S under study as opposed to a non-specific Euclidean dis-
tance h, as used in inverse distance interpolation, for example. The variogram
distance could be anisotropic, for example privileging data along the direction
of greater continuity from the location u being estimated.

2. The consideration of the data-to-data covariance matrix K allows “data declus-
tering”, which leads to giving less weight to redundant data within a cluster
of data as opposed to isolated data. This property of kriging allows correct-
ing for bias due to preferential clustering of data, a common occurrence in
earth sciences.

Kriging variance

A by-product of kriging and more generally of any least square regression is the
estimation variance or kriging variance, which is the expected squared error whose
minimization led to the kriging system (3.20) (Goovaerts, 1997, p.179; Chilès and
Delfiner, 1999, p.156):

σ 2
SK(u) = V ar

{
Z(u) − Z∗

SK(u)
} = C(0) − λt · k. (3.22)

This variance is often misused as a measure of accuracy of the estimator Z∗
SK(u).

The variance expression (3.22) is data value-independent; it depends only on
the spatial configuration of the data set n(u) retained and the covariance model
adopted; it is thus a covariance-dependent ranking index of data configuration,
a valuable index for comparison of alternate data configurations but not yet
a measure of estimation accuracy (Journel and Rossi, 1989). A better mea-
sure of the potential error associated with the estimator Z∗

SK(u) would be the
conditional error variance which is also dependent on the data values z(uα)

(Goovaerts, 1997, p.180):

σ 2
SK(u) = V ar

{
Z(u) − Z∗

SK(u)|Z(uα) = z(uα), α = 1, . . . , n(u)
}
.

It can be shown that the kriging variance (3.22) is the average of the conditional
error variance over all possible joint realizations of the n(u) data values, the data

54 Geostatistics: a recall of concepts

configuration being fixed (Goovaerts, 1997, pp.180, 361). In the general case, one
cannot ignore the impact of the actual data values on estimation accuracy.

One notable exception is that provided by a Gaussian RF model where all
constitutive RVs Z(u), u ∈ S, are assumed jointly Gaussian-distributed. In that
case, the previous conditional error variance is indeed data values-independent
and identifies the kriging variance (3.22), a property known as homoscedasticity
(Goovaerts, 1997, pp.82, 180; Anderson, 2003).

Distribution of error

Even if the kriging variance (3.22) could be retained as a representative error vari-
ance, one would know only two moments of the error distribution: the mean equal
to zero per unbiasedness and the kriging variance. A two-parameter distribution
would have to be assumed, for example a Gaussian error distribution. There is,
unfortunately, little justification for a Gaussian error; the central limit theorem
does not apply to spatial interpolation errors essentially because data and resulting
errors are not independent one from another. If a Gaussian distribution assump-
tion is accepted for convenience, one should be aware that this distribution decays
rapidly at the tails (very small frequency of extreme values) and its adoption is very
consequential, particularly when assessing the probability of large errors.

3.6.2 Ordinary kriging and other variants

The most restrictive aspect of any probabilistic approach is associated with the
decision of stationarity (Section 3.6) which allows scanning a data set for repli-
cates, averaging the latter to infer the required statistics. For example, the inference
of the covariance model C(h) needed to build any kriging system calls for pool-
ing together pairs of data, {z(uα), z(uα + h)}, {

z(uβ), z(uβ + h)
}
, approximately

separated by the same vector h but otherwise taken at different locations uα and
uβ . Once that covariance model is available, the harsh consequences of the sta-
tionarity decision settle in. Rigorous theory would demand that the covariance
model C(h) and the corresponding stationary mean m be frozen over the area S
of the stationarity decision. Yet in many applications, local information calls for
a locally variable mean and sometimes for aspects of the covariance model to be
made locally variable, for example the direction of anisotropy. Variants of the pre-
vious simple kriging system were developed to allow such flexibility, all amounting
to a deviation from rigorous theory.

In ordinary kriging (OK) the expected value of the random function is locally re-
estimated from local data, while the covariance model is kept stationary. The OK
concept has been extended to local estimation of the parameters of a functional
trend (KT or kriging with a trend). A locally varying mean (LVM) can also be
input directly and used in expression (3.17) in lieu of the stationary mean m.

3.6 The kriging paradigm 55

All these variants of kriging amount to relax the decision of stationarity initially
necessary to define the random function model and infer its constitutive statistics,
for example a variogram model. There have been many attempts at extending the
RF theory to justify such liberty with regard to the original restrictive decision of
stationarity (Matheron, 1970; Chilès and Delfiner, 1999, p.243; Goovaerts, 1997,
p.143). The RF-originated tools can be modified to a reasonable extent with proper
documentation. Possibly the best argument for such lax consideration of RF theory
is realizing that there would be no practical geostatistics without OK or without
kriging with a local varying mean and, more generally, without the code imple-
mentations that make it “work.”

Ordinary kriging

The simple kriging (SK) expression (Eq. (3.17)) appears as an estimate of an
unknown deviation from a known stationary mean m. If that mean is consid-
ered locally variable, it can be estimated from the same n(u) local data used in
expression (3.17); the corresponding estimate then takes its ordinary kriging (OK)
expression (Goldberger, 1962; Matheron, 1970; Goovaerts, 1997, p.132; Journel
and Huijbregts, 1978):

z∗
OK(u) =

n(u)∑
α=1

λOK
α (u)z(uα), (3.23)

where the kriging weights sum to 1:
∑n(u)

α=1 λOK
α (u) = 1.

The corresponding kriging system is similar to the SK system (Eq. (3.20)) with,
in addition, one Lagrange parameter and equation to account for the above con-
straint on the OK weights. The qualifier “ordinary” is appropriate since OK is
used more often than SK thanks to its robustness against local departures from the
original decision of stationarity.

Kriging with a trend

A locally varying unknown mean m(u) can be modeled by a function of the coor-
dinates u. That function, called a trend function, is of known shape or type but with
unknown locally variable parameters; therefore the mean m(u) remains unknown
at any location u. In the space domain where u = (x, y, z) coordinates, the trend
function is usually a polynomial function of the coordinates; for example a trend
linear in the horizontal space (x, y) but possibly quadratic in the vertical (z) would
be written (Goovaerts, 1997, p.141; Deutsch and Journel, 1998, p.67):

E {Z(u)} = m(u) = a0(u) + a1(u)x + a2(u)y + a3(u)z + a4(u)z2. (3.24)

The five parameters a.(u) are unknown and are estimated from the n(u) local data
available. The location coordinates u = (x, y, z) are known.

56 Geostatistics: a recall of concepts

Similarly, in the time domain, a time series Z(t) may present a periodic trend
modeled as a cosine function of known frequency ω but unknown varying phase
and amplitude a0(t), a1(t):

E {Z(t)} = m(t) = a0(t) + a1(t) · cos(2πωt). (3.25)

However, such cosine trend function is not yet programmed in SGeMS.
Once the unknown parameters ai (u) are estimated (implicitly and by a form of

kriging), a simple kriging of type (3.17) is applied by replacing, at each location
u, the constant stationary mean m by the resulting mean estimate m∗(u). The cor-
responding estimate is said to be a kriging with a trend model (KT) and is written:

z∗
KT(u) =

n(u)∑
α=1

λKT
α (u)z(uα). (3.26)

The KT weights λKT
α (u) are given by a kriging system similar to the SK system

(Eq. (3.20)) but with additional constraints on the KT weights (Goldberger, 1962;
Goovaerts, 1997, p.139; Journel and Huijbregts, 1978).

Actually OK is but a particular case of KT when the trend model (Eq. (3.24))
reduces to the sole term a0(u). In cases of interpolation with the n(u) data sur-
rounding the location u on both sides of the trend, OK would give results very close
to KT. The specification of the trend functional type, say linear or quadratic, matters
only in cases of extrapolation (Journel and Rossi, 1989; Goovaerts, 1997, p.147).

Kriging with a local varying mean

There are applications where some ancillary information (different from the z-data)
provides at all locations the locally varying mean (LVM), then denoted m∗(u). The
SK expression (3.17) is then applied directly to the deviations from these locally
varying mean values (Goovaerts, 1997, p.190):

z∗
LVM(u) − m∗(u) =

n(u)∑
α=1

λSK
α (u)

[
z(uα) − m∗(uα)

]
. (3.27)

Non-linear kriging

The qualifier “non-linear” applied to kriging is misleading if it promises some
major breakaway from the fundamental limitation of considering only linear com-
binations of data. Most so-called non-linear kriging, including kriging of normal
score transform as used in program SGSIM (Deutsch and Journel, 1998, p.75), dis-
junctive kriging (Matheron, 1973) or indicator kriging (Journel, 1983), are in fact
all linear kriging applied to a non-linear transform of the variables involved. For

3.6 The kriging paradigm 57

example, lognormal kriging is but a kriging applied on the logarithms of the data
(Rendu, 1979; Journel, 1980).

A non-linear transform of the original variable(s) is warranted if that transform
allows defining new variables that:

• are more attuned to the problem addressed, as is the case for indicator transform
(see hereafter Section 3.6.5);

• satisfy better the requirements of the algorithm being considered, e.g. the normal
score transform allows meeting one requirement of the sequential Gaussian sim-
ulation algorithm (SGeMS code SGSIM, see Section 8.1.2 and Goovaerts, 1997,
p.380), that the univariate distributions be Gaussian;

• exhibit better spatial correlation.

Remarks

Any non-linear back transform of kriging results may lead to severe biases if
not carefully attended to. Non-robust unbiasedness corrections associated to back
transform of kriging estimates may wipe out any benefit brought by working on the
transformed variable. This is especially true with lognormal kriging: what is gained
by working on the logarithm may be lost through a back transform that involves
an exponentiation (Journel, 1980; Chilès and Delfiner, 1999, p.191; Deutsch and
Journel, 1998, p.76). Note that indicator kriging estimates are used as probability
estimates, without any back transform, see hereafter. Similarly, the kriging means
and variances of normal score values are used directly to build the conditional dis-
tributions in sequential Gaussian simulation, these kriging results are never back
transformed; it is the final simulated values that are back transformed, then indeed
that back transform is sensitive to the tail extrapolation decision (Deutsch and
Journel, 1998, p.135; Goovaerts, 1997, p.385).

A non-linear transform of the variable does not remove the most fundamental
limitation of all kriging, which is that the data are related to the unknown one at
a time; see the right-hand side covariance matrix k in the SK system (Eq. (3.20)).
Kriging remains, however, the ultimate estimation paradigm if applied to functions
of the data taken two by two, three by three, and ultimately taken altogether as a
single multiple-point event, see Sections 3.6.5 and 3.7.

3.6.3 Kriging with linear average variable

An application of kriging with linear average variable is to estimate the aver-
age grade of a mining block from neighboring data which are both core grades
and average grades of already mined-out blocks (Journel and Huijbregts, 1978;
David, 1977). Another application is that related to tomographic imaging where

58 Geostatistics: a recall of concepts

data are defined as linear average over diverse ray paths (1D volume data) (Gómez-
Hernández et al., 2005; Hansen et al., 2006). Kriging systems that use data at
different volume support call for the covariance between any two block-support
z-values, which happens to be a linear average of the point covariance model C(h);
see Journel and Huijbregts (1978). Any kriging system can be used with linear
average data as long as the variogram/covariance values are properly regularized
(averaged).

Covariance averaging

The covariance relating a point support value Z(u) to a linear average BV (s)
defined over a block of support volume V centered at s is derived from the
point-to-point covariance model C(u, u + h) = C(h) as:

C̄(u, V (s)) = Cov {BV (s), Z(u)} = 1

|V |
∫

u′∈V (s)
C(u − u′)du′.

Similarly, an average block-to-block covariance is given as:

C̄(V, V ′) =
∫

u∈V

∫
u′∈V ′

C(u − u′)dudu′.

These upscaled or regularized covariances provide a valid model of point-to-block
and block-to-block covariances; they are used whenever linear average data are
present. Fast calculation of each block-averaged variogram/covariance is discussed
in Section 7.4 and Kyriakidis et al. (2005).

Kriging with block and point data

Data taken at different scales, both on block-support and on point-support, can
be considered simultaneously in the kriging system. The only condition is that all
block data are linear averages of point values. For simplicity, the kriging theory is
illustrated here with simple kriging.

The block data B(vα) is defined as the spatial linear average of point values Z(u′)
within the block volume vα (Journel and Huijbregts, 1978; Hansen et al., 2006; Liu
et al., 2006b; Goovaerts, 1997, p.152):

B(vα) = 1

|vα|
∫

vα

Lα(Z(u′))du′ ∀α (3.28)

where Lα is a known linear averaging function.
The simple kriging estimator Z∗

SK(u) conditioned to both point and block data is
then written:

Z∗
SK(u) − m = �t · D =

n(u)∑
α=1

λα(u) · [D(uα) − m] (3.29)

3.6 The kriging paradigm 59

where �t = [λP λB] denotes the kriging weights for point data P and block data
B; Dt = [P B] denotes the data value vector; D(uα) is a specific datum at location
uα; n(u) denotes the number of data; and m denotes the stationary mean.

The kriging weights � are obtained through the kriging system:

K · � = k (3.30)

with

K =
[

CP P C̄P B

C̄T
P B C̄B B

]
and k =

[
CP P0

C̄B P0

]
where K denotes the data-to-data covariance matrix, k denotes the data-to-
unknown covariance matrix, C denotes the point covariance submatrix, C̄ denotes
a covariance submatrix involving a block support and P0 is the estimation location.

The kriging variance is then written:

σ 2
SK(u) = Var

{
Z(u) − Z∗

SK(u)
} = C(0) − �t · k

with C(0) = Var {Z(u)} being the stationary variance.

3.6.4 Cokriging

There is nothing in the theory of kriging and expressions (3.17) to (3.27) that
constrains the unknown Z(u) and the data Z(uα) to relate to the same attribute.
One can extend the notation Z to different attribute values Zk(u), Zk′(uα), say for
estimation of a porosity value Zk(u) at location u from porosity data Zk(uα) and
seismic amplitude data Zk′(uα) with k ′ �= k at neighboring locations uα. Cokrig-
ing is the extension of the kriging paradigm to estimation of one attribute using
data related to other attributes (Myers, 1982; Wackernagel, 1995; Goovaerts, 1997,
p.203; Chilès and Delfiner, 1999, p.296).

For example, the simple cokriging estimate of an unsampled porosity z1(u) from
n1(u) neighboring porosity data z1(uα) and n2(u) seismic data z2(u′

β) would be
written:

z∗
1(u) − m1 =

n1(u)∑
α=1

λα [z1(uα) − m1] +
n2(u)∑
β=1

λβ

[
z2(u′

β) − m2
]
, (3.31)

where m1 and m2 are the two stationary means.
The only difficulty, but a serious one in practice, comes from the necessity to

infer and model jointly many cross-covariance/variogram models, up to K 2 models
(K is the total number of attributes) in the case of cross-covariances. If it is already
difficult to infer the variogram of a single variable in a 3D possibly anisotropic
space, real data are rarely enough to infer a set of cross-variograms for more than
K = 3 different attribute variables.

60 Geostatistics: a recall of concepts

In order to alleviate the burden of modeling all these variograms with the linear
model of coregionalization (Goovaerts, 1997, p.108; Chilès and Delfiner, 1999,
p.339), various shortcut models have been proposed, two of which are avail-
able in SGeMS: the Markov Model 1 and the Markov Model 2 (Almeida and
Journel, 1994; Journel, 1999; Rivoirard, 2004; Chilès and Delfiner, 1999, p.305;
Goovaerts, 1997, p.237). The Markov screening hypothesis also entails that only
the secondary data coincidental with the estimation location need to be retained for
the estimation. This restricts the size of the kriging matrix to n + 1, where n is the
number of hard conditioning data in the vicinity of the estimation location. For text
clarity, we will only consider the case of a single secondary variable (K = 2).

Markov Model 1 The Markov Model 1 (MM1) considers the following Markov-
type screening hypothesis:

E{Z2(u)|Z1(u); Z1(u + h)} = E{Z2(u)|Z1(u)}
i.e. the dependence of the secondary variable on the primary is limited to the
co-located primary variable. The cross-covariance is then proportional to the
auto-covariance of the primary variable:

C12(h) = C12(0)

C11(0)
C11(h) (3.32)

where C12 is the cross-covariance between the two variables Z1 and Z2

and C11 is the covariance of the primary variable Z1. Solving the cokrig-
ing system under the MM1 model only calls for knowledge of C11, hence the
inference and modeling effort is the same as for kriging with only primary
Z1-data. Although very congenial the MM1 model should not be used when
the support of the secondary variable Z2 is larger than the one of Z1, lest the
variance of Z1 would be underestimated. It is better to use the Markov Model
2 in that case.

Markov Model 2 The Markov Model 2 (MM2) was developed for the case where
the volume support of the secondary variable is larger than that of the pri-
mary variable (Journel, 1999). This is often the case with remote sensing and
seismic-related data. The more relevant Markov-type hypothesis is now:

E{Z1(u)|Z2(u); Z2(u + h)} = E{Z1(u)|Z2(u)}
i.e. the dependence of the primary variable on the secondary is limited to the
co-located secondary variable. The cross-variogram is now proportional to
the covariance of the secondary variable:

C12(h) = C12(0)

C11(0)
C22(h). (3.33)

3.6 The kriging paradigm 61

In order for all three covariances C11, C12 and C22 to be consistent, C11

is modeled as a linear combination of C22 and any permissible residual
correlation ρR. Expressed in terms of correlograms

ρ11(h) = C11(h)

C11(0)
, ρ22(h) = C22(h)

C22(0)

which is written as:

ρ11(h) = ρ2
12 · ρ22(h) + (1 − ρ2

12)ρR(h) (3.34)

where ρ12 is the co-located coefficient of correlation between Z1(u) and
Z2(u).

Independent of the cross-covariance modeling scheme adopted, cokriging shares
all the contributions and limitations of kriging: it provides a linear, least squared
error, regression combining data of diverse types accounting for their redundancy
and respective variogram distances to the unknown. Cokriging considers the data
one at a time and the cokriging variance being data value-independent is an incom-
plete measure of estimation accuracy. The linear limitation of kriging may be here
more serious, since cokriging would ignore any non-linear relation between two
different attributes which could be otherwise capitalized upon for cross-estimation.
One possible solution is to apply cokriging on non-linear transforms of the original
variables.

The kriging system with block data as described in Section 3.6.3 can also be
seen as a cokriging system, where the cross-dependence between points and block
is given by the regularization process.

3.6.5 Indicator kriging

Indicator kriging is yet another form of kriging but applied to variables that are
binary indicators of occurrence of an event:

Ik(u) =
{

1 if the event k occurs at location u
0 if not

(3.35)

or for the continuous case:

I (u; zk) =
{

1 if Z(u) ≤ zk

0 if not .

The event k to be estimated could be presence of facies of type k at location
u, or could be that the unsampled continuous variable Z(u) is valued below the
threshold zk .

The particularity of indicator kriging (IK) is that it delivers a kriging esti-
mate that can be interpreted directly (without any transform) as an estimate of
the probability for the unsampled event to occur at location u conditional to the

62 Geostatistics: a recall of concepts

observed data set n(u) (Goovaerts, 1997, p.293; Chilès and Delfiner, 1999, p.383;
Journel, 1983). The IK estimate is hereafter written under its simple kriging form:

I ∗
SK(u) = Prob∗ {I (u) = 1|n(u)}

=
n(u)∑
α=1

λα(u)Ik(uα) +
[

1 −
n(u)∑
α=1

λα(u)

]
· p0, (3.36)

where p0 = E {I (u)} = Prob {I (u) = 1} is the prior probability of the event
occurring, λα(u) is the kriging weight associated to the indicator datum I (uα)

valued 0 or 1.
If soft information is available providing a location-specific prior probability

p(u), that probability could replace p0 in expression (3.36). Indicator kriging can
be seen as an updating of that prior probability p(u) by the indicator data I (uα)

(Goovaerts, 1997, p.293).
The fact that kriging is not a convex estimator valued between the minimum

and maximum indicator data value (here 0 and 1) is particularly damaging in that
IK may provide estimated probabilities outside the interval [0, 1]. Order relation
corrections are then implemented. An alternative is to consider multiple-point (mp)
statistics through products instead of linear combinations of the indicator data, see
the following presentation on extended normal equations and in Section 3.10 the
nu/tau model (Journel, 2002).

On the positive side, kriging being an exact estimator, if estimation is performed
at any hard datum location uα, the resulting probability estimate is “hard”, that is
valued 0 or 1 identifying that hard datum value. If the indicator variogram used
is continuous with a small nugget effect the probability estimate would smoothly
depart from that hard value (0 or 1) as the location u to be estimated gets away
from uα.

3.7 An introduction to mp statistics

Consider again the linear indicator kriging expression (3.36). First note that any
non-linear transform of a binary (indicator) variable is non-effective in that it
results in just another binary variable. To extract more from the indicator data set
{I (uα), α = 1, . . . , n(u)}, one needs to consider these data two by two, three by
three, . . ., at the limit altogether as a single data event.

Consider then the extended IK expression (3.37) which is a linear combination:

• of the indicator data taken one at a time as in expression (3.36), there are n(u)

such indicator data;
• of the indicator data taken two at a time; there are a number

(n(u)

2

)
of combina-

tions of such pairs;

3.7 An introduction to mp statistics 63

• of the indicator data taken three at a time; there are
(n(u)

3

)
such triplets;

• . . .

• of the indicator data taken altogether; there is only one such product:

I ∗
SK(u) = Prob∗ {I (u) = 1|n(u)}

= p0 (prior probability for I (u) = 1)

+
n(u)∑
α=1

λ(1)
α (u) [I (uα) − p0] (one at a time)

+
(n(u),2)∑

α=1

λ(2)
α (u)

[
I (uα1)I (uα2) − E{I (uα1)I (uα2)}

]
(two at a time)

+
(n(u),3)∑

α=1

λ(3)
α (u)

[
I (uα1)I (uα2)I (uα3) − E{I (uα1)I (uα2)I (uα3)}

]
(three at a time)

+ · · ·

+ λ(n(u))
α (u)

[
n(u)∏
α

I (uα) − E

{
n(u)∏
α

I (uα)

}]
(taken altogether).

(3.37)

Remarks

• Expression (3.37) is a simple indicator (co)kriging estimator extended to include
data taken 2, 3, up to all at a time. The corresponding simple kriging system is
called “the extended system of normal equations” (Journel and Alabert, 1989);
it has 2n(u) equations yielding the 2n(u) kriging weights λ(.)

α . Expression (3.37)
already includes the non-bias equation providing the weight given to the data p0.

• Note that a set of n(u) binary indicator data can take 2n(u) possible joint out-
comes, a number precisely equal to the number of kriging weights in the
extended IK expression (3.37); indeed:

n(u)∑
α=1

(
n(u)

α

)
= 2n(u).

It can be shown that the solution of the full extended normal system (3.37) pro-
vides the exact conditional probability value for I (u) = 1 for all possible data
value combinations; there are 2n(u) such combinations.

• The information carried by the product I (uα)I (uβ) is not redundant with that
carried by the two individual data I (uα) and I (uβ) or any of their linear combi-
nations. By restricting expression (3.37) to indicator data taken one at a time as

64 Geostatistics: a recall of concepts

in expression (3.36), one is losing precious information provided by observation
of the data taken jointly. The information I (uα)I (uβ) sits there ready for the
taking as a covariate through a form of cokriging. As in any other cokriging, it
suffices to evaluate the additional covariances required which are, in the case of
data taken only up to two at a time:
– the 3-point covariance linking any 2-point data I (uα)I (uβ) to the unknown

I (u);
– the 4-point covariance linking any two doublets of data, say I (u1)I (u2) with

I (u3)I (u4) and measuring the redundancy between these two doublets.

The traditional IK estimator (Eq. (3.36)) using the data one at a time calls only
for traditional 2-point covariances. An extended IK estimator using data taken two
at a time would require in addition 3- and 4-point covariances. An extended IK
estimator using all possible combinations of data up to only two at a time would
call for a kriging system of dimension n(u) + (n(u)

2

)
; for example, if n(u) = 10,

then n(u) + (n(u)

2

) = 10 + 45 = 55, a considerable increase in dimension and
covariance modeling effort! Clearly this is not practical, particularly if data are to
be taken many more than two at a time.

The solution is to consider all n(u) data grouped together into a single multiple-
point data event DEV which relates to the last term of expression (3.37). The
corresponding IK estimate is then written:

I ∗
SK(u) − p0 = λ · [

DEV − E {DEV }]
with

DEV =
n(u)∏
α

I (uα; iα), with: I (uα; iα) =
{

1 if I (uα) = iα

0 if not .

Note that the multiple-point random variable DEV is also binary equal to 1
if and only if all n(u) indicator RVs I (uα) identify the indicator data iα actually
observed.

The corresponding kriging system reduces to one single equation, also called
single normal equation, delivering the single data values-dependent weight λ. It
can be shown that this single normal equation identifies the exact expression of
the conditional probability:

I ∗
SK(u) ≡ Prob {I (u) = 1|n(u)}

= Prob {I (u) = 1, n(u)}
Prob {n(u)}

= Prob {I (u) = 1, I (uα) = iα, α = 1, . . . , n(u)}
Prob {I (uα) = iα, α = 1, . . . , n(u)} . (3.38)

3.8 Two-point simulation algorithms 65

Note that the probability in the numerator of the exact expression (3.38) is
actually an (n(u) + 1)-point covariance while the denominator is an n(u)-point
covariance, both non-centered. Indeed, and as an example for the case of the
specific two data values I (u1) = 1 and I (u2) = 0, that numerator is written as
the 3-point non-centered covariance:

Prob
{

I (u) = 1, I (u1) = 1, I (u2) = 0
} = E

{
I (u) · I (u1) · [1 − I (u2)]

}
.

Indicator kriging, when considering the n(u) data altogether as a single multiple-
point data event, identifies Bayes relation (Eq. (3.38)). Simulating the value I (u)

from probabilities of type (3.38) is at the root of the Single Normal Equation SIMu-
lation algorithm SNESIM (Strebelle, 2000). Instead of modeling the mp covariance
as a function of Euclidean distances h as one would model a 2-point covariance
C(h), the two mp covariance values appearing as numerator and denominator of
expression (3.38) are lifted directly from a training image. In even simpler terms,
the conditional probability Prob {I (u) = 1|n(u)} (Eq. (3.38)) is identified to the
experimental proportion of those training replicates of the mp data events that
feature at their center location u an event I (u) = 1 (Strebelle, 2002).

In essence, the training image provides all the necessary mp covariance values;
the decision of stationarity allows scanning a specific training image for replicates
(exact or approximate) of the single mp conditioning data event. This is no different
from scanning a training image for replicates of pairs of values allowing the mod-
eling of a 2-point covariance/variogram. One may argue that with a variogram one
borrows less from that training image; one then forgets that the missing mp stats
are then implied in a non-controllable fashion by the simulation algorithm retained;
indeed there cannot be any stochastic simulation without a full mp model; recall
the previous discussion on the necessity of an mp model in Section 3.3.2. The bet-
ter answer is that one does trust the training image characteristic structures and
mp patterns and wishes to use them in the estimation/simulation exercise, and this
cannot be done through 2-point statistics such as the variogram.

3.8 Two-point simulation algorithms

Traditional (2-point) simulation algorithms aim at reproducing a prior covariance
C(h) model, or equivalently a variogram model, that is a statistical relation between
any two values z(u) and z(u + h) in space. The missing information about what
should be the relation in space of three or more values taken jointly is then nec-
essarily provided by the simulation algorithm retained. Multiple-point structures
imposed implicitly by the algorithm are most likely of high entropy nature, i.e.
minimizing organization (Journel and Zhang, 2006).

66 Geostatistics: a recall of concepts

If you wish the simulated realizations to reflect specific structures and pat-
terns beyond 2-point correlation, these structures must be specified as input to a
simulation algorithm that can reproduce them. Specific structures never occur by
chance.

The covariance-based simulation algorithms widely used in practice stem from
essentially two classes; the first class is anchored on the properties of the mul-
tivariate Gaussian RF model (Goovaerts, 1997, p.380), the second class builds
on the interpretation of an indicator expected value as a conditional probability
(Goovaerts, 1997, p.393), recall expression (3.36).

This initial release of SGeMS proposes the following well established
covariance-based (2-point) simulation algorithms:

• LUSIM, or Gaussian simulation with LU decomposition, see Section 8.1.1 and
Deutsch and Journel (1998, p.169),

• SGSIM, or sequential Gaussian simulation, see Section 8.1.2 and Deutsch and
Journel (1998, p.170),

• COSGSIM, or sequential Gaussian co-simulation, see Section 8.1.3,
• DSSIM, or direct sequential simulation, see Section 8.1.4,
• SISIM, or sequential indicator simulation, see Section 8.1.5 and Deutsch and

Journel (1998, p.175),
• COSISIM, or sequential indicator co-simulation, see Section 8.1.6,
• BSSIM, or block sequential simulation, see Section 8.1.7,
• BESIM, or block error simulation, see Section 8.1.8.

3.8.1 Sequential Gaussian simulation

The remarkably convenient properties of the Gaussian RF model explain its suc-
cess, a quasi monopoly of probabilistic models for continuous variables. Indeed a
Gaussian RF is fully characterized by its mean vector and covariance matrix; all
conditional distributions are Gaussian, fully characterized by only two moments,
the conditional mean and variance themselves given by simple kriging (Journel
and Huijbregts, 1978; Anderson, 2003). Thus a Gaussian RF model would appear
as the ultimate model when only 2-point statistics can be inferred. Unfortunately,
the qualifier is that a Gaussian RF maximizes entropy (disorder) beyond the input
covariance model (Chilès and Delfiner, 1999, p.412; Journel and Deutsch, 1993),
hence a Gaussian-based simulation algorithm such as SGSIM cannot deliver any
image with definite patterns or structures involving more than two locations at a
time. The previous limitation matters little if one is simulating a “homogeneously
heterogeneous” spatial distribution such as porosity or metal grade within the
pre-defined geometry of a relatively homogeneous lithofacies or rock type.

In the SGSIM algorithm (Journel, 1993; Goovaerts, 1997, p.380) the mean and
variance of the Gaussian distribution at any location along the simulation path is

3.8 Two-point simulation algorithms 67

estimated by the kriging estimate and the kriging variance. The value drawn from
that distribution is then used as conditioning data. Transform of the original data
into a Gaussian distribution may be necessary and is normally performed by the
normal score transform, see Section 8.1.2 for the SGeMS implementation.

3.8.2 Direct sequential simulation

It can be shown that reproduction of a covariance model does not require a Gaus-
sian RF, but just that the mean and variance of every conditional distribution
be those given by SK; the conditional distribution type need not be Gaussian,
it can also vary from one simulation node to another (Journel, 1994; Bour-
gault, 1997). Consequently there is no need for any normal score transform and
back transform. The sequential simulation can be performed directly with the orig-
inal z-variable and data, hence the name “direct sequential simulation” (program
DSSIM).

One main advantage of DSSIM is that the simulation can be made conditional
to local linear average z-data. Indeed kriging can accommodate data defined on
volume/block support as long as these data are linear average of z-values; see Sec-
tion 3.6.3. The normal score transform being non-linear would undo such linearity.
The absence of a prior transformation of the data in DSSIM makes it an algo-
rithm of choice for “downscaling,” a process whereby large scale block-support
data are “un-averaged” into realizations of smaller support values (Kyriakidis and
Yoo, 2005; Boucher and Kyriakidis, 2006). The DSSIM simulated values reproduce
the target covariance model and honor whatever small support data are available;
in addition their block averages match the corresponding block data (Hansen
et al., 2006).

The price to pay for the absence of normal score transform is absence of a back
transform, hence there is no guarantee for the DSSIM simulated z-realizations to
reproduce the z-data histogram.

Such global histogram reproduction can be obtained in two ways.

• A post-processing similar to the normal score back-transform done in Gaus-
sian simulation. Such back-transform should be such as not to undo the data
reproduction (Deutsch, 1996; Journel and Xu, 1994). The utility program
TRANS discussed in Section 9.1 allows such transform honoring the original
point-support data values; this, however, degrades the covariance reproduction.

• Put to use the large degree of freedom represented by the ability to choose at
any simulation node any distribution type (Bourgault, 1997). The procedure
retained by the DSSIM code consists of sampling only that part of a translated
z-target histogram that matches the local SK mean and variance (Soares, 2001;
Oz et al., 2003).

68 Geostatistics: a recall of concepts

3.8.3 Direct error simulation

In all generality one can express any unsampled value z(u) as the sum of its
estimate z∗(u) plus the corresponding estimation error r(u):

z(u) = z∗(u) + r(u).

The estimated value z∗(u) is known, but the error is not. Thus simulation would
consist of simulating that error r(u) under various constraints. For example, the
simulated error should have mean zero and variance equal to the known kriging
variance if z∗(u) is obtained by kriging. As for the distribution from which the sim-
ulated error should be drawn, it may or may not be Gaussian. If the random variable
error R(u) is orthogonal (uncorrelated) to the random variable estimator Z∗(u), as
guaranteed by kriging (Luenberger, 1969; Journel and Huijbregts, 1978; Chilès and
Delfiner, 1999, p.465), then the error value rs(u) can be drawn independently of the
estimated value z∗(u):

zcs(u) = z∗
K(u) + rs(u) (3.39)

where: z∗
K(u) is the kriging estimate;

rs(u) is an error value drawn from a distribution with zero mean and variance
equal to the kriging variance σ 2

K(u) = V ar
{

Z(u) − Z∗
K(u)

}
;

zcs(u) is the simulated value.

The simulated field {zcs(u), u ∈ study area}
– honors the data value z(uα) at data location uα since z∗

K(uα) = z(uα) per kriging
exactitude;

– has the correct variance since:

Var {Zcs(u)} = Var
{

Z∗
K(u)

} + Var {R(u)}
= Var

{
Z∗

K(u)
} + [

σ 2
K(u) = V ar

{
Z(u) − Z∗

K(u)
}]

per orthogonality of the error R(u) with Z∗
K(u).

However, there remains to ensure that the simulated field Zcs(u) features the
same covariance as Z(u). This is obtained in sequential simulation (Sections 3.8.1
and 3.8.2) by adding into the kriging data set for z∗

K(u) all previously simulated
value zcs(u′) found in its neighborhood. An alternative is to simulate the error rs(u)

by lifting it from an error training image sharing the same (non-stationary) covari-
ance as the actual error R(u) = Z(u) − Z∗

K(u). That error training image can be
generated by repeating the estimation procedure used to generate z∗

K(u) from data
z(uα), α = 1, . . . , n on a non-conditional simulated realization zs(u) of the random

3.8 Two-point simulation algorithms 69

function Z(u) using the same geometric configuration of “simulated” data zs(uα),
α = 1, . . . , n. This process is written (Journel and Huijbregts, 1978; Deutsch and
Journel, 1998, p.127; Chilès and Delfiner, 1999, p.465):

z(l)
cs (u) = z∗

K(u) +
[
z(l)

s (u) − z∗(l)
Ks (u)

]
(3.40)

where:

z(l)
s (u) is the lth non-conditional simulated realization of the random field Z(u)

honoring its covariance model;
z∗

K(u) is the kriging estimate built from the actual data values z(uα), α =
1, . . . , n;

z∗(l)
Ks (u) is the kriging estimate built from the simulated data values z(l)

s (uα) taken
from the non-conditionally simulated field zs(u) at the actual data locations
uα, α = 1, . . . , n;

z(l)
cs (u) is the lth conditionally simulated realization.

Warning: a histogram input is required to simulate the intermediate uncondi-
tional realizations, however that histogram may not be reproduced in the final
simulated conditional realizations.

Note that the kriging weights λα(u) used for both kriging estimates z∗
K(u) and

z∗(l)
Ks (u) are the same, since the simulated field Zs(u) shares the same covariance

model and the same data geometry as the actual field Z(u). There lies the main
(potential) advantage of the direct error simulation approach: one single kriging
is needed per simulation node u no matter the number L of conditional simulated
realizations z(l)

cs (u), l = 1, . . . , L , needed. One could then utilize any fast non-
conditional simulation algorithm to generate the L required fields z(l)

s (u) (Chilès
and Delfiner, 1999, pp.494, 513; Oliver, 1995; Lantuéjoul, 2002); the L krigings
to obtain the z∗(l)

Ks (u) are then obtained very fast by mere matrix multiplication
from the stored kriging weights λα(u); last, an addition (Eq. (3.39)) gives the L
conditional fields z(l)

cs (u).
The caveat though is that the error field R(u) = Z(u) − Z∗

K(u) must be inde-
pendent (or at least uncorrelated) to the estimated signal Z∗

K(u). This is not a
trivial requirement, only guaranteed if simple kriging is applied to a multiGaussian
field Z(u).

3.8.4 Indicator simulation

Indicator simulation was introduced to simulate categorical variables defined
through a set of K binary indicator variables (Journel, 1983; Goovaerts, 1997,
p.423; Chilès and Delfiner, 1999, p.512). The algorithm was later extended to

70 Geostatistics: a recall of concepts

simulation of a continuous variable made discrete over K classes. Consider the
corresponding two definitions:

Ik(u) =
{

1 if the category k occurs at u
0 if not

(3.41)

or

I (u; zk) =
{

1 if Z(u) ≤ zk

0 if not .

Indicator kriging (Section 3.6.5) would provide estimates of the K class
probabilities conditional to the local data set n(u), respectively:

Prob {u ∈ k|n(u)} ∈ [0, 1] , k = 1, . . . , K , (3.42)

with:
∑K

k=1 Prob {u ∈ k|n(u)} = 1, or

Prob {Z(u) ≤ zk |n(u)} ∈ [0, 1] , k = 1, . . . , K ,

with Prob {Z(u) ≤ zk |n(u)} ≤ Prob {Z(u) ≤ zk′ |n(u)}, ∀zk ≤ zk′ .
From these IK-derived conditional probabilities a class indicator can be simu-

lated at each simulation node u, the indicator of a category or of the class to which
the continuous z-value belongs.

Note that at each node (K − 1) indicator krigings are needed if K classes are
considered, each kriging calling for its own indicator covariance model. In the case
of a continuous variable Z(u), the modeling task is considerably reduced if one
adopts a median indicator model, whereby all (K −1) indicator covariance models
are chosen proportional to the single covariance corresponding to the indicator
defined by the median threshold value zk = M (Goovaerts, 1997, p.304; Chilès
and Delfiner, 1999, p.384).

Recall that the individual indicator kriging results must be corrected to honor the
constraints associated to expression (3.42) (Goovaerts, 1997, p.324). These order
relation corrections are made before simulated values can be drawn from the IK-
estimated conditional probabilities.

It can be shown that the indicator covariance models are reproduced, except for
the impact of the order relation corrections.

Remarks

The indicator formalism was originally designed for categorical variables and later
extended to continuous variables. As for simulation of several (say K ≥ 4) cate-
gorical variables, SISIM should be used with care, as the number and magnitude of
order relation corrections become prohibitive and the reproduction of the numerous
indicator covariances becomes poor.

3.9 Multiple-point simulation algorithms 71

Hierarchy and spatial nesting of categories can be used to split the simulation of
a large number K of categories into a series of independent simulations, each with
a smaller number of categories (Maharaja, 2004). For example, the simulation of
K = 5 lithofacies may be reduced to, first a simulation of the two dominant groups
of facies (K = 2), followed by the simulation of the individual facies nested within
each group, say K = 3 within any previously simulated first group and K = 2 for
the second group.

3.9 Multiple-point simulation algorithms

The concept of multiple-point simulation was triggered by the failure of well
established object-based algorithms to honor a large amount of local data. With
object-based algorithms, also called Boolean algorithms, “objects” of given shape
are dropped onto the simulation study area thus painting onto that area the desired
shapes and patterns (Chilès and Delfiner, 1999, p.545; Stoyan et al., 1987; Hal-
dorsen and Damsleth, 1990; Lantuéjoul, 2002; Mallet, 2002). The object shape
parameters, e.g. size, anisotropy, sinuosity, are made random thus making the
simulation process stochastic. An iterative process is then applied for local data
conditioning: objects are displaced, transformed, removed, replaced until a reason-
able match is achieved. Object-based algorithms are ideal for building a training
image with the required spatial structures and patterns, but they are notoriously
difficult to condition to local data, particularly when these data are of small sup-
port volume, numerous and of diverse types. Conversely, pixel-based algorithms
are easy to condition because the simulation proceeds one pixel (point) at a time:
modifying a single point-support value to match local data does not affect a whole
object area around that point. But traditional pixel-based algorithms based on 2-
point statistics could only reproduce a variogram or covariance model, failing to
reproduce definite shapes and patterns.

3.9.1 Single normal equation simulation (SNESIM)

Without losing the data conditioning flexibility of a pixel-based procedure, one
had to find a way around the variogram limitation. That variogram comes in only
when building from kriging the local conditional probability distributions (see pre-
vious Section 3.8), hence the idea of collecting directly those distributions from
training images that display the required spatial patterns. By so doing one would
sidestep any variogram/covariance modeling and also any kriging. The probabil-
ity distributions are chosen from the training image such as to match, exactly
or approximately, the local conditioning data. More precisely, the training image
is scanned to retrieve replicates of the conditioning data event; these replicates

72 Geostatistics: a recall of concepts

define a sub training population conditioned to the data from which the previous
conditional distributions could be retrieved (Guardiano and Srivastava, 1993; Stre-
belle, 2002). The SNESIM algorithm reads conditional distributions from training
images that could have been built using ideally suited non-conditional object-based
algorithms, and progresses sequentially one pixel at a time thus capitalizing on the
data conditioning ease of sequential simulation.

The main requisite, and a difficult one of the SNESIM algorithm, is a “rich” train-
ing image where enough exact replicates can be found for any conditioning data
event encountered during the sequential simulation process. At any location, if not
enough such replicates are found, some of the local conditioning data are dropped,
allowing the possibility to find more replicates but at the cost of poorer data condi-
tioning. That limitation becomes prohibitive if the simulation addresses too many
categories (K > 4), or if the variable simulated is continuous. One must then
revert to the FILTERSIM algorithm (Journel and Zhang, 2006; Zhang et al., 2006)
which accepts approximate replicates of the conditioning data event (described in
Section 3.9.2).

The multiple-point (mp) sequential simulation algorithm whereby all condi-
tional probabilities are read as corresponding proportions from a training image
is called “Single Normal Equation SIMulation.” This name recalls that any such
proportion is in fact the result of a single indicator kriging (normal) equation, see
relation (3.38).

The original SNESIM code (Guardiano and Srivastava, 1993) had to re-scan
the training image anew at each simulation node to collect replicates of that node
conditioning data event; it gave good results but was CPU-prohibitive. The break-
through came with the introduction of the search tree concept which allowed for
a single scan of the training image and smart storage in central memory of all
resulting training proportions (Strebelle, 2002). These proportions are then directly
read from the search tree during the course of sequential simulation. The road-
block of the SNESIM algorithm is not anymore one of CPU, it is the demand for a
large and “rich” enough training image carrying enough replicates of most of the
conditioning data events found in the course of simulation.

Details about the search tree-based SNESIM algorithm can be found in
Strebelle (2000). The implementation of the SNESIM algorithm can be found in
Section 8.2.1.

3.9.2 Filter-based algorithm (FILTERSIM)

A middle alternative between pixel-based and object-based algorithms is to cut into
small pieces the objects or, better, a whole training image, then use those pieces in
building a simulation making sure the pieces fit the conditioning data (Arpat, 2004;

3.9 Multiple-point simulation algorithms 73

Zhang, 2006; Journel and Zhang, 2006). The best analogy is perhaps that of build-
ing a puzzle, where each new piece patched onto the image being simulated must
fit close-by previously placed pieces and original data. The search for pieces that
would fit is speeded up by looking into bins containing previously classified “sim-
ilar” looking pieces; say, one specific bin would contain all Ti pieces with some
elements of sky in it, another bin would contain parts of trees and houses in it. As
opposed to the puzzle game, any piece taken out of a bin is immediately replaced
by an identical one thus no bin ever gets exhausted. Also the fit required is only
approximate and it can be reconsidered later in the sequential simulation path.

Instead of putting down on the simulation field an entire Ti piece, only the central
part of that piece can be patched down. That central part or patch size can be as
small as the single central pixel value.

The critical key to the success of the FILTERSIM algorithm is the classification
of local patterns of the training image into a not too large number of bins of “sim-
ilar” looking patterns. That classification requires reducing any pattern to a small
number of characteristic scores, say, sky with clouds or sky without clouds. In FIL-
TERSIM these scores are defined through linear filters applied to the set of pixel
values constituting the pattern (Schneiderman and Kanade, 2004). Next, one must
define a distance between a conditioning data event and any such previous bin. This
is needed to select the bin closest, that is with training patterns most similar, to the
conditioning data event. Future research will undoubtedly suggest better pairs of
(filters + distance) than that coded in this early version of the FILTERSIM code.

The FILTERSIM algorithm, originally designed for simulation of continuous
variables, has been extended to categorical variables. However, and because the
notion of linear filters does not extend naturally to categorical variables, we rec-
ommend using the categorical FILTERSIM approach only when it is absolutely
necessary to simulate jointly a large number of categorical variables (K > 4). For
a reasonable, hence small, number of categories the SNESIM approach is a better
choice provided a corresponding large and varied (rich) training image is available.

Hierarchical simulation

Because of the difficulty in obtaining very large and rich training images, particu-
larly in 3D, and because of the RAM demand of the corresponding search trees, it
may not be feasible to apply the SNESIM algorithm to the joint simulation of more
than K = 4 categories. That limitation is generally not a problem in earth sciences
applications, since facies or rock types are often nested in each other, which allows
decomposing the problem, see Maharaja (2004) and Walker (1984).

Consider, for example, the simulation of 7 facies, with facies #5 and #6 nested
within facies #3, and facies #7 nested within facies #4. A first run of SNESIM

74 Geostatistics: a recall of concepts

with the modified four-facies training image depicting the spatial distribution of the
four facies groups A = 1, B = 2, C = 3 + 5 + 6, D = 4 + 7 would yield simulated
realizations of these four groups. Consider any one such realization and isolate the
corresponding zones simulated as group C and group D; within the zones defined
by group C use SNESIM with the proper Ti to simulate the spatial distribution of
facies #3, #5 and #6; within zone D use SNESIM with yet another Ti to simulate
the distribution of facies #4 and #7.

3.10 The nu/tau expression for combining conditional probabilities

Stochastic prediction is all about proposing a model for the probability distribu-
tion of possible outcomes of an unknown given all the data available. From such
distribution model, one can simulate a set of outcomes for the unknown(s). The
fundamental task is thus to determine the previous conditional distributions, a task
particularly difficult when data of different types are present; data that are often
redundant one with each and all others, and data whose information content goes
much beyond a linear correlation with the unknown being assessed. Recent devel-
opments have uncovered a dormant general formulation of that general problem,
one that lends itself remarkably to the modern mp approach to data integration
(Bordley, 1982; Benediktsson and Swain, 1992; Journel, 2002; Polyakova and
Journel, in press).

At this level of absolute generality, some notations are necessary; we will
endeavor, however, to back these notations with intuitive examples.

Adopt the notation A for the unsampled RV, and the notations Di = di ,
i = 1, . . . , n for the n data events, with capital letters denoting the RVs and the
corresponding small case letters denoting any observed data value. In mp applica-
tions, the Di s are actually vectors involving multiple data locations, but we will
keep the scalar notation Di for simplicity.

The ultimate goal of probabilistic prediction is to evaluate the fully conditional
probability:

Prob {A = a|Di = di , i = 1, . . . , n} , (3.43)

a function of the (n + 1) values (a; di , i = 1, . . . , n).
If each data event Di relates to a single location in space, say di = z(ui), then

a traditional two-point statistics such as the covariance suffices to relate any datum
Di to any other D j or to the unknown A.

If each data event Di involves jointly multiple data locations (it is then a vector)
all related to the same attribute z which is also the A-attribute, then one could hope
to find or build a Z -training image depicting the joint distribution of A and any

3.10 The nu/tau expression 75

vector of Z -values. Using such training image, the mp algorithms SNESIM and
FILTERSIM could be implemented, see Sections 3.9.1 and 3.9.2.

However, in the general situation where each data event Di , in addition to being
multiple-point, is also related to a different attribute, the task becomes insupera-
ble. For example, D1 could be a mp pattern of facies indicator data as interpreted
from well logs, D2 could be a set of seismic impedance data involving many
locations in space but locations different from those related to D1; as for A it
may relate to a third attribute, say porosity, at yet a different location (or set of
locations).

The solution is again to “divide and conquer,” decomposing the global data event
D = {Di = di , i = 1, . . . , n} into n component data events Di for which each
of the individual conditional probabilities Prob {A = a|Di = di }, i = 1, . . . , n
could be evaluated by traditional two-point or by mp geostatistics or by any other
means. The general problem is then that of recombining n individual probabili-
ties into an estimate of the fully conditioned probability (Eq. (3.43)); this calls for
determination of the integration function ϕ below:

Prob {A = a|Di = di , i = 1, . . . , n} = ϕ (Prob {A = a|Di = di } , i = 1, . . . , n) .

(3.44)

Returning to the previous example:

P(A|D1) could be evaluated from a training image depicting the joint distri-
bution of porosity (the A-attribute) and facies indicators (the D1 categorical
attribute),

P(A|D2) could be evaluated independently from calibration of porosity to a set
of neighboring seismic impedance data (the D2 categorical attribute),

it remains to combine these two partially conditioned probabilities accounting
for the redundancy of seismic and facies data when it comes to evaluate
porosity (A).

Fortunately there exists an exact decomposition formula of type (3.44), the so-
called nu or tau expression. This expression has been known for some time
(Bordley, 1982; Benediktsson and Swain, 1992), but its generality or exactitude
had not been established until recently, nor was its importance for data integration
fully recognized.

Warning

All probabilities in expressions (3.43) and (3.44) are functions of the (n +1) values
a and di , more if di is a mp vector of data values. However, for simplicity we
will use the short notations P {A|D} and P {A|Di } whenever there is no risk of
confusion.

76 Geostatistics: a recall of concepts

Why probabilities?

Before developing the expression of the compositing function ϕ, one should answer
the question whether a probabilistic approach is the most appropriate for this data
integration problem. The answer lies in the notation (3.44) itself:

• probabilities provide a unit-free, standardized [0, 1], coding of information,
across all data types, which facilitates the task of data integration;

• as opposed to a deterministic estimate of A, each elementary probability P(A =
a|Di = di) includes both the di information content and the uncertainty of its
contribution to evaluating A = a.

The nu/tau expression

Consider the probability-into-distance transform of each individual probability:

x0 = 1 − P(A)

P(A)
, x1 = 1 − P(A|D1)

P(A|D1)
, xn = 1 − P(A|Dn)

P(A|Dn)
, (3.45)

all valued in [0,+∞].
P(A) = P(A = a) is the prior probability of event A = a occurring, “prior” to

knowing any of the n data Di = di , x0 is the prior distance to A = a occurring,
equal to zero if P(A) = 1, equal to ∞ if P(A) = 0, and similarly for each of the
elementary distance xi .

We will use the notation: 1 − P(A|Di) = P(Ã|Di), where Ã stands for nonA.
The distance x to A = a occurring given jointly all n data is given by the nu,

expression:

x

x0
=

n∏
i=1

νi
xi

x0
= ν0 ·

n∏
i=1

xi

x0
, with: νi ≥ 0

or equivalently the tau expression:

x

x0
=

n∏
i=1

(
xi

x0
)τi , with: τi ∈ [−∞, +∞] (3.46)

with

νi =
(

xi

x0

)τi −1

, or: τi = 1 + log νi

log xi
x0

and

ν0 =
n∏

i=1

νi ∈ [0,+∞] . (3.47)

3.10 The nu/tau expression 77

Recall that:

x = P
(

Ã|Di , . . . , Dn
)

P (A|D1, . . . , Dn)

thus

P (A|D1, . . . , Dn) = 1

1 + x
∈ [0, 1] . (3.48)

The nu/tau expressions give the fully conditioned relative distance x/x0 as func-
tion of the n elementary relative distances xi/x0. Recall that these n elementary
distances are assumed known, the only problem addressed by the two equiva-
lent relations (3.46) is that of combining the elementary distances into the fully
conditioned distance x . Expression (3.46) shows the combination function to be
a weighted product as opposed to an approach by indicator kriging that consid-
ers weighted linear combination; see Section 3.6.5. The relative distances carry
the information content of each elementary data event Di ; the tau or nu weights
account for the additional information (beyond redundancy) carried by the various
data events as to evaluating the probability for A = a.

The exact expression of the ν-parameters is (Polyakova and Journel, in press):

νi =
P(Di | Ã,Di−1)

P(Di |A,Di−1)

P(Di | Ã)

P(Di |A)

∈ [0,+∞] , ν1 = 1. (3.49)

Similarly for the tau parameters (Krishnan, 2004):

τi =
log P(Di | Ã,Di−1)

P(Di |A,Di−1)

log P(Di | Ã)

P(Di |A)

∈ [−∞, +∞] , τ1 = 1, (3.50)

where Di−1 = {
D j = d j , j = 1, . . . , i − 1

}
denotes the set of all data events

considered before the i th data event Di = di .
Prob(Di |A) is the (likelihood) probability of observing the datum value Di = di

given the outcome A = a, Prob(Di | Ã) is the probability of observing the same
data but given Ã, thus the ratio Prob(Di | Ã)

Prob(Di |A)
appearing in the denominator of the νi or

τi expression can be read as a measure of how datum Di = di discriminates A from
Ã. The ratio appearing in the numerator is the same discrimination measure but in
presence of all previous data considered Di−1 = {D1 = d1, . . . , Di−1 = di−1}.
The unit value νi = τi = 1 would correspond to full information redundancy
between the data event Di = di and the previously considered data Di−1. Thus the
parameter values |1 − νi | or |1 − τi | could be read as the additional information
content brought by Di above the previous data Di−1 as to discriminating A = a
from A = non-a.

78 Geostatistics: a recall of concepts

Note that the single correction parameter ν0 is data sequence-independent; also
the case ν0 = 1 is more general than νi = 1, ∀i ; it encompasses the complex case
of data redundancies (νi �= 1) that cancel each other globally into ν0 = 1.

Tau or nu model?

Recall that all expressions above (Eq. (3.43) to Eq. (3.50)) are data values-
dependent notwithstanding their short notation, say, P(A|Di) should be read
P(A = a|Di = di); similarly the elementary distance xi is both a and di

values-dependent.
If the νi , τi parameters are actually evaluated, e.g. from training image, and

made data values-dependent, the two expressions in Eq. (3.47) are equivalent.
One would then prefer the nu-formulation because it puts forward a single cor-
rection parameter ν0(a, di ; i = 1, . . . , n) which is independent of the data
sequence D1, D2, . . . , Dn . Also, evaluation of the τi parameter associated to a
non-informative datum such that P(Di | Ã) ≈ P(Di |A) would run into problems
because of a division by a log ratio close to zero, see Eq. (3.50).

However, if the νi , τi parameters are assumed constant, independent of the
(a, di ; i = 1, . . . , n) values, then the tau formulation should be preferred. Indeed,
consider the case of only two data events with the two different sets of data values:

{D1 = d1, D2 = d2} and
{

D1 = d ′
1, D2 = d ′

2

}
.

• The nu model with constant (homoscedastic) ν0 parameter value is written:

x

x0
= ν0 · x1

x0
· x2

x0
for data set {d1, d2}

x ′

x0
= ν0 · x ′

1

x0
· x ′

2

x0
for data set

{
d ′

1, d ′
2

}
where x, x1, x2 are the distances corresponding to {d1, d2} and x ′, x ′

1, x ′
2 are

the distances corresponding to
{
d ′

1, d ′
2

}
. Conditional distances are data values-

dependent, as opposed to the prior distance x0 = x ′
0. Therefore,

x ′

x
= x ′

1

x1
· x ′

2

x2
, ∀ν0.

The parameter ν0 is seen to be ineffective.
• Conversely, the tau model with constant τ1, τ2 parameter values is written:

log
x

x0
= τ1 · log

x1

x0
+ τ2 · log

x2

x0
for data set {d1, d2}

log
x ′

x0
= τ1 · log

x ′
1

x0
+ τ2 · log

x ′
2

x0
for data set

{
d ′

1, d ′
2

}
.

3.11 Inverse problem 79

Thus:

log
x ′

x
= τ1 · log

x ′
1

x1
+ τ2 · log

x ′
2

x2
, or equivalently

x ′

x
= x ′

1

x1

τ1

· x ′
2

x2

τ2

.

The tau parameters, although data values-independent, remain effective unless
τ1 = τ2 = ν0 = 1.

This latter property of the tau expression, remaining effective even if the τi s are
considered data values-independent, make the tau expression (3.46) a convenient
heuristic to weight more certain data events. It suffices to make τi > τ j > 0 to
give more importance to data event Di as compared to data event D j , whatever the
actual data values (di , d j). That heuristic utilization of the tau model completely
misses the main contribution of the nu/tau expression which is the quantification
of data redundancy for any specific set of values (a, di ; i = 1, . . . , n).

SGeMS proposes a utility program, NU-TAU MODEL see Section 9.5, to com-
bine prior probabilities using either the nu or the tau expression (3.46) with as input
data values-dependent nu or tau parameters. However, in programs SNESIM and
FILTERSIM, only the tau expression is allowed with tau parameters input as data
values-independent constant values.

3.11 Inverse problem

A major topic not directly addressed by the SGeMS software is that of integration
of difficult data D expressed as a non-analytical, non-linear function ψ of a large
number of values z(uα) being simulated :

D = ψ(z(uα), α = 1, ..., n)

The simulated fields {z(l)(u), u ∈ S}, l = 1, ..., L , must be such that they all
reproduce such data, i.e.

D(l) = ψ({z(l)(u), α = 1, ..., n) ≈ D ∀ l = 1, ..., L

where the function ψ is known, although typically only through an algorithm such
as a flow simulator.

SGeMS provides realizations {z(l)(u), u ∈ S} that can be selected, combined,
perturbed and checked to fit approximately the data D. This is known as the
general “inverse problem” (Tarantola, 2005); see Hu et al. (2001) and Caers and
Hoffman (2006) for a geostatistical perspective.

4

Data sets and SGeMS EDA tools

This chapter presents the data sets used to demonstrate the geostatistics algorithms
in the following chapters. It also provides an introduction to the exploratory data
analysis (EDA) tools of the SGeMS software.

Section 4.1 presents the two data sets: one in 2D and one in 3D. The smaller 2D
data set is enough to illustrate the running of most geostatistics algorithms (kriging
and variogram-based simulation). The 3D data set, which mimics a large deltaic
channel reservoir, is used to demonstrate the practice of these algorithms on large
3D applications; this 3D data set is also used for EDA illustrations.

Section 4.2 introduces the basic EDA tools, such as histogram, Q-Q (quantile–
quantile) plot, P-P (probability–probability) plot and scatter plot.

4.1 The data sets

4.1.1 The 2D data set

This 2D data set is derived from the published Ely data set (Journel and Kyriakidis,
2004) by taking the logarithm of all positive values and discarding the negative
ones. The original data are elevation values in the Ely area, Nevada. The corre-
sponding SGeMS project is located at DataSets/Elyl.prj. This project contains
two SGeMS objects: Ely1 pset and Ely1 pset samples.

• The Ely1 pset object is a point set grid with 10 000 points, constituting a ref-
erence (exhaustive) data set. This point set grid holds three properties: a local
varying mean data (“lvm”), the values of the primary variable (“Primary”) and
the values of a co-located secondary property (“Secondary”). The point set grid
and its properties are given in Fig. 4.1a–d. This object can be used to hold
properties obtained from kriging algorithms or stochastic simulations.

80

4.1 The data sets 81

(a) Simulation grid (point sets)

(c) Reference values (d) Secondary data (e) Hard data

(b) Local varying mean

3.5 4 4.5 5 5.5 6 6.5 7

3 4 5 6 7 8 1 2.5 4 5.5 7 3 4 5 76 8

Figure 4.1 The Ely data set

• The Ely1 pset samples object provides 50 well data (“samples”), which can be
used as hard primary data to constrain the geostatistical estimations or simula-
tions. These data, shown in Fig. 4.1e, were sampled from the reference data set
(Fig. 4.1c).

4.1.2 The 3D data set

The 3D data set retained in this book is extracted from a layer of Stanford VI, a
synthetic data set representing a fluvial channel reservoir (Castro, 2007). The cor-
responding SGeMS project is located at DataSets/stanford6.prj. This project
contains three SGeMS objects: well, grid and container.

• The well object contains the well data set. There is a total of 26 wells (21 vertical
wells, four deviated wells and one horizontal well). The six properties associ-
ated with these wells are bulk density, a binary facies indicator (sand channel
or mud floodplain), P-wave impedance, P-wave velocity, permeability and
porosity. These data will be used as hard or soft conditioning data in the

82 Data sets and SGeMS EDA tools

0.33

0.28

0.23

0.18

0.13

0.08

0.03

Figure 4.2 Well locations and the porosity distribution along the Stanford VI wells

example runs of Chapters 7 to 9. Figure 4.2 shows the well locations and the
porosity distribution along the wells.

• The grid object is a Cartesian grid (its rectangular boundary is shown on
Fig. 4.2), with
– grid size: 150 × 200 × 80,
– origin point at (0,0,0),
– unit cell size in each x/y/z direction.
This reservoir grid holds the following two variables.
1. Probability data. The facies probability data were calibrated from the original

seismic impedance data using the well data (facies and P-wave impedance).
Two sand probability cubes (properties P(sand|seis) and P(sand|seis) 2)
are provided: the first displays sharp channel boundaries (best quality data,
see Fig. 4.3a); the second displays more fuzzy channel boundaries (poor
quality data, see Fig. 4.3b). These probability data will be used as soft data
to constrain the facies modeling.

2. Region code. Typically a large reservoir would be divided into differ-
ent regions with each individual region having its own characteristics, for
instance, different channel orientations and channel thickness. The regions
associated with the Stanford VI reservoir are rotation regions (property
angle) corresponding to different channel orientations (Fig. 4.4), and affin-
ity (scaling) regions (property affinity) corresponding to different channel
thicknesses (Fig. 4.5). Each rotation region is labeled with an indicator
number, and is assigned a rotation angle value, see Table 4.1. The affinity
indicators and the attached affinity values are given in Table 4.2. An affinity

4.1 The data sets 83

(a) Good quality data

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

(b) Poor quality data

Figure 4.3 Two Stanford VI sand probability cubes

9
8
7
6
5
4
3
2
1
0

Figure 4.4 Angle indicator cube

2

1

0

Figure 4.5 Affinity indicator cube

value must be assigned to each x/y/z direction; the larger the affinity value,
the thicker the channel in that direction.

• The container object is composed of all the reservoir nodes located inside the
channels, hence it is a point-set with (x,y,z) coordinates. The user can perform
geostatistics on this channel container, for example, to estimate the within-
channel petrophysical properties. In Fig. 4.6 the channel container is represented
by all nodes with value 1 (gray), and the non-reservoir area is in black.

84 Data sets and SGeMS EDA tools

Table 4.1 Rotation region indicators for Stanford VI

Angle category 0 1 2 3 4 5 6 7 8 9
Angle value (degree) −63 −49 −35 −21 −7 7 21 35 49 63

Table 4.2 Affinity region indicators for Stanford VI

Affinity category 0 1 2
Affinity value ([x,y,z]) [2, 2, 2] [1, 1, 1] [0.5, 0.5, 0.5]

Figure 4.6 Stanford VI channel container (gray nodes)

Although this 3D data set is taken from a reservoir model, it could represent any
3D spatially distributed attribute and be used for testing applications in other fields
than reservoir modeling. For example, one can interpret each 2D horizontal layer of
the seismic data cube as coarse satellite measurements defined over the same area
but recorded at different times. The application would then be modeling landscape
change in both space and time.

4.2 The SGeMS EDA tools

SGeMS provides some useful exploratory data analysis (EDA) tools, such as his-
togram, quantile–quantile (Q-Q) plot, probability–probability (P-P) plot, scatter
plot, variogram and cross-variogram calculation and modeling. In this chapter,
the first four elementary tools are presented; the (cross-)variogram calculation and
modeling tool is described in the next chapter.

All the EDA tools can be invoked through the Data Analysis menu from the main
SGeMS graphical interface. Once a specific tool is selected, the corresponding
SGeMS window is popped up. The EDA tool window is independent of the main
SGeMS interface, and the user can have multiple windows for each EDA tool.

4.2 The SGeMS EDA tools 85

4.2.1 Common parameters

The interface for all EDA tools presented in this chapter has three panels; see also
Figs 4.7 to 4.9.

1. Parameter Panel The user selects in this panel the properties to be ana-
lyzed and the display options. This panel has two pages: “Data” and “Display
Options”, the latter being common to all EDA tools.

2. Visualization Panel This panel shows the graphic result of the selected
statistics.

3. Statistics Panel This panel displays some relevant summary statistics.

In the lower part of the main interface, there are two buttons: Save as Image and
Close. The Save as Image button is used to save a graphical result (for example
a histogram) into a picture data file in either “png”, “bmp” or “ps” (Postscript)
format. The Close button is used to close the current interface.

Parameters description

The parameters of the “Display Options” page are described below.

• X Axis Controls for the X axis for variable 1. Only the property values between
“Min” and “Max” are displayed in the plot; values less than “Min” or greater
than “Max” still contribute to the statistical summaries. The default values of
“Min” and “Max” are the minimum and maximum of the selected Property. The
X Axis can be set to a logarithmic scale by marking the corresponding check
box. This option is valid only when all the property values are larger than zero.

• Y Axis Controls for the Y axis for variable 2. The previous remarks apply.

The user can modify the parameters through either the keyboard or the mouse.
Any modification through the mouse will instantly reflect on the visualization or
the summary statistics.

Warning: the change through the keyboard must be activated by pressing the
“Enter” key.

4.2.2 Histogram

The histogram tool creates a visual output of the frequency distribution, and dis-
plays some summary statistics, such as the mean and variance of the selected
variable. The histogram tool is activated by clicking Data Analysis → Histogram.
Although the program will automatically scale the histogram, the user can set the
histogram limits in the Parameter Panel. The main histogram interface is given in
Fig. 4.7, and the parameters of the Data page are listed below.

86 Data sets and SGeMS EDA tools

2

1

3

Figure 4.7 Histogram interface [1]: Parameter Panel; [2]: Visualization Panel;
[3]: Statistics Panel

Parameters description

• Object A Cartesian grid or a point-set containing the variables under study.
• Property The variable to study.
• Bins The number of classes. The user can change this number through the key-

board, or by clicking the scroll bar. Any value change will be instantly reflected
on the histogram display.

• Clipping Values Statistical calculation settings. All values less than “Min”
and greater than “Max” are ignored, and any change of “Min” and “Max” will

4.2 The SGeMS EDA tools 87

affect the statistics calculation. The default values of “Min” and “Max” are
the minimum and maximum of the selected Property. After modifying “Min”
and/or “Max”, the user can go back to the default setting by clicking “Reset”.

• Plot type The user can choose to plot a frequency histogram (“pdf”), a
cumulative histogram (“cdf”) or both.

4.2.3 Q-Q plot and P-P plot

The Q-Q plot compares equal p-quantile values of two distributions; the P-P plot
compares the cumulative probability distributions of two variables for equal thresh-
old values. The two variables need not be in the same object or have the same
number of data. The Q-Q plot and P-P plot are combined into one program, which
can be invoked from Data Analysis → QQ-plot. This EDA tool generates both a
graph in the Visualization Panel and some summary statistics (mean and variance
for each variable) in the Statistics Panel, see Fig. 4.8. The parameters in the “Data”
page are listed below.

Parameters description

• Analysis Type Algorithm selection. The user can choose either a Q-Q plot or
a P-P plot.

• Variable 1 The variable selection for the X axis. The user must choose first an
object, then the property name.

• Clipping Values for Variable 1 All values strictly less than “Min” and
strictly greater than “Max” are ignored; any change of “Min” and “Max” will
affect the statistics calculation. The user can go back to the default setting
by clicking “Reset”.

• Variable 2 The variable selection for the Y axis. The user must choose first an
Object, then the Property name. Note that Variable 2 and Variable 1 might be
from different objects.

• Clipping Values for Variable 2 Remarks similar to those for Clipping Values
for Variable 1.

4.2.4 Scatter plot

The scatterplot tool (executed by clicking Data Analysis → Scatter-plot) is used to
compare two variables by displaying their bivariate scatter plot and some statistics.
All available data pairs are used to compute the summary statistics, such as the
correlation coefficient, the mean and variance of each variable (see part [C] in
Fig. 4.9). To avoid a crowded figure in the Visualization Panel, only up to 10 000
data pairs are displayed in the scatter plot. The parameters in the “Data” page are
listed below.

88 Data sets and SGeMS EDA tools

2

1

3

Figure 4.8 Q-Q plot interface [1]: Parameter Panel; [2]: Visualization Panel; [3]:
Statistics Panel

Parameters description

• Object A Cartesian grid or a point-set containing the variables under study.
This Object must contain at least two properties.

• Variable 1 The variable property listed in the Object above. This variable is
associated with the X axis.

• Clipping Values for Variable 1 All values strictly less than “Min” and strictly
greater than “Max” are ignored, and any change of “Min” and “Max” will affect
the statistics calculation. The user can go back to the default setting by clicking
“Reset”. If Variable 1 has more than 10 000 data, then the “Reset” button can be

4.2 The SGeMS EDA tools 89

2

1

3

Figure 4.9 Scatter plot interface [1]: Parameter Panel; [2]: Visualization Panel;
[3]: Statistics Panel

used to generate a new scatter plot with a re-sampled set of data pairs containing
up to 10 000 data.

• Variable 2 The variable property listed in the upper Object. This variable is
associated with the Y axis.

• Clipping Values for Variable 2 Remarks similar to those for Variable 1.
• Options The choice of visualizing the least square line fit in the scatter plot.

The slope and the intercept are given below check box “Show Least Square
Fit”. This option is valid only when the two variables are displayed with the
arithmetical scale.

5

Variogram computation and modeling

Computing experimental variograms and modeling them are key steps of tra-
ditional geostatistical studies. Fitting an analytical model to an experimental
variogram achieves two purposes.

• It allows one to compute a variogram value γ (h) for any given lag vector h.
Indeed, geostatistical estimation and simulation algorithms require knowledge
of the variogram at arbitrary lags.

• A model is a way to filter out the noise from the experimental variogram.
Noise in the experimental variogram is typically a consequence of imperfect
measurements or a lack of data.

All functions g(h) are not valid variogram models. A sufficient condition is that
g be conditionally negative definite (Goovaerts, 1997, p.108): given any set of n
locations u1, . . . , un , and n coefficients λ1, . . . , λn ∈ R,

n∑
α=1

n∑
β=1

λαλβ g(uα − uβ) ≤ 0

under the condition
∑n

α=1 λα = 0.
SGeMS supports four basic analytical variogram models, and any positive lin-

ear combination of these variograms. The four analytical (semi-)variograms are as
follows, in their isotropic form.

Nugget effect model

γ (h) =
{

0 if ‖h‖ = 0

1 otherwise.
(5.1)

A pure nugget effect model for a variable Z(u) expresses a lack of (linear)
dependence between variables Z(u) and Z(u + h).

90

Variogram computation and modeling 91

Spherical model with range a

γ (h) =
{

3
2

‖h‖
a − 1

2(
‖h‖
a)3 if ‖h‖ ≤ a

1 otherwise.
(5.2)

Exponential model with practical range a

γ (h) = 1 − exp
(−3‖h‖

a

)
. (5.3)

Gaussian model with practical range a

γ (h) = 1 − exp
(−3‖h‖2

a2

)
. (5.4)

All these models are monotonously increasing and bounded by 1:
0 ≤ γ (h) ≤ 1,∀h. In the case of the exponential and Gaussian models, the upper
bound (the sill) is reached asymptotically, and the distance ‖h‖ at which 95% of
the sill is reached is called the practical range.

The covariance counterpart of the above four models is given by

C(h) = C(0) − γ (h), with C(0) = 1.

In SGeMS a variogram model: γ (h) = c0γ
(0)(h) + ∑L

l=1 clγ
(l)(h) is character-

ized by the following parameters:

• a nugget effect c0γ
(0) with nugget constant c0 ≥ 0;

• the number L of nested structures. Each structure clγ
(l)(h) is then defined by:

– a variance contribution cl ≥ 0,
– the type of the variogram: spherical, exponential or Gaussian,
– an anisotropy, characterized by an ellipsoid with three directions and the

ranges along each direction, see Section 2.5. Note that each nested structure
can have a different anisotropy.

Example Consider the variogram model γ (h)= 0.3γ (0)(h)+ 0.4γ (1)(h)+
0.3γ (2)(h), with:

• γ (0)(h) a pure nugget effect with sill 0.3;
• γ (1)(h) an anisotropic spherical variogram with major range 40, medium range

20 and minor range 5, and angles α = 45o (azimuth), β = 0 (dip), θ = 0 (rake);
• γ (2)(h) an isotropic exponential variogram of range 200.

92 Variogram computation and modeling

SGeMS would save that model as the following XML file:

<Variogram nugget="0.3" structures_count="2" >
<structure_1 contribution="0.4" type="Spherical" >

<ranges max="40" medium="20" min="5" />
<angles x="45" y="0" z="0" />

</structure_1>
<structure_2 contribution="0.3" type="Exponential" >

<ranges max="200" medium="200" min="200" />
<angles x="0" y="0" z="0" />

</structure_2>
</Variogram>

5.1 Variogram computation in SGeMS

Although the text only refers to variograms, SGeMS can also compute covariances,
correlograms and cross-variograms (see Goovaerts (1997) for definitions of these
correlation measures).

To bring up the SGeMS variogram module, select the Variogram entry from the
Data Analysis menu. Variogram computation is done in three steps.

1. Select the head and tail variables whose (cross-)variogram will be computed
(Fig. 5.1). The computed variogram will measure the variability between the
two variables Zhead(u + h) and Ztail(u). To compute the auto-variogram of a
variable Z , select the same variable for both the head and the tail.

2. Input the necessary parameters, such as the directions in which the variogram
should be computed and the number of lags to use (Fig. 5.2a and Fig. 5.2b). The
parameters required will differ, depending on whether the head and tail vari-
ables are defined on a set of points (i.e. with no pre-defined spatial structure) or
on a Cartesian grid.

3. Display the results (Fig. 5.3). At that point, it is also possible to model the
computed experimental variograms (see Section 5.2).

After completing each step, click the Next button to go to the next step.

5.1.1 Selecting the head and tail properties

Figure 5.1 shows the interface to select the head and tail variables whose
(cross-)variogram γ (Zhead(u + h), Ztail(u)) will be computed.

Both head and tail variables must belong to the same object (i.e. to the same set
of points or the same Cartesian grid). Use menu item Objects → Copy Property to
transfer a property between two objects.

5.1 Variogram computation in SGeMS 93

1

2

Figure 5.1 Interface to select the head and tail variables for the variogram computation

Description of the interface

1. Select Task Choose whether to compute a new variogram, or load an existing
experimental variogram from a file.

2. Choose grid and properties Select the object that contains the head and tail
properties and choose the head and tail properties. Select the same property for
both head and tail to compute a univariate variogram, or two different properties
to compute their cross-variogram.

5.1.2 Computation parameters

This step prompts for the number of lags at which to compute the experimental
variogram, and the directions along which to compute that variogram. It is also
possible to consider a type of correlation measure different from the variogram,
for example a covariance or correlogram. The lags and directions along which to
compute the variogram are input differently, depending on the type of the object
(set of points or Cartesian grid) that holds the head and tail properties.

Parameters can be saved and loaded using the Load Parameters and Save buttons
visible at the top of Fig. 5.2b.

94 Variogram computation and modeling

10 11 12 13

3

4

5

6

7 8 9

a Parameters for point-set

14

15

16 17 18

b Parameters for Cartesian grid

Figure 5.2 Parameters for the variogram computation

Parameters for data defined on a set of points

Given a number L of lags, a lag separation a and a set of K unit vectors v1, . . . , vK ,
SGeMS will compute the following experimental variogram values.

5.1 Variogram computation in SGeMS 95

20

21
22

23

24

19

Figure 5.3 Variogram plots display and modeling interface

γ (av1) . . . γ (a · Lv1)
...

...
...

γ (avk) . . . γ (a · Lvk)

In a point-set object, data do not necessarily follow a regular spatial pattern.
Because of that lack of structure, it is unlikely to find enough pairs of data separated
by the same vector h. Hence the need for a tolerance on the norm of h and its
direction to compute a variogram on a point-set object.

The tolerance on h is characterized by three parameters:

• a lag tolerance ε,
• an angle 0 ≤ αtol < 90◦,
• a bandwidth w,

such that two points A, B contribute to the computation of γ (h) if:

∣∣∣‖AB‖ − ‖h‖
∣∣∣ ≤ ε

and, calling θ = (h, AB) the angle between h and AB,

96 Variogram computation and modeling

αtol

h

w

ε
ε

A

Figure 5.4 Variogram tolerance. If B is in the gray zone, the pair (A, B) will
contribute to the computation of γ (h)

θ ≤ αtol and ‖AB‖ sin(θ) ≤ w.

These conditions are illustrated on Fig. 5.4.

Interface description

The parameters required to compute a variogram on a point-set object are entered
through the interface shown on Fig. 5.2a.

3. Number of lags The number of lags L .
4. Lag separation The distance a between two lags.
5. Lag tolerance The tolerance ε around the lag separation.
6. Number of directions The number K of directions along which to compute

the experimental variograms, each with the same number of lags. Each direc-
tion vk (k = 1, . . . , K) is characterized by two angles (items 7 and 8) and a
tolerance (items 9 and 10).

7. Azimuth The azimuth, in degrees, of vector vk (Fig. 2.24).
8. Dip The dip, in degrees, of vector vk (Fig. 2.25).
9. Tolerance The tolerance angle αtol, in degrees. Specify an angle greater than

90◦ to compute an omni-directional variogram.
10. Bandwidth The bandwidth parameter w (Fig. 5.4).
11. Measure type The measure of bivariate spatial correlation. The options are:

variogram, indicator variogram, covariance and correlogram. If indicator var-
iogram is selected, the head and tail values must be coded into indicators, see
items 12 and 13 below.

12. Head indicator cutoff This parameter is used only if the measure type
(item 11) is indicator variogram. It is the threshold zt defining the indica-
tor coding of the head variable z. If z ≤ zt, the indicator value is 1; it is 0
otherwise.

13. Tail indicator cutoff This parameter is used only if the measure type
(item 11) is indicator variogram. It is the threshold zt defining the indicator
coding of the tail variable z. If z ≤ zt, the indicator value is 1; it is 0 otherwise.

5.1 Variogram computation in SGeMS 97

If computing an indicator auto-variogram, i.e. if the head and tail variables are
the same, the head and tail indicator cutoffs must be the same.
Note Categorical indicator variogram should be calculated directly from
input indicator data.

Parameters for data defined on a Cartesian grid

Given a number L of lags, a lag separation a and a set of K vectors v1, . . . , vK ,
(these vectors can have a norm different from 1) SGeMS will compute the
following experimental variogram values.

γ (av1) . . . γ (a · Lv1)
...

...
...

γ (avk) . . . γ (a · Lvk)

Contrary to the point-set case, there is no need to specify a distance and direc-
tion tolerance: since all data locations follow a regular pattern, multiple pairs are
guaranteed to be available, unless a lot of data are missing.

Interface description

The parameters required to compute a variogram on a Cartesian grid are entered
through the interface shown on Fig. 5.2b.

14. Number of lags The number of lags L .
15. Number of directions The number K of directions along which to compute

the experimental variograms, each with the same number of lags. Each vector
vk is specified by its integer coordinates in the grid coordinate system, see
items 16, 17 and 18, and Fig. 5.5.

16. x The X coordinate of vector vk . It is expressed in number of grid cells. So
if the grid cells are 10 m long in the X direction, x = 3 means 30 m in the X
direction.

17. y The Y coordinate of vector vk . It is expressed in number of grid cells, see
item 16.

18. z The Z coordinate of vector vk . It is expressed in number of grid cells, see
item 16.

u (1
3)

Figure 5.5 A vector in grid cell coordinates. The coordinates of v are x = 1, y = 3

98 Variogram computation and modeling

5.1.3 Displaying the computed variograms

Once the parameters are entered and Next is clicked, SGeMS computes and dis-
plays the variograms (see Fig. 5.3). There is one plot per requested direction, plus
an additional plot showing all directions together (upper left plot on Fig. 5.3).
A right-click on a plot will toggle the display of the number of pairs used to com-
pute each variogram value. Clicking on the square icon at the top of a plot will
“maximize” the plot, i.e. the plot will occupy the maximum space, hiding the other
plots. In maximized mode, use the Ctrl + Tab key combination to toggle between
the plots. If a plot is closed by clicking on its cross icon, it can not be re-opened
without re-computing the variograms.

Above the plots, three menus provide means to re-arrange the plots, modify their
scale, and save them as images or as text.

File → Save Experimental Variograms Save the computed experimental vari-
ogram values to a file. That file can be loaded later from the first screen of the
variogram tool (see item 1, p. 93).

File → Export Plots As Images Save the plots to image files. It is possible to
select which plots will be saved.

Edit → Plot Settings Modify the axis scale of all or some plots.
Window → Tile Arrange the plots so that they occupy all the available space.
Window → Cascade Display the plots in cascade.

5.2 Variogram modeling in SGeMS

SGeMS provides an interface to interactively fit a variogram model of the form

γ (h) = c0γ0(h) +
N∑

n=1

cnγn(h) (5.5)

to the computed experimental variograms. In Eq. (5.5) γ0 is a pure nugget effect,
γn (n > 0) is either a spherical, exponential or Gaussian variogram model,
and c0, . . . , cN are the variance contributions of each of the nested structures
γ0, . . . , γN .

Notice that while SGeMS can compute other correlation measures than vari-
ograms such as covariances and correlograms, it can only model variograms.

The variogram modeling interface is shown in Fig. 5.3 and is accessed after
either computing an experimental variogram or loading an existing experimental
variogram (Section 5.1). The right-hand side panel allows to enter a variogram
model of form Eq. (5.5) which will be overlaid on the experimental variogram
plots. The parameters of the model can then be interactively modified to fit the
experimental variogram.

5.2 Variogram modeling in SGeMS 99

Input of a variogram model

The interface used to input a variogram model is shown on Fig. 5.3, right-hand side
panel.

Description of the interface

19. Nugget Effect The contribution to the sill of the nugget effect, c0

in Eq. (5.5).
20. Nb of structures The number N of nested structures.
21. Sill Contribution Contribution to the sill of the nth structure, cn

in Eq. (5.5).
22. Type The type of variogram for that structure. The three possible types are:

spherical, exponential and Gaussian.
23. Ranges The ranges of the variogram. Ranges can either be changed man-

ually by entering the value, or by dragging the corresponding slider. A slider
allows to continuously change the range value, between 0 and a fixed maxi-
mum. If the desired range is greater than the preset maximum of the slider, it
must be input in the text field. The maximum of the slider will be increased
accordingly. Use the Reset button to reset the maximum of the slider to its
default.

24. Angles The angles defining the variogram model anisotropy ellipsoid. The
first angle is the azimuth, the second the dip, and the third the rake, see Sec-
tion 2.5. All angles must be entered in degrees. For 2D modeling, the dip and
rake should be set as 0.

Saving the model

Once a model has been fit to the experimental variogram, it can be saved to a file
using the File → Save Variogram Model menu item. That file can then be used to
specify a variogram model to geostatistical algorithms.

Modeling a coregionalization

Modeling the coregionalization of two random functions Z1(u) and Z2(u)

calls for the computation and joint modeling of four experimental variograms
γ̂1,1, γ̂1,2, γ̂2,1, γ̂2,2. The four experimental variograms can not be modeled inde-
pendently from one another since the variogram matrix

� =
[

γ1,1 γ1,2

γ2,1 γ2,2

]
must be conditionally negative definite (γi, j models γ̂i, j).

100 Variogram computation and modeling

SGeMS does not provide specific tools to model a coregionalization. Each exper-
imental (cross-)variogram would have to be computed and modeled within its own
variogram modeling window. It is then the responsibility of the user to ensure that
the final model � is a permissible model; see Goovaerts (1997, p.117) on how to
fit a linear model of coregionalization.

Note that many SGeMS algorithms support models of coregionalizations, such
as the Markov Models 1 and 2, that alleviate the need to jointly model all four
variograms γ̂1,1, γ̂1,2, γ̂2,1, γ̂2,2 (see Section 3.6.4 for model details).

6

Common parameter input interfaces

Parameters to the SGeMS algorithms are usually input through their graphical
interfaces.1 Although each algorithm has its own specific interface, all share stan-
dard elements, for instance to select a grid, a property, or parametrize a variogram
or a distribution. The purpose of this chapter is to describe how to use these
recurring graphical elements.

6.1 Algorithm panel

When an algorithm is selected from the algorithms panel, the corresponding
parameters graphical interface is displayed (see Fig. 2.2).

The algorithm panel, briefly described in Section 2.1, is shown in Fig. 6.1. The
main interface has six parts.

Parameters description

1. Algorithms List of all available algorithms which are grouped into three
classes: Estimation, Simulation and Utilities.

2. Parameters input The graphical parameter interface. The parameters for
the selected algorithm are entered in this area.

3. Parameters → Load Load parameters previously saved in a file. The param-
eters can also be loaded by dragging the parameter file into the graphical
parameter interface window.

4. Parameters → Save Save the parameters already entered in the graphical
interface to a file. It is recommended that the parameter file has the extension
“.par”, and should be saved outside of the SGeMS project folder.

5. Parameters → Clear All Clear all parameters entered in the current inter-
face.

1 Chapter 10 explains how to launch the algorithms without going through the graphical interface

101

102 Common parameter input interfaces

1

2

3 4 5

6

Figure 6.1 Algorithm panel

6. Run Algorithm Run the selected algorithm with the entered parameters.

6.2 Selecting a grid and property

Selecting a property is done in all algorithm user interfaces for tasks such as, but
not limited to, choosing the conditioning data or a training image. It is done through
the property selector interface, see Fig. 6.2. That selector is linked to a grid chooser:
once a grid is chosen, a list of all the properties belonging to the grid is displayed
and the user can select the appropriate property.

6.3 Selecting multiple properties 103

1

2

Figure 6.2 Single property selection widget

Parameters description

1. Grid Name Select an object from the list of all available objects currently
loaded in SGeMS. The object can either be a Cartesian grid or a point-set.
Only one object can be selected.

2. Property Name Select a property from the property list of the selected
object. Only one property can be highlighted and selected.

6.3 Selecting multiple properties

The selection of multiple properties is done with the multiple property selector,
see Fig 6.3, which also allows to order the selected properties. Ordering properties
is often necessary, for instance when properties are associated with an ordered set
of thresholds or categories. In that case, the first property must relate to the first
category, the second property to the second category and so on.

Parameters description

1. Selected Properties The selected properties will appear in this window.
2. Choose Properties Button to select the properties. A selection window will

pop up, as shown on the right hand side of Fig. 6.3.

1

2

3 4 5

6

Figure 6.3 Multiple properties selection interface

104 Common parameter input interfaces

3. Available Properties List all the available properties in the current working
object. Properties are selected by first highlighting them (multiple properties
can be highlighted by pressing Ctrl or Shift) then clicking the right arrow
button, see item 4.

4. Properties selector Use arrows to move properties back and forth between
the available property (item 3) and the selected property window (see hereafter
item 5). Only highlighted properties are transferred.

5. Selected Properties List of currently selected properties. Those properties
can be unselected with the left arrow in item 4.

6. Properties ordering Order the selected properties. The top property is the
first one and the bottom property is the last one. To change the order, highlight
the property first, then use the up or down arrows to correct the sequence.

6.4 Search neighborhood

Figure 6.4 shows the search neighborhood interface, which parametrizes an ellip-
soid by its maximum, medium and minimum axes. These axes are positioned in
space through three angles, see Section 2.5.

Parameters description

1. Ranges Maximum, medium and minimum ranges of the search ellipsoid.
2. Angles Rotation angles for anisotropic ellipsoid.

6.5 Variogram

The variogram interface is used in all variogram-based algorithms in SGeMS, see
Fig. 6.5. This interface allows the specification of variograms with nested struc-
tures. Each nested structure is independently parametrized by a variogram type,
a contribution, and an anisotropy. Any variogram model built from the variogram
interface is guaranteed to be admissible; however, note that the Gaussian model is
inconsistent with indicator variables (Armstrong et al., 2003).

1

2

Figure 6.4 Search ellipsoid interface

6.7 Line entry 105

1

2

3

4

5

6

Figure 6.5 Variogram interface

Parameters description

1. Load existing model Initialize the variogram from a saved variogram file.
2. Nugget effect Value for the nugget effect.
3. Nb of structures Number of nested structures, excluding the nugget effect.

For n structures, the following items 4 to 6 will be repeated n times.
4. Contribution Sill for the current structure.
5. Type Type of variogram for the selected structure (spherical, exponential or

Gaussian).
6. Anisotropy Maximum, medium and minimum ranges and rotation angles. In

2D, the dip and rake rotations should be 0 and the minimum range must be less
than the medium range.

6.6 Kriging

The selection of the kriging type is done with a special interface. The available
kriging types are simple kriging (SK), ordinary kriging (OK), kriging with a trend
(KT) and kriging with a local varying mean (LVM). Only OK does not require extra
parameters; SK requires a mean, KT requires the components of the polynomial
trend (Section 3.6.2) and LVM requires the property within which the local means
are stored.

6.7 Line entry

The line entry interface is often used either to enter a name, for instance the name
of a new property to be created, or to enter a series of values such a thresholds. Note

106 Common parameter input interfaces

that any numerical series must be separated by spaces, not commas or semicolons.
The entry is case sensitive.

6.8 Non-parametric distribution

In SGeMS a non-parametric cumulative distribution function, cdf F(z), is deter-
mined from a set of threshold values z1 ≤ · · · ≤ zL which can either be read
from a file or from a property. F(z) varies by equal increment 1/(L + 1) with:
F(z1) = 1

L+1 and F(zL) = L
L+1 . The tails of the distribution are obtained by

extrapolating to minimum and maximum values, possibly less than z1 and greater
than zL respectively.

The lower tail extrapolation function provides the shape of the distribution
between the minimum zmin and the first threshold z1. The options for the lower
tail are as follows.

• Z is bounded: F(zmin) = 0. The lower tail of F is then modeled with a power
model:

F(z1) − F(z)

F(z1)
=

(z1 − z

z1 − zmin

)ω

∀z ∈ (zmin, z1). (6.1)

Parameter ω controls the decrease of the function, with the constraint ω ≥ 1.
The greater ω the less likely are low values close to zmin. For ω = 1, all values
between zmin and z1 are equi-probable.

• Z is not bounded: the lower tail is modeled with an exponential function:

F(z) = F(z1) exp
(− (z − z1)

2
) ∀z < z1. (6.2)

The options for the upper tail extrapolation function are similar but applied to
the interval (zL , zmax).

• Z is bounded: F(zmax) = 1. The upper tail of F is then modeled with a power
model:

F(z) − F(zL)

1 − F(zL)
=

(z − zL

zmax − zL

)ω

∀z ∈ (zL, zmax). (6.3)

Parameter ω controls the decrease of the function, with the constraint ω ∈ [0, 1].
The lower the ω value the less likely are extreme values close to zmax. For ω = 1,
all values between zL and zmax are equi-probable.

• Z is not bounded: the upper tail is modeled by an hyperbolic model:

1 − F(z)

1 − F(zL)
=

(
zL

z

)ω

∀z > zL, ω ≥ 1. (6.4)

6.8 Non-parametric distribution 107

All L − 1 intermediary intervals [zi , zi+1] for i = 1, ..., L − 1 are interpolated
linearly, corresponding to a power model with ω = 1.

Note: when zmin and zmax values are set to z1 and zL , there is no need for tail
extrapolation.

Tie breaking

SGeMS allows to randomly break ties within a non-parametric distribution zi , i =
1, ..., L . Consider the case where n of the L values are identical: zi = zi+1 =
· · · = zi+n , i + n < L . Instead of assigning the same cdf value of F(zi+n) to the n
data zi , ..., zi+n , the cdf values F(zi), ..., F(zi+n) are randomly assigned the values
i/(L + 1), ..., (i + n)/(L + 1). This is analogous of adding a very small noise to
each tie value.

Parameters description

The non-parametric distribution interface is shown in Fig. 6.6, and the parameters
are described below.

1. Reference distribution Read the reference distribution data either from a
data file [ref on file] or from a grid [ref on grid].

2. Break ties [break ties] Randomly break tied values when assigning their
corresponding cdf values. There will be as many different cdf values as there
are distribution values.

1

2

3

4

5

Figure 6.6 Interface for non-parametric distribution

108 Common parameter input interfaces

3. Source for reference distribution If [ref on grid] is selected, the distri-
bution values are recorded in a currently loaded SGeMS property. [grid]

and [property] contain the values for the non-parametric distributions. If
[ref on file] is selected, the input data file containing the reference distri-
bution is entered in [filename]. The reference distribution must be given in
one column without header with numbers only.

4. Lower Tail Extrapolation Parametrization of the lower tail. The type of
extrapolation function is selected with [LTI function]. If the power model is
selected, the minimum value zmin [LTI min] and the parameter ω [LTI omega]

must be specified. Note that the minimum [LTI min] must be less than or
equal to the minimum datum value as entered in the reference distribution,
and the power ω [LTI omega] must be greater or equal to 1. The exponential
model does not require any parameter. No parameters are required when no
extrapolation is required.

5. Upper Tail Extrapolation Parametrization of the upper tail. The type of
extrapolation function is selected with [UTI function]. If the power model is
selected, the maximum value zmax [UTI max] and the parameter ω [UTI omega]

must be specified. Note that the maximum [UTI max] must be greater than or
equal to the maximum datum value as entered in the reference distribution, and
the power ω [UTI omega] must be less than or equal to 1. The hyperbolic model
only requires parameter ω [UTI omega] when the upper tail is unbounded. No
parameters are required when no extrapolation is required.

6.9 Errors in parameters

When SGeMS detects erroneous input parameters, it aborts the execution of the
algorithm and highlights in red the offending parameters in the algorithm interface.
Leave the mouse pointer over the highlighted fields to get a description of the error,
or alternatively, select the question mark cursor (Help → What’s this or Shift-F1)
and click on the highlighted fields.

7

Estimation algorithms

This chapter presents the SGeMS collection of estimation algorithms related to the
kriging estimation formalism. First the algorithm KRIGING is presented. It per-
forms estimation of a single variable either by simple kriging, ordinary kriging,
kriging with a local varying mean (LVM) or kriging with a trend. KRIGING also
allows the possibility to estimate block values from point data. Next, the COKRIG-
ING algorithm is presented. The information carried by a secondary variable can
be integrated with a Markov Model 1 or 2 (MM1 or MM2) or with a linear model
of coregionalization (LMC). The third estimation algorithm is the non-parametric
INDICATOR KRIGING (IK), which consists of simple kriging applied to binary
indicator data. The last estimation algorithm is BKRIG, kriging with linear average
variable, which allows to estimate property with point and/or block support data.

All these estimation algorithms require a search neighborhood within which to
select the relevant neighboring data. The estimation procedure is only carried for-
ward if a minimum number of conditioning data is found. Otherwise, the central
node is left not informed and a warning message is issued. In such case the user
could increase the search neighborhood to allow more data to be considered.

7.1 KRIGING: univariate kriging

Kriging is a generalized regression method that provides the best estimate in the
least square sense, see Section 3.6. SGeMS can build and solve four types of
kriging systems depending on the stationarity assumption about the mean of the
random function model.

Simple kriging (SK) The mean of the domain is assumed constant and known.
Ordinary kriging (OK) The mean inside each estimation neighborhood is

unknown but constant; it is evaluated by the OK algorithm from the neigh-
borhood data.

109

110 Estimation algorithms

Kriging with a trend (KT) The mean follows a functional trend m(u) =
f (x, y, z). SGeMS allows a polynomial trend, either linear or quadratic in
any of the three coordinates x, y, z.

Kriging with a local varying mean (LVM) The mean varies from location to
location and is given as a secondary data.

The kriging algorithm is given in Algorithm 7.1.

Algorithm 7.1 General kriging

1: for Each location u in the grid do
2: Get the conditioning data n(u)

3: if n(u) is large enough then
4: Build the kriging system from the n(u) neighboring data and solve it
5: Compute the kriging estimate and the kriging variance for location u
6: else
7: Set node as uninformed
8: end if
9: end for

For block kriging, only the SK and OK options are available. The regularized
variogram between point and block is internally computed by discretizing the block
into a user-defined number of points in the x, y, and z directions. For instance,
the average point-support variogram between a point u and the discretizing points
inside a block V (u), see Section 3.6.3 and Fig. 7.1, is approximated with:

γV (u, V (u)) = 1

M

M∑
u′=1

γ (u, u′),

where M is the number of points discretizing the block V (u).

Point support
conditioning
data location

Block discrete locations

Figure 7.1 Variogram averaging procedure used for block kriging. The vari-
ogram value between the point support conditioning data and the unknown block
value is the average variogram between the conditioning data and all the points
discretizing the block

7.1 KRIGING: univariate kriging 111

Parameters description

The KRIGING algorithm is activated from Estimation → kriging in the algorithm
panel. The KRIGING interface contains two pages: “General and Data” and “Var-
iogram” (see Fig. 7.2). The text inside “[]” is the corresponding keyword in the
KRIGING parameter file.

1. Grid Name [Grid Name] Name of the estimation grid.
2. New Property Name [Property Name] Name of the kriging output. A sec-

ond property with the suffix krig var is also created to store the kriging
variance.

3. Kriging Type [Kriging Type] Select the type of kriging system to be solved
at each node.

4. Block kriging option [do block kriging] If [do block kriging] is
selected then the X, Y and Z block discritization is given in [npoints X],
[npoints Y] and [npoints Z]. When the block kriging option is selected, the
conditioning data must be given on a point set. Note that the LVM and KT
options are not available for block kriging.

10

2

3

4

5

6

7 8

9

1

Figure 7.2 User interface for KRIGING

112 Estimation algorithms

5. Hard Data—Object [Hard Data.grid] Name of the grid containing the
conditioning data.

6. Hard Data—Property [Hard Data.property] Property for the condition-
ing data.

7. Min Conditioning data [Min Conditioning Data] Minimum number of
data to be retained in the search neighborhood.

8. Max Conditioning data [Max Conditioning Data] Maximum number of
data to be retained in the search neighborhood.

9. Search Ellipsoid Geometry [Search Ellipsoid] Parametrization of the
search ellipsoid, see Section 6.4.

10. Variogram [Variogram] Parametrization of the variogram, see Section 6.5.

Example

Ordinary kriging is performed on the Ely1 data set (described in Section 4.1.1)
using the 50 hard data; the results are shown in Fig. 7.3 along with the correspond-
ing ordinary kriging variance. The search neighborhood is isotropic with radius
120, the neighborhood must contain at least 5 data but no more than 25. The model
variogram is

γ (hx , hy) = 1.2Sph

⎛⎝√(
hx

35

)2

+
(

hy

45

)2
⎞⎠ + 0.2Sph

⎛⎝√(
hx

35

)2

+
(

hy

100000

)2
⎞⎠ ,

where the second structure models a zonal anisotropy (Isaaks and Srivastava, 1989;
Goovaerts, 1997, p.93). Note the smoothness of the kriging map.

(a) OK estimate

3 4 5 6 0 0.375 0.75 1.125 1.57

(b) OK variance

Figure 7.3 Kriging estimate and variance with ordinary kriging

7.2 INDICATOR KRIGING 113

7.2 INDICATOR KRIGING

INDICATOR KRIGING is a non-parametric estimation algorithm used to estimate
the conditional cumulative distribution function at any location given neighboring
conditioning data. This algorithm can be used with both categorical and continuous
variables, see Section 3.6 for a brief recall of the theory of indicator kriging. Indi-
cator kriging does not guarantee that the resulting distributions are valid, i.e. that
the probabilities monotonically increase and are bound by 0 and 1 for the continu-
ous case, or that they are all positive summing to 1 for the categorical case. When
those requirements are not met, an order correction is performed by the algorithm
(Deutsch and Journel, 1998, p.81).

Continuous variable

Continuous indicator variables are defined as:

i(u, zk) =
{

1 if z(u)≤zk

0 otherwise.

The aim of indicator kriging is to estimate the probability of Z(u) being less than
threshold value zk , conditional to the data (n) retained:

I ∗(u, zk) = E∗(I (u, zk) | (n))

= Prob∗(Z(u) < zk | (n)). (7.1)

Estimating I ∗(u, zk) for different cutoffs zk , k =1,. . . ,K , yields a discrete esti-
mate of the conditional cumulative distribution function (ccdf) of Z(u) at threshold
values z1, . . . , zK .

The estimated value i∗(u; zk) at location u, is seen as an estimate of
Prob∗ (Z(u) ≤ zk |(n)) (Goovaerts, 1997, p.293). The complete ccdf F(z|(n)) is
then reconstituted and any conditional statistics can be retrieved.

Algorithm INDICATOR KRIGING estimates the conditional probabilities
i∗(u; zk) by solving a simple kriging system, hence assuming that the marginal
probabilities E{I (u, zk)} are known and constant (independent of u). No ordinary
indicator kriging option is available in this initial version of SGeMS. Two types
of regionalization models are considered for indicator kriging. The full IK option
requires a variogram model for each threshold, see Algorithm 7.2. The median
IK (Goovaerts, 1997, p.304) option only requires the variogram model for the
median threshold, all other indicator variograms are then assumed proportional
to that single model, see Algorithm 7.3.

Coding information as indicator values

Consider a continuous variable Z(u) and a discretization of its range by the K
threshold values z1, . . . , zK .

114 Estimation algorithms

Algorithm 7.2 Full indicator kriging

1: for Each location u in the grid do
2: for Each category k do
3: Get the conditioning data n
4: if n is large enough then
5: Solve simple indicator kriging system
6: Compute the kriging estimate i∗

k (u)

7: else
8: Set node as un-informed, move to the next location
9: end if

10: end for
11: Correct FZ (u) for order relation violations
12: end for

Algorithm 7.3 Median indicator kriging

1: for Each location u in the grid do
2: Get the conditioning data n
3: if n is large enough then
4: Solve simple indicator kriging system and store the vector of kriging

weights
5: else
6: Set node as uninformed, move to the next location
7: end if
8: for Each category k do
9: Compute kriging estimate i∗

k (u) with the kriging weights found in step 4
10: end for
11: Correct FZ (u) for order violations
12: end for

Different types of data can be coded into a vector of K indicator values I(u) =
[i(u; z1), . . . , i(u; zK)].

Hard data

The value of Z at a given location uα is known, equal to z(uα) with no uncertainty.
The corresponding K indicator values are all valued 0 or 1:

i(uα; zk) =
{

1 if z(uα) ≤ zk

0 otherwise
k = 1, . . . , K .

7.2 INDICATOR KRIGING 115

Example If there are K = 5 threshold values: z1 = 1, z2 = 2, z3 = 3, z4 =
4, z5 = 5, then a hard datum value z = 3.7 would be coded as the following vector
of 5 indicator data:

I =

⎡⎢⎢⎢⎢⎣
0
0
0
1
1

⎤⎥⎥⎥⎥⎦.

Inequality data

The datum value z(uα) is known only to lie within an interval, e.g. z(uα) ∈ [a, b],
or z(uα) ∈]a, +∞[. The indicator data vector I (uα) from the information z(uα) ∈
[a, b[is:

i(uα; zk) =

⎧⎪⎨⎪⎩
0 if zk < a

missing if zk ∈ [a, b[

1 if zk ≥ b

k = 1, . . . , K .

Example If K = 5, with z1 = 1, z2 = 2, z3 = 3, z4 = 4, z5 = 5, then the
interval datum [2.1, 4.9] is coded as:

I =

⎡⎢⎢⎢⎢⎣
0
0
?
?
1

⎤⎥⎥⎥⎥⎦
where the question mark ? denotes an undefined value (missing values are rep-
resented by integer −9966699 in SGeMS) which would have to be estimated by
kriging. See Section 2.2.7 on how to enter missing values in SGeMS.

Categorical variable

INDICATOR KRIGING can be applied to categorical variables, i.e. variables that
take a finite number K of discrete values (also called classes or categories): z(u) ∈
{0, ..., K − 1}. The indicator variable for class k is defined as:

I (u, k) =
{

1 if Z(u) = k
0 otherwise

and the probability I ∗(u, k) for Z(u) belonging to class k is estimated by simple
kriging:

I ∗(u, k) − E{I (u, k)} =
n∑

α=1

λα(u)
(

I (uα, k) − E{I (uα, k)}
)

116 Estimation algorithms

where E{I (u, k)} is the indicator mean (marginal probability) for class k.
In the case of categorical variables, the estimated probabilities must all be in

[0, 1] and verify:

K∑
k=1

I ∗(u; k) = 1. (7.2)

If not, they are corrected as follows:

1. If I ∗(u, k) /∈ [0, 1] reset it to the closest bound. If all the probability values are
less than or equal to 0, no correction is made and a warning is issued.

2. Standardize the values so that they sum-up to 1:

I ∗
corrected(u, k) = I ∗(u, k)∑K

i=1 I ∗(u, i)
.

Parameters description

The INDICATOR KRIGING algorithm is activated from Estimation → Indicator
Kriging in the algorithm panel. The INDICATOR KRIGING interface contains
three pages: “General”, “Data” and “Variogram” (see Fig. 7.4). The text inside
“[]” is the corresponding keyword in the INDICATOR KRIGING parameter file.

1. Estimation Grid Name [Grid Name] Name of the estimation grid.
2. Property Name Prefix [Property Name] Prefix for the estimation output.

The suffix real# is added for each indicator.
3. # of indicators [Nb Indicators] Number of indicators to be estimated.

10

11

121

2

3
4

5

6

7

8

9

Figure 7.4 User interface for INDICATOR KRIGING

7.2 INDICATOR KRIGING 117

4. Categorical variable [Categorical Variable Flag] Indicates if the data
are categorical or not.

5. Marginal probabilities [Marginal Probabilities]
If continuous Probability to be below the thresholds. There must be

[Nb Indicators] entries monotonically increasing.
If categorical Proportion for each category. There must be [Nb Indicators]

entries adding to 1. The first entry corresponds to category coded 0, the
second to category coded 1, ...

6. Indicator kriging type If Median IK [Median Ik Flag] is selected, the
program uses median indicator kriging to estimate the ccdf. Otherwise, if
Full IK [Full Ik Flag] is selected, a different IK system is solved for each
threshold/class.

7. Hard Data Grid [Hard Data Grid] Grid containing the conditioning hard
data.

8. Hard Data Indicators Properties [Hard Data Property] Conditioning pri-
mary data for the simulation. There must be [Nb Indicators] properties
selected, the first one being for class 0, the second for class 1, and so on. If
Full IK [Full Ik Flag] is selected, a location may not be informed for all
thresholds.

9. Min Conditioning data [Min Conditioning Data] Minimum number of
data to be retained in the search neighborhood.

10. Max Conditioning data [Max Conditioning Data] Maximum number of
data to be retained in the search neighborhood.

11. Search Ellipsoid Geometry [Search Ellipsoid] Parametrization of the
search ellipsoid, see Section 6.4.

12. Variogram [Variogram] Parametrization of the indicator variograms, see
Section 6.5. Only one variogram is necessary if Median IK [Median Ik Flag]

is selected. Otherwise there are [Nb Indicators] indicator variograms.

Example

The INDICATOR KRIGING algorithm is run on the point-set presented in Fig. 4.1a.
Probabilities of having a value below 4, 5.5 and 7 are computed with a median
IK regionalization. The resulting conditional probabilities (ccdf) for these three
thresholds are: 0.15, 0.5 and 0.88. The estimated probabilities for each threshold
are shown in Fig. 7.5. The variogram model for the median indicator is:

γ (hx , hy) = 0.07Sph

⎛⎝√(
hx

10

)2

+
(

hy

15

)2
⎞⎠+0.14Sph

⎛⎝√(
hx

40

)2

+
(

hy

75

)2
⎞⎠ .

118 Estimation algorithms

(a) Estimated probability to be
 less than 4

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

(b) Estimated probability to be
 less than 5.5

(c) Estimated probability to be
 less than 7

Figure 7.5 Median indicator kriging

(a) Estimated probability to be
 less than 4

(b) Estimated probability to be
 less than 5.5

(c) Estimated probability to be
 less than 7

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Figure 7.6 Median indicator kriging with inequality data

The search ellipsoid is of size 80 × 80 × 1, with a minimum of 5 and maximum of
25 conditioning data.

A set of 200 interval-type data is added to the data set, these interval data only
tell whether the z-values at these locations are above or below 5.5. The coding of
these inequality data is:

if z(u) < 5.5 then i(u) =
⎡⎣ ?

?
1

⎤⎦ ; if z(u) > 5.5 then i(u) =
⎡⎣ 0

0
?

⎤⎦ .

Figure 7.6 shows the resulting estimation maps for the same thresholds used
in Fig. 7.5. The inequality data mostly modify the probability map for the 5.5
threshold, their impact on the low and high threshold is not as strong.

7.3 COKRIGING: kriging with secondary data 119

7.3 COKRIGING: kriging with secondary data

The COKRIGING algorithm integrates the information carried by a secondary
variable related to the primary attribute being estimated. The kriging system of
equations is then extended to take into account that extra information. A coregion-
alization model must be provided to integrate secondary variables. SGeMS offers
three choices: the linear model of coregionalization (LMC), the Markov Model 1
(MM1) and the Markov Model 2 (MM2). The LMC accounts for all secondary
data within the search neighborhood while the Markov models only retain those
secondary data that are co-located with the primary data; see Section 3.6.4.

The LMC option can be used with either simple or ordinary cokriging. The
Markov models (MM1 or MM2) can only be solved with simple cokriging; using
ordinary cokriging would lead to ignoring the secondary variable since the sum of
weights for the secondary variable must be equal to zero (Goovaerts, 1997, p.236).

The detailed COKRIGING algorithm is presented in Algorithm 7.4.

Algorithm 7.4 COKRIGING

1: for Each location u in the grid do
2: Get the primary conditioning data n
3: Get the secondary conditioning data n′

4: if n is large enough then
5: Solve the cokriging system
6: Compute the cokriging estimate and cokriging variance
7: else
8: Set node as uninformed, move to the next location
9: end if

10: end for

Tip 1 Joint-estimation of several attributes
The SGeMS cokriging algorithm only allows for estimation of a primary
attribute conditional to primary data and data coming from a single secondary
attribute. There are applications where several (>2) correlated attributes need
to be jointly estimated. Such estimation can be performed in SGeMS by first
orthogonalizing all primary and secondary attributes into factors using some
type of principal components factorization (Vargas-Guzman and
Dimitrakopoulos, 2003), modeling the variogram for each of the factors
independently, performing kriging on each factor, then transforming them back
into estimates of the original attributes. With the embedded Python scripting
ability, all the previous steps can be performed within SGeMS (principal
component decomposition can be performed using the scipy Python library).

120 Estimation algorithms

Parameters description

The COKRIGING algorithm is activated from Estimation | cokriging in the Algo-
rithm Panel. The main COKRIGING interface contains three pages: “General”,
“Data” and “Variogram” (see Fig. 7.7). The text inside “[]” is the corresponding
keyword in the COKRIGING parameter file.

14

15

16

17

10

11

12

131

2

3

4

5

6

7

9

8

Figure 7.7 User interface for COKRIGING

7.3 COKRIGING: kriging with secondary data 121

1. Grid Name [Grid Name] Name of the estimation grid.
2. New Property Name [Property Name] Name of the cokriging output. A

second property with the suffix krig var is also created.
3. Kriging Type [Kriging Type] Select the type of kriging system to be solved

at each node.
4. SK mean of Z1 and Z2 [SK Means] Means of the primary and secondary

data. Only required if [Kriging Type] is set to simple kriging.
5. Cokriging Type [Cokriging Type] Model of coregionalization used to inte-

grate the secondary information. Note that MM1 and MM2 models cannot be
used with ordinary cokriging.

6. Primary Hard Data—Object [Hard Data.grid] Name of the grid contain-
ing the conditioning data.

7. Primary Hard Data—Property [Hard Data.property] Property for the
conditioning data.

8. Assign Hard Data to Grid [Assign Hard Data] If selected, the hard data
are copied on the estimation grid. The program does not proceed if the copying
fails. This option significantly increases execution speed.

9. Secondary Hard Data—Object [Hard Data.grid] Name of the grid con-
taining the secondary variable conditioning data.

10. Secondary Hard Data—Property [Hard Data.property] Property for the
conditioning data.

11. Search Ellipsoid for Primary Variable The minimum and maximum num-
ber of primary data to be retained in the search neighborhood are given in
[Min Conditioning Data] and [Max Conditioning Data]. The search ellip-
soid geometry is parametrized with [Search Ellipsoid 1], see Section 6.4.

12. Search Ellipsoid for Secondary Variable The minimum and maximum
number of secondary data to be retained in the search neighborhood are given
in [Min Conditioning Data 2] and [Max Conditioning Data 2]. The search
ellipsoid geometry is parametrized with [Search Ellipsoid 2]. These entries
are only required when [Cokriging Type] is set to Full Cokriging.

13. Variogram for primary variable [Variogram C11] Parametrization of the
variogram for the primary variable, see Section 6.5.

14. Cross-variogram between primary and secondary variables
[Variogram C12] Parametrization of the cross-variogram between
the primary and secondary variables. Required if Cokriging Option
[Cokriging Type] is set to Full Cokriging.

15. Variogram for secondary variable [Variogram C22] Parametrization of
the variogram of the secondary variable. Required if Cokriging Option
[Cokriging Type] is set to Full Cokriging.

16. MM1 parameters The coefficient of correlation between the primary
and secondary variables is entered in [Correl Z1Z2]. The variance of the

122 Estimation algorithms

(a) Kriging with a local varying mean

3 4 5 6 7 3 4 5 6 7

(b) Simple cokriging with MMI core-
 gionalization

Figure 7.8 Kriging with additional information: (a) the local mean and (b) a
correlated secondary attribute

secondary attribute is given by [Var Z2] Only required if Cokriging Option
[Cokriging Type] is set to MM1.

17. MM2 parameters The coefficient of correlation between the primary and
secondary variables is entered in [MM2 Correl Z1Z2]. The variogram of the sec-
ondary attribute is given by [MM2 Variogram C22]. Only required if Cokriging
Option [Cokriging Type] is set to MM2.

Example

Simple cokriging with the MM1 model is used to estimate the Ely1 point-set with
the exhaustive secondary variable data shown in Fig. 4.1. The parameters related to
the primary attribute (minimum and maximum conditioning data, search neighbor-
hood and variogram) are the same as with the kriging example shown in Fig. 7.3.
The MM1 model is parametrized with a coefficient of correlation 0.71 between
primary and secondary variables; the variance of the secondary variable is set at
1.15. Another approach to integrating the secondary variable consists in model-
ing the local mean of the primary attribute by a linear regression of the secondary
variable. This local mean is then input to a kriging with local varying mean to esti-
mate the primary variable. Figure 7.8 shows the results of the cokriging and LVM
approaches, all common parameters between the two algorithms being identical.

7.4 BKRIG: block kriging estimation

BKRIG is an algorithm for kriging estimation conditioned to both point and block
support data (Goovaerts, 1997, p.152; Liu, 2007). The theory of kriging with linear

7.4 BKRIG: block kriging estimation 123

averaged (block) data is recalled in Section 3.6.3. In this section we present codes
that deal with some implementation issues specific to using block data.

Data error incorporation

In practice, observed data D (whether point data DP or block average data DB)
are often associated with some noise or error, coming from measurement and sub-
jective data interpretation among others. Since interpreted block average data tend
to be more affected by error, only errors associated with block data are considered
here. Thus:

DP(uα) = Z(uα) (7.3)

DB(vα) = B(vα) + R(vα) (7.4)

where Z(uα) is the point data value at location uα. B(vα) is the “true” block data
value at block location vα and R(vα) is the error term associated with it.

The error R(vα) may depend on the signal B(vα), an heteroscedastic situa-
tion, and it may also correlate from one block to another (Koch and Link, 1970;
Bourgault, 1994). Here the block errors are assumed homoscedastic and not
cross-correlated:

R(vα)⊥B(vβ), ∀vα, vβ (7.5)

R(vα)⊥R(vβ), ∀vα, vβ. (7.6)

Also, assume the following properties of the block data errors (Journel and
Huijbregts, 1978; Liu and Journel, 2005; Hansen et al., 2006):

• zero mean: E{R(vα)} = 0, ∀vα,
• known variance: Var{R(vα)} = σ 2

R(vα), which could be obtained from a prior
calibration; note that this variance can vary from block to block,

• hence the error covariance is a known diagonal covariance matrix:

CR = [Cov{R(vα), R(uβ)}] =
{

[σ 2
R(vα)] if vα = vβ

[0] if vα �= vβ .
(7.7)

If the point data are assumed error-free, the three sub-matrices CP P , C̄P B and
C̄t

P B in Eq. (3.30) are unchanged. Only errors associated with block data are
considered, the block-to-block covariance in the matrix K of system (3.30) is then
written:

C̄Bα Bβ
= [

Cov{DB(vα), DB(vβ)}]
= [

C̄B(vα, vβ) + 2C̄B R(vα, vβ) + CR(vα, vβ)
]
. (7.8)

124 Estimation algorithms

If the data errors are assumed independent of signal (Eq. (7.5)) and uncorrelated
(Eq. (7.6)), and if the errors are assumed to have known variance σ 2

R(vα) (see
Eq. (7.7)), expression (7.8) then becomes:

C̄Bα Bβ
=

{ [
C̄B(0) + σ 2

R(vα)
]

if vα = vβ[
C̄B(vα, vβ)

]
if vα �= vβ.

(7.9)

As for the covariance vector k in Eq. (3.30), it is not affected by the error variance
since the errors are assumed independent of the signals.

Therefore, the error impact can be incorporated into the kriging system by
adding the error variances, σ 2

R(vα), as additional diagonal terms in the data-to-data
covariance matrix on the left-hand side of the kriging system (3.30).

Point and block covariance calculation

Four types of covariances are needed in kriging (and simulation) algorithms
involving block data (such as BKRIG, BSSIM in Section 8.1.7 and BESIM in
Section 8.1.8): the point-to-point covariance CP P ′ , the point-to-block covariance
C̄P B , the block-to-point covariance C̄B P and the block-to-block covariance C̄B B′ ,
see kriging system Eq. (3.30). The point covariance CP P ′ is obtained through a
precomputed covariance look-up table; the block average covariances (C̄P B , C̄B P

and C̄B B′) are computed through either a traditional integration method or an
FFT-integration method.

Point covariance look-up table In algorithms such as KRIGING (Section 7.1), the
covariance between any two points is calculated through the specified analytical
variogram or covariance model. Instead of repeatedly calculating such covari-
ance values, calculations can be done only once and the results stored in a point
covariance look-up table. This point covariance look-up table is implemented as
a covariance map (Goovaerts, 1997, p.99; Deutsch and Journel, 1998, p.36). For
example, for a 2D field of size M × N , all point covariances possibly used are
contained in a covariance map of size 2M × 2N with at its center the variance
value C(0). This covariance map is computed only once and stored. Look-up is
performed whenever a covariance value is needed.

Two approaches for block covariance calculation A fast yet accurate block aver-
age covariance calculation is critical for any geostatistical algorithm involving
block data. Two different approaches are proposed: the traditional integration
method and an FFT-integration hybrid method.

In the traditional method, the block average covariance is calculated by aver-
aging the point covariances. In its discrete form, this is written as (Journel and
Huijbregts, 1978; Goovaerts, 1997, p.156):

7.4 BKRIG: block kriging estimation 125

C̄P B = 1

n

n∑
i=1

CP Pi

C̄B B′ = 1

nn′

n∑
i=1

n′∑
j=1

CPi P ′
j

(7.10)

where C̄P B is the covariance between point P and block B, C̄B B′ is the average
covariance between block B and B ′. Pi is one of the n point nodes discretizing
block B and P ′

j is one of the n′ point nodes discretizing block B ′. With a large
number of block data and with dense block discretization, such direct calculation
of block covariance would be very CPU expensive. Test results show that the block
covariance calculation could account for more than 90% of the total simulation
time. However, if there is a small number of blocks, this traditional integration
approach is acceptable.

The FFT-integration hybrid method is a much more efficient algorithm. The
basic idea of this algorithm is as follows. A symmetric circulant covariance
matrix with circulant block sub-matrices is constructed from the covariance model
and matrix. This circulant block covariance has many interesting features. Most
notably, the whole covariance matrix can be fully retrieved by the single first row
of block sub-matrices, entailing low memory cost; the multiplication with other
matrix or vector can be achieved by a spectral convolution approach, entailing fast
computations. Similarly, the block-to-point covariance map can be obtained by fast
matrix multiplication via Fourier transform. Next, a classical averaging is applied
to calculate the block-to-block covariances. See more details about this method in
Dietrich and Newsam (1993); Nowak et al. (2003); Kyriakidis et al. (2005); Liu
et al. (2006a). Availability of a fast FFT program is critical: the program FFTW,
developed by Frigo and Johnson (2005), is used.

The basic implementation work-flow for computing the block-to-block covari-
ance using this hybrid method is given in Algorithm 7.5.

Block data input

All block information is imported from a file. The file format is shown in Fig. 7.9.
The first line is a description line giving any general information about block data.
The second line is the number of blocks. Information related to each block follows.
For each block section, the first line is the block name, followed by the block
average value and the block error variance, and finally the coordinates of the points
discretizing the block.

126 Estimation algorithms

Algorithm 7.5 Block covariance calculation using FFT-integration
hybrid method

1: Generate the point covariance map CPα Pβ
with size double that of the field size

in all x ,y and z directions
2: Shift diagonally the quadrants of the extended covariance map
3: Extend the geometry of block #1 B1 to the same size as the extended covariance

map by zero-padding
4: Perform FFT on these two extended maps and multiply the two FFT results
5: Perform inverse FFT on the multiplication result to get the covariance map

C̄B1 Pβ
between B1 and any point Pβ within the field

6: Average the previous block #1-to-point covariance values over the location of
block #2 B2. This gives the covariance C̄B1 B2 between B1 and B2

20

block #1
0.3
0.05
0.5 0.5 0.5
1.0 0.5 0.5
1.5 0.5 0.5
2.0 0.5 0.5
…

block # 2
0.25
0.06
0.5 0.5 0.5
0.5 1.0 0.5
0.5 1.5 0.5
0.5 2.0 0.5
…
…

Title lineAverage property

of block data

Block #1 name
Block #1 average value

Block #1 geometry

Second block
information

Block #1 error (noise)

Figure 7.9 Block data file format

Block data reproduction

Per kriging theory, all point and block data are reproduced exactly if the data search
neighborhood includes them all. In practice, a larger search neighborhood and a
longer correlation range improve data reproduction.

Kriging type

Two types of kriging are accepted in BKRIG: simple kriging (SK) and ordinary
kriging (OK). The algorithm of BKRIG is given in Algorithm 7.6.

7.4 BKRIG: block kriging estimation 127

Algorithm 7.6 Block kriging estimation

1: Generate and store the point-to-point covariance look-up table. If the FFT-
integration hybrid block covariance calculation method is used, compute and
store the block-to-point covariance map(s)

2: for Each location u do
3: Search the conditioning data consisting of the closest original point data and

block data
4: if the number of data (point or block) is large enough then
5: Compute or retrieve the needed local block-to-block, block-to-point,

point-to-block and point-to-point covariance
6: Build and solve the mixed-scale kriging system
7: Compute kriging mean and variance for location u
8: else
9: Set node as uninformed and issue warning message

10: end if
11: end for

Parameters description

The BKRIG algorithm is activated from Estimation | bkrig in the algorithm panel.
The main BKRIG interface contains three pages: “General”, “Data” and “Vari-
ogram” (see Fig. 7.10). The text inside “[]” is the corresponding keyword in the
BKRIG parameter file.

1. Grid Name [Grid Name] Name of the estimation grid.
2. Property Name Prefix [Property Name] Prefix for the estimation output.
3. Kriging Type [Kriging Type] Select the type of Kriging system to be

solved at each node: Simple Kriging (SK) or Ordinary Kriging (OK).
4. SK mean [SK mean] Mean of the attribute. Only required if Kriging Type

[Kriging Type] is set to Simple Kriging (SK).
5. Block Covariance Computation Approach [Block Cov Approach] Select

the method of computing block covariance: FFT with Covariance-Table or
Integration with Covariance-Table.

6. Check block data reproduction [Check Block Reproduction] If checked,
the estimated block average values are calculated and the relative errors
compared to the input block data are computed for each realization. The
results are shown on the Commands Panel, which is activated from
View → Commands Panel.

128 Estimation algorithms

23

20

21

22

10 11

12

13 14

15

16

17

18

19

1

2

3

4

5

6

7

8

9

Figure 7.10 User interface for BKRIG

7. Hard Data | Object [Hard Data.grid] Name of the grid containing the con-
ditioning point data. If no point grid is selected, the estimation is performed
conditioned only to block data.

8. Hard Data | Property [Hard Data.property] Property for the point
data. Only required if a grid has been selected in Hard Data | Object
[Hard Data.grid].

9. Assign hard data to simulation grid [Assign Hard Data] If selected, the
hard data are relocated onto the estimation grid.

10. Min conditioning point data [Min Conditioning Data Point] Minimum
number of point data to be retained in the search neighborhood.

11. Max conditioning point data [Max Conditioning Data Point] Maximum
number of point data to be retained in the search neighborhood.

12. Search Ellipsoid for Point Support Data [Search Ellipsoid Point]
Parametrization of the search ellipsoid for point support data, see Section 6.4.

13. Min conditioning block data [Min Conditioning Data Block] Minimum
number of block data to be retained in the search neighborhood.

7.4 BKRIG: block kriging estimation 129

14. Max conditioning block data [Max Conditioning Data Block] Maximum
number of block data to be retained in the search neighborhood.

15. Block Data From Select where the block data are to be found. There are
two options: From File [Block From File] and From Point Set Object
[Block From Pset].

16. Block Data From File [Block Data File] Only activated if From File
[Block From File] is selected in Block Data From. The directory address of
the block data file should be specified. The block data file format is shown in
Fig. 7.9. If no block data file is entered, the estimation is performed using only
point data.

17. Block Data From Point Set Objects Only activated if From Point Set
Object [Block From Pset] is selected in Block Data From.

18. Number of blocks [Number of Blocks] Number of blocks entered from
point-set objects.

19. Input block average values [Block Average Values] Enter the input block
average value for each block. The sequence of block data should be the same as
that of the corresponding input point-set objects. The number of block average
values should be the same as the Number of blocks [Number of Blocks].

20. Consider block data error [Consider Block Error] If checked, the block
errors are considered.

21. Input block data errors [Block Error Variance] Only activated if Con-
sider block data error [Consider Block Error] is checked. Enter the block
error variance for each block. The sequence of block data should be the
same as that of the corresponding input point-set objects. The number of
error variances should be the same as the Number of blocks [Number of

Blocks].
22. Point set objects [Block Grid i] Enter the point-set block objects. This

allows users to conveniently use the pre-loaded point-set objects as the condi-
tioning blocks. No property is required to be associated with the input point-set
grids. The maximum number of grids entered in this way is 50. They have to
be loaded from a file if there are more than 50 blocks.

23. Variogram parameters for simulation [Variogram Cov] Parametrization
of the point-support variogram, see Section 6.5.

Examples

BKRIG is run for two 2D synthetic cases corresponding to tomography and down-
scaling applications. The reference model and input data for these two cases are
given in Fig. 7.11.

The reference field for the tomography case is discretized into 40×40 grid cells,
each cell of dimension 0.025 × 0.025. The reference background field has been

130 Estimation algorithms

(a) Reference (tomography)

4.5

4

3.5

2.5

3

2

4.5

4

3.5

2.5

3

2

4.5

4

3.5

2.5

3

2

4.5

5

4

3.5

2.5

3

2

4.5

5

4

3.5

2.5

3

2

4.5

5

4

3.5

2.5

3

2

3

(d) Reference (downscaling)

(b) Point data (tomography)

(e) Point data (downscaling)

(c) Block data (tomography)

(f) Block data (downscaling)

Figure 7.11 The reference field, the point and block data for the tomography and
the downscaling examples

(a) Estimation (tomography)

4

5 0.5

0.4

0.3

0.2

0.1

0

4.5

4

3.5

3

2.5

2

3.5

3

2.5

0.8

0.65

0.5

0.35

0.2

(c) Estimation (downscaling)

(b) Variance (tomography)

(d) Variance (downscaling)

Figure 7.12 Kriging estimation results from BKRIG

7.4 BKRIG: block kriging estimation 131

generated using sequential Gaussian simulation (Section 3.8.1) with the normal
score variogram model:

γ (hx , hy) = 0.1 + 0.9Sph

⎛⎝√(
hx

0.5

)2

+
(

hy

0.25

)2
⎞⎠ . (7.11)

A high value heterogeneous area is added in the center of the simulated field, see
Fig. 7.11a. The two columns of values at the left and right hand sides of the refer-
ence model are retained as conditioning point data, see Fig. 7.11b. The block data
are the 18 ray data, see their geometry in Fig. 7.11c. Each of the block datum value
is obtained by averaging point values over the ray path.

The reference field for the downscaling case study is discretized into 40 × 50
cells, each cell of dimension 0.025 × 0.02. The background property is generated
the same way as in the tomography case. Two high value heterogeneities are added
into that background field. Figure 7.11d gives the reference model. Again, the two
columns of values at the left and right hand sides of the reference model are retained
as conditioning point data, see Fig.7.11e. The block data are 10 coarse grid data
covering the entire field, see Fig.7.11f. Each of the block datum values is obtained
by averaging point values over the block.

Variogram model (Eq. (7.11)) is used for the BKRIG examples. The input SK
mean for the tomography case is 3.0 and that for the downscaling case is 2.7. The
minimum and maximum number of conditioning data are 0 and 12, respectively.

Figure 7.12a and Fig. 7.12c show the smooth kriging estimation maps using
both point and block data. The general patterns of the reference models are well
reflected, for example the locations of the high value heterogeneities. Figure 7.12b
gives the kriging variance for the tomography case. Low variances are found in
areas close to conditioning data. Figure 7.12d gives the kriging variance for the
downscaling case. In the middle area, there is less data constraint thus the variances
are high. The block data in both cases are well reproduced; the average absolute
errors are 1.8% and 0.5%, respectively.

8

Stochastic simulation algorithms

This chapter presents the SGeMS collection of stochastic simulation algorithms.
Section 8.1 presents the traditional variogram-based (two-point) algorithms,

SGSIM (sequential Gaussian simulation), SISIM (sequential indicator simulation),
COSGSIM (sequential Gaussian co-simulation), COSISIM (sequential indicator
co-simulation), DSSIM (direct sequential simulation), BSSIM (block sequen-
tial simulation) and BESIM (block error simulation). SGSIM, COSGSIM and
DSSIM are the choices for most continuous variables; SISIM and COSISIM are
designed for categorical variables; BSSIM and BESIM are developed for simulation
conditioning to block averaged data and point data.

Section 8.2 gives detailed descriptions of two multiple-point statistics (MPS)
algorithms: SNESIM (single normal equation simulation) and FILTERSIM (filter-
based simulation). SNESIM works best for categorical variables such as facies dis-
tributions. Two algorithms cover the FILTERSIM paradigm; FILTERSIM CONT
for continuous attributes and FILTERSIM CATE for categorical attributes. The
FILTERSIM framework is better suited for continuous variables but also gives good
results with categorical variables.

Each simulation algorithm presented in this chapter is demonstrated with an
example.

8.1 Variogram-based simulations

This section covers the variogram-based sequential simulation algorithms imple-
mented in SGeMS. Simulated realizations from any of these algorithms draw their
spatial patterns from input variogram models. Variogram-based algorithms should
preferably be used to simulate reasonably amorphous (high entropy) distributions.
Cases where variograms fail to model specific spatial patterns call for using the
multiple-point geostatistics algorithms described in the next section.

132

8.1 Variogram-based simulations 133

Variogram-based sequential simulations have been the most popular stochastic
simulation algorithms mostly due to their robustness and ease of conditioning, both
to hard and soft data. Moreover, they do not require rasterized (regular or Cartesian)
grids; they allow simulation on irregular grids such as point-sets.

SGeMS keeps this flexibility; all variogram-based simulation algorithms
described in this section work both on point-sets and on Cartesian grids. The con-
ditioning data may or may not be on the simulation grid. However, working on
point-set induces a performance penalty as the search for neighboring data is sig-
nificantly more costly than on a regular (Cartesian) grid. When the simulation grid
is Cartesian, all algorithms have the option to relocate the conditioning data to the
nearest grid node for increased execution speed. The re-allocation strategy is to
move each datum to the closest grid node. In case two data share the same closest
grid node, the further one is ignored.

This section presents first the simulation algorithms requiring a Gaussian
assumption: LU simulation LUSIM, sequential Gaussian simulation SGSIM and
sequential Gaussian co-simulation COSGSIM for integration of secondary infor-
mation through a coregionalization model. Next, direct sequential simulation
DSSIM is presented; DSSIM does not require any Gaussian assumption, thus works
on the original variable without any preliminary normal score transform. Next, the
two indicator simulation algorithms SISIM and COSISIM are documented. For con-
tinuous variables, indicator algorithms rely on the discretization of the cumulative
distribution function by a set of threshold values. At any location the probability
of not exceeding each threshold is estimated by indicator kriging, these probabil-
ities are then combined to construct the local conditional cumulative distribution
function (ccdf) from which a simulated value of the continuous variable is drawn.
Last, algorithms BESIM and BSSIM, which can be used to account for linear block
averages, are presented.

8.1.1 LUSIM: LU simulation

The LU simulation algorithm is a multi-Gaussian algorithm appropriate for small
data sets (Deutsch and Journel, 1998, p.146). LUSIM is an exact algorithm to
simulate a Gaussian random field; it performs a Cholesky decomposition of the
covariance matrix (Davis, 1987). The advantage is that this LU decomposition only
needs to be performed once, each additional realization is generated at the cost of
a mere matrix multiplication. The major drawback is that the LU decomposition,
even if done only once, is a very costly operation, hence should be restricted to
small fields and data sets (Dimitrakopoulos and Luo, 2004).

The LU simulation is the equivalent of the sequential Gaussian simulation
algorithm with simple kriging and with an infinite data search neighborhood

134 Stochastic simulation algorithms

(Alabert, 1987; Dimitrakopoulos and Luo, 2004); all original conditioning data
and previously simulated values are used in the kriging system at every node along
the simulation path. The LU simulation algorithm is detailed in Algorithm 8.1.

Algorithm 8.1 LU simulation

1: Transform the data into normal score space. Z(u) �→ Y (u)

2: Build the Covariance matrix
3: Perform LU decomposition of the covariance matrix using the Cholesky

decomposition
4: Multiply a vector of independent Gaussian random deviates with the result of

step 3
5: Back transform the Gaussian simulated field into the data space. Y (u) �→ Z(u)

6: Repeat from step 4 for another realization

Parameters description

The LUSIM algorithm is activated from Simulation → lusim in the Algorithm
Panel. The LUSIM interface contains three pages: “General”, “Data” and “Vari-
ogram” (see Fig. 8.1). The text inside “[]” is the corresponding keyword in the
LUSIM parameter file.

5

6

7

8

9

1

2

3

4

Figure 8.1 User interface for LUSIM

8.1 Variogram-based simulations 135

1. Simulation Grid Name [Grid Name] Name of the simulation grid.
2. Property Name Prefix [Property Name] Prefix for the simulation output.

The suffix real# is added for each realization.
3. # of realizations [Nb Realizations] Number of simulations to generate.
4. Seed [Seed] Seed for the random number generator (preferably a large odd

integer).
5. Hard Data | Object [Hard Data.grid] Name of the grid containing the

conditioning data. If no grid is selected, the realizations are unconditional.
6. Hard Data | Property [Hard Data.property] Property for the condition-

ing data. Only required if a grid has been selected in Hard Data | Object
[Hard Data.grid].

7. Assign hard data to simulation grid [Assign Hard Data] If selected, the
hard data are relocated to the simulation grid. The program does not proceed
if the assignment fails. This option significantly increases execution speed.

8. Target Histogram If used, the data are normal score transformed prior
to simulation and the simulated field is transformed back to the original
space. Use Target Histogram [Use Target Histogram] flag to use the nor-
mal score transform. The target histogram is parametrized by [nonParamCdf],
see Section 6.8.

9. Variogram [Variogram] Parametrization of the normal score variogram, see
Section 6.5.

8.1.2 SGSIM: sequential Gaussian simulation

The SGSIM algorithm uses the sequential simulation formalism to simulate a Gaus-
sian random function. Let Y (u) be a multivariate Gaussian random function with
zero mean, unit variance, and a given variogram model γ (h). Realizations of Y (u)

can be generated by Algorithm 8.2.

Algorithm 8.2 Sequential Gaussian simulation

1: Define a random path visiting each node of the grid
2: for Each node u along the path do
3: Get the conditioning data consisting of neighboring original hard data (n)

and previously simulated values
4: Estimate the local conditional cdf as a Gaussian distribution with mean given

by kriging and variance by the kriging variance
5: Draw a value from that Gaussian ccdf and add the simulated value to the data

set
6: end for
7: Repeat for another realization

136 Stochastic simulation algorithms

A non-Gaussian random function Z(u) must first be transformed into a Gaussian
random function Y (u); Z(u) �→ Y (u). If no analytical model is available, a normal
score transform should be applied. The simulated Gaussian values should then be
back transformed. Algorithm 8.2 then becomes Algorithm 8.3.

Algorithm 8.3 Sequential Gaussian simulation with normal score transform

1: Transform the data into normal score space. Z(u) �→ Y (u)

2: Perform Algorithm 8.2
3: Back transform the Gaussian simulated field into the data space. Y (u) �→ Z(u)

The algorithm calls for the variogram of the normal score not of the original data.
Only that normal score variogram is guaranteed to be reproduced within ergodic
fluctuations, not the original Z -value variogram. However, in most cases the back
transform does not adversely affect the reproduction of the Z -value variogram.
If required, the SGeMS implementation of SGSIM can automatically perform the
normal score transform of the original hard data and back-transform the simulated
realizations. The user must still independently perform the normal score transform
of the hard data with program TRANS, see Algorithm 9.1, in order to compute and
model the normal score variogram.

At each simulation grid node, to determine the Gaussian ccdf, the algorithm can
use either simple kriging, ordinary kriging, kriging with local mean, or kriging
with a trend. Theory guarantees variogram reproduction only when simple kriging
is used.

SGSIM with local varying mean

In many applications, a local varying mean zm(u) = E{Z(u)} may be available.
It is given in Z -unit, thus must be converted into the Gaussian space, such that
ym(u) = E{Y (u)}. Transforming zm(u) into ym(u) using the Z -marginal cdf FZ

and the rank preserving transform

ym(u) = G−1

(
FZ

(
zm(u)

))
would not, in all rigor, ensure that ym(u) = E{Y (u)}. Here G(·) is the standard
normal cdf and FZ (·) is the z-target histogram. A better alternative is to infer
the normal score varying mean ym(u) by some direct calibration of the secondary
information to the normal score transform y of the primary attribute z.

A note on Gaussian spatial law

Gaussian random functions have very specific and consequential spatial struc-
tures and distribution law. For example, median values are maximally correlated

8.1 Variogram-based simulations 137

in space, while extreme values are increasingly less correlated. That property is
known as the destructuration effect (Goovaerts, 1997, p.272). If the phenomenon
under study is known to have well correlated extreme values or high values cor-
related differently from low values, a Gaussian-related simulation algorithm is not
appropriate.

Also, for a given covariance/variogram model the Gaussian random function
model is that which maximizes spatial entropy, that is spatial disorder. Modeling
organized systems with low entropy requires much more than a variogram, hence
their simulation would call for multiple-point statistics beyond the 2-point statistics
of a variogram; see Section 3.9.

Parameters description

The SGSIM algorithm is activated from Simulation → sgsim in the algorithm
panel. The main SGSIM interface contains three pages: “General”, “Data” and
“Variogram” (see Fig. 8.2). The text inside “[]” is the corresponding keyword
in the SGSIM parameter file.

10

11

12

13

1

6

7

8

9

2

3

4

5

Figure 8.2 User interface for SGSIM

138 Stochastic simulation algorithms

1. Simulation Grid Name [Grid Name] Name of the simulation grid.
2. Property Name Prefix [Property Name] Prefix for the simulation output.

The suffix real# is added for each realization.
3. # of realizations [Nb Realizations] Number of simulations to generate.
4. Seed [Seed] Seed for the random number generator (preferably a large odd

integer).
5. Kriging Type [Kriging Type] Select the type of kriging system to be solved

at each node along the random path. The simple kriging (SK) mean is set to
zero, as befits a stationary standard Gaussian model.

6. Hard Data | Object [Hard Data.grid] Name of the grid containing the
conditioning data. If no grid is selected, the realizations are unconditional.

7. Hard Data | Property [Hard Data.property] Property for the condition-
ing data. Only required if a grid has been selected in Hard Data | Object
[Hard Data.grid].

8. Assign hard data to simulation grid [Assign Hard Data] If selected, the
hard data are relocated onto the simulation grid. The program does not proceed
if the relocation fails. This option significantly increases execution speed.

9. Max Conditioning data [Max Conditioning Data] Maximum number of
data to be retained in the search neighborhood.

10. Search Ellipsoid Geometry [Search Ellipsoid] Parametrization of the
search ellipsoid.

11. Use Target Histogram [Use Target Histogram] Flag to use the normal
score transform. If used, the data are normal score transformed prior to
simulation and the simulated field is transformed back to the original space.

12. Target Histogram [nonParamCdf] The parametrization of the target his-
togram (see Section 6.8).

13. Variogram [Variogram] Parametrization of the normal score variogram, see
Section 6.5.

Example

The SGSIM algorithm is run on the point-set grid, shown in Fig. 4.1a. Figure 8.3
displays two SGSIM realizations conditioned to the normal score transform of the
50 hard data of Fig. 4.1e. Simple kriging is used to determine the mean and variance
of the ccdfs (see step 4 of Algorithm 8.2). The normal score variogram model is:

γ (hx , hy) = 0.88Sph

⎛⎝√(
hx

35

)2

+
(

hy

45

)2
⎞⎠+0.27Sph

⎛⎝√(
hx

65

)2

+
(

hy

10000

)2
⎞⎠.

The search ellipsoid is of size 80×80×1, with a maximum of 25 conditioning data.
The lower tail extrapolation is a power model with parameter 3 and low extreme

8.1 Variogram-based simulations 139

(a) Realization #1
3 4 5 6 7 8 3 4 5 6 7 8

(b) Realization #2

Figure 8.3 Two SGSIM realizations

value 3.4; the upper tail extrapolation is a power model with parameter 0.333 and
a maximum value of 8.4.

8.1.3 COSGSIM: sequential Gaussian co-simulation

COSGSIM allows to simulate a Gaussian variable while accounting for secondary
information. Let Y1(u) and Y2(u) be two correlated multi-Gaussian random vari-
ables. Y1(u) is called the primary variable, and Y2(u) the secondary variable. The
COSGSIM simulation of the primary variable Y1 conditioned to both primary and
secondary data is described in Algorithm 8.4.

Algorithm 8.4 Sequential Gaussian co-simulation

1: Define a path visiting each node u of the grid
2: for Each node u do
3: Get the conditioning data consisting of neighboring original data and

previously simulated values and the secondary data
4: Get the local Gaussian ccdf for the primary attribute, with mean equal to the

cokriging estimate and variance equal to the cokriging variance
5: Draw a value from that Gaussian ccdf and add it to the data set
6: end for

If the primary and secondary variables are not Gaussian, make sure that each
of the transformed variables Y1 and Y2 is at least univariate Gaussian. If they are

140 Stochastic simulation algorithms

not, another simulation algorithm should be considered, COSISIM for example
(see Section 8.1.6). If no analytical model is available for such transformation,
a normal score transform may be applied independently to both variables. Algo-
rithm 8.4 then becomes Algorithm 8.5. The TRANS algorithm only ensures that the
respective marginal distributions are Gaussian.

Algorithm 8.5 Sequential Gaussian co-simulation for non-Gaussian variable

1: Transform Z1 and Z2 into Gaussian variables Y1 and Y2

2: Perform Algorithm 8.4
3: Back-transform the simulated values

Parameters description

The COSGSIM algorithm is activated from Simulation → cosgsim in the algo-
rithm panel. The COSGSIM interface contains five pages: “General”, “Primary
Data”, “Secondary Data”, “Primary Variogram” and “Secondary Variogram” (see
Fig. 8.4). The text inside “[]” is the corresponding keyword in the COSGSIM
parameter file.

1. Simulation Grid Name [Grid Name] Name of the simulation grid.
2. Property Name Prefix [Property Name] Prefix for the simulation output.

The suffix real# is added for each realization.
3. # of realizations [Nb Realizations] Number of simulations to generate.
4. Seed [Seed] Seed for the random number generator (preferably a large odd

integer).
5. Kriging Type [Kriging Type] Select the type of kriging system to be solved

at each node along the random path.
6. Cokriging Option [Cokriging Type] Select the type of coregionalization

model: LMC, MM1 or MM2.
7. Primary Hard Data Grid [Primary Harddata Grid] Selection of the grid

for the primary variable. If no grid is selected, the realizations are uncondi-
tional.

8. Primary Property [Primary Variable] Selection of the hard data property
for the primary variable.

9. Assign hard data to simulation grid [Assign Hard Data] If selected, the
hard data are relocated onto the simulation grid. The program does not proceed
if the relocation fails. This option significantly increases execution speed.

10. Primary Max Conditioning data [Max Conditioning Data 1] Maximum
number of primary data to be retained in the search neighborhood.

8.1 Variogram-based simulations 141

20

21

22

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

7

8
9

Figure 8.4 User interface for COSGSIM

142 Stochastic simulation algorithms

11. Primary Search Ellipsoid Geometry [Search Ellipsoid 1] Parametriza-
tion of the search ellipsoid for the primary variable, see Section 6.4.

12. Target Histogram If used, the primary data are normal score transformed
prior to the simulation and the simulated field is transformed back to the orig-
inal space.
Transform Primary Variable [Transform Primary Variable] flag to use
the normal score transform. [nonParamCdf primary] Parametrization of the
primary variable target histogram (see Section 6.8).

13. Secondary Data Grid [Secondary Harddata Grid] Selection of the grid for
the secondary variable.

14. Secondary Property [Secondary Variable] Selection of the data property
for the secondary variable.

15. Secondary Max Conditioning data [Max Conditioning Data 2] Maxi-
mum number of secondary data to be retained in the search neighborhood.

16. Secondary Search Ellipsoid Geometry [Search Ellipsoid 2] Parametriza-
tion of the search ellipsoid for the secondary variable, see Section 6.4.
Note: items 15 and 16 are needed only if full cokriging is asked for.

17. Target Histogram If used, the simulated primary field is transformed back
to the original space.
Transform Secondary Variable [Transform Secondary Variable] flag to
perform a normal score transform. [nonParamCdf secondary] Parametriza-
tion of the secondary variable target histogram (see Section 6.8).

18. Variogram for primary variable [Variogram C11] Parametrization of the
normal score variogram for the primary variable, see Section 6.5.

19. Cross-variogram between primary and secondary variables
[Variogram C12] Parametrization of the cross-variogram between the nor-
mal score primary and secondary variables, see Section 6.5. Required if
Cokriging Option [Cokriging Type] is set to Full Cokriging.

20. Variogram for secondary variable [Variogram C22] Parametrization of the
normal score variogram for the secondary variable, see Section 6.5. Required
if Cokriging Option [Cokriging Type] is set to Full Cokriging.

21. Coef. Correlation Z1, Z2 Coefficient of correlation between the primary
and secondary variable. Only required if Cokriging Option [Cokriging Type]

is set to MM1 or MM2. The correlation keyword is [Correl Z1Z2]

for the MM1 coregionalization, and [MM2 Correl Z1Z2] for the MM2
coregionalization.

22. Variogram for secondary variable [MM2 Variogram C22] Parametrization
of the normal score variogram for the secondary variable, see Section 6.5.
Required if Cokriging Option [Cokriging Type] is set to MM2.

8.1 Variogram-based simulations 143

(a) Realization #1
3 4 5 6 7 8 3 4 5 6 7 8

(b) Realization #2

Figure 8.5 Two COSGSIM realizations with MM1 coregionalization

Example

The COSGSIM algorithm is run on the point set grid shown in Fig. 4.1a. Two condi-
tional COSGSIM realizations with an MM1-type of co-regionalization and simple
cokriging are shown in Fig. 8.5. Both the primary hard conditioning data (Fig. 4.1e)
and secondary information (Fig. 4.1d) were normal score transformed. The normal
score variogram model for the primary variable is:

γ (hx , hy) = 0.88Sph

⎛⎝√(
hx

35

)2

+
(

hy

45

)2
⎞⎠ + 0.27Sph

⎛⎝√(
hx

65

)2

+
(

hy

10 000

)2
⎞⎠,

and the correlation coefficient between the primary and secondary variables is 0.7.
The search ellipsoid is of size 80 × 80 × 1, with a maximum of 25 primary con-
ditioning data. The lower tail extrapolation is a power model with parameter 3 and
minimum value 3.4; the upper tail extrapolation is a power model with parameter
0.333 and maximum value 8.4.

8.1.4 DSSIM: direct sequential simulation

The direct sequential simulation algorithm DSSIM performs simulation of contin-
uous attributes without prior indicator coding or Gaussian transform. As seen in
Section 3.8.2, the only condition for the model variogram to be reproduced (within
fluctuations) is that the ccdf has for mean and variance the simple kriging estimate
and variance. The shape of the ccdf does not matter; it may not even be the same for
each simulated node. The drawback is that there is no guarantee that the marginal
distribution is reproduced (Journel, 1994).

144 Stochastic simulation algorithms

One solution is to post-process the simulated realizations with a rank-preserving
transform to identify the target histogram; see algorithm TRANS in Section 9.1.
This may affect variogram reproduction. The second alternative is to determine
the shape of the local ccdf, at all locations along the path, such that the marginal
distribution is approximated at the end of each realization.

DSSIM offers two options for the ccdf distribution type, either a uniform dis-
tribution or a lognormal distribution. Neither of these distributions would produce
realizations that have either uniform or lognormal marginal distributions, thus some
post processing may be required to identify the target marginal histogram.

For the second alternative, the methods proposed by Soares (2001) and Oz et al.
(2003) are implemented. The ccdf is sampled from the data marginal distribution,
modified to be centered on the kriging estimate with spread equal to the kriging
variance. Simple kriging gives better results with these algorithms. The resulting
shape of each local ccdf thus differs from location to location. The method gives
reasonable reproduction of a target symmetric (even multi-modal) distribution, but
poorer results for highly skewed distributions. In this latter case the first option
using a log-normal ccdf type followed by a final post-processing using TRANS
may give better results. The general DSSIM algorithm is given in Algorithm 8.6.

Algorithm 8.6 Direct sequential simulation

1: Define a random path visiting each node u of the grid
2: for Each location u along the path do
3: Get the conditioning data consisting of both neighboring original data and

previously simulated values
4: Define the local ccdf with its mean and variance given by the kriging estimate

and variance
5: Draw a value from that ccdf and add the simulated value to the data set
6: end for

Parameters description

The DSSIM algorithm is activated from Simulation → dssim in Algorithm Panel.
The DSSIM interface contains three pages: “General”, “Data” and “Variogram”
(see Fig. 8.6). The text inside “[]” is the corresponding keyword in the DSSIM
parameter file.

1. Simulation Grid Name [Grid Name] Name of the simulation grid.
2. Property Name Prefix [Property Name] Prefix for the simulation output.

The suffix real# is added for each realization.
3. # of realizations [Nb Realizations] Number of simulations to generate.

8.1 Variogram-based simulations 145

10

11

12

13

14

15 16

7

8

9

1

2

3

5

6

4

Figure 8.6 User interface for DSSIM

4. Seed [Seed] Seed for the random number generator (preferably a large odd
integer).

5. Kriging Type [Kriging Type] Select the form of kriging system to be
solved at each node along the random path.

6. SK mean [SK mean] Mean of the attribute. Only required if Kriging Type
[Kriging Type] is set to Simple Kriging (SK).

7. Hard Data | Object [Hard Data.grid] Name of the grid containing the
conditioning data. If no grid is selected, the realizations are unconditional.

8. Hard Data | Property [Hard Data.property] Property for the condition-
ing data. Only required if a grid has been selected in Hard Data | Object
[Hard Data.grid].

9. Assign hard data to simulation grid [Assign Hard Data] If selected, the
hard data are copied on the simulation grid. The program does not proceed if
the relocation fails. This option improves execution speed.

146 Stochastic simulation algorithms

10. Max Conditioning data [Max Conditioning Data] Maximum number of
data to be retained in the search neighborhood.

11. Search Ellipsoid Geometry [Search Ellipsoid] Parametrization of the
search ellipsoid, see Section 6.4.

12. Distribution type [cdf type] Select the type of ccdf to be build at each
location along the random path.

13. LogNormal parameters Only activated if Distribution type [cdf type] is
set to LogNormal. The parametrization of the global lognormal distribution is
done through its mean specified by Mean [LN mean] and its variance specified
by Variance [LN variance].

14. Uniform parameters Only activated if Distribution type [cdf type] is set
to Uniform. Parametrization of the global Uniform distribution, the minimum
is specified by Min [U min] and the maximum by Max [U max].

15. Soares Distribution [nonParamCdf] Only activated if Distribution type
[cdf type] is set to Soares. Parametrization of the global distribution from
which the local distribution is sampled (see Section 6.8).

16. Variogram [Variogram] Parametrization of the variogram. For this algo-
rithm, the sill of the variogram is a critical input to the conditioning kriging
variance and should not be standardized to 1.

Example

The DSSIM algorithm is run on the point-set grid shown in Fig. 4.1a. Two condi-
tional DSSIM realizations using the Soares method and simple kriging with mean
5.45 are shown in Fig. 8.7. The hard conditioning data are given in Fig. 4.1e. The
variogram model (in the original data space) for the primary variable is:

γ (hx , hy)=1.2Sph

⎛⎝√(
hx

35

)2

+
(

hy

45

)2
⎞⎠+ 0.2Sph

⎛⎝√(
hx

35

)2

+
(

hy

100000

)2
⎞⎠.

The search ellipsoid is of size 80×80×1, with a maximum of 25 conditioning data.
The lower tail extrapolation is a power model with parameter 3 and a minimum
value 3.4; the upper tail extrapolation is a power model with parameter 0.333 and
a maximum value 8.4.

The histogram plots of both the reference distribution and the DSSIM realization
#1 are given in Fig. 8.8; for this example it appears that the DSSIM algorithm with
Soares method does reproduce the target histogram reasonably well.

Figure 8.9 gives the two DSSIM realizations using Soares method and kriging
with the local varying mean shown in Fig. 4.1b.

8.1 Variogram-based simulations 147

(a) Realization #1
3 4 5 6 7 8

(b) Realization #2
3 4 5 6 7 8

Figure 8.7 Two DSSIM realizations with Soares method and simple kriging

(a) Reference histogram (b) Histogram of realization #1

Figure 8.8 Histograms of the reference and DSSIM realization #1

8.1.5 SISIM: sequential indicator simulation

Sequential indicator simulation SISIM combines the indicator formalism with the
sequential paradigm to simulate non-parametric continuous or categorical dis-
tributions. In the continuous case, at every location along the simulation path,
non-parametric ccdf values, one per threshold value, are estimated using indica-
tor kriging from neighboring indicator-transformed data. For the categorical case,
the probability for each category to occur is estimated by indicator kriging.

Sequential indicator simulation (Algorithm 8.7) does not require any Gaus-
sian assumption. Instead, in the continuous case, the ccdf is built by estimating
a sequence of probabilities of not exceeding a finite set of threshold values. The
more thresholds retained, the more detailed the conditional cumulative distribution

148 Stochastic simulation algorithms

(a) Realization #1 (b) Realization #2
3 4 5 6 7 8 3 4 5 6 7 8

Figure 8.9 Two DSSIM realizations with Soares method and local varying mean

function. The indicator formalism removes the need for normal score transforma-
tion, but does require an additional variogram modeling effort unless the median
IK option is chosen.

The SGeMS version of SISIM does not require any prior indicator coding of
the data, all coding is done internally for both the continuous and the categorical
cases. Interval or incomplete data, see Section 7.2, may also be entered but need to
be pre-coded.

When modeling a set of indicator variograms, the user is warned that not all
combinations of variograms can be reproduced. For example, if a field has three
categories, the spatial patterns of the third category are completely determined by
the variogram models of the first two.

Continuous variables

Algorithm SISIM relies on indicator kriging to infer the local ccdf values. The
indicator variable corresponding to the z-continuous variable is defined as:

i(u, zk) =
{

1 if z(u) ≤ zk

0 otherwise
, k = 1, . . . , K .

Two types of regionalizations can be used for indicator simulation. The full
IK option requires a variogram model for each threshold zk . The median IK
(Goovaerts, 1997, p.304) option requires only the variogram model for the median
threshold, all other indicator variograms are assumed proportional to that single
model.

While both SGSIM and SISIM with median IK require a single variogram, they
produce different outputs and spatial patterns. The major difference is that the

8.1 Variogram-based simulations 149

extreme values of a SISIM realization with median IK are more spatially correlated
than in a SGSIM realization.

SISIM can handle interval data the same way that INDICATOR KRIGING does,
see Section 7.2.

For continuous attributes SISIM implements Algorithm 8.7.

Algorithm 8.7 SISIM with continuous variables

1: Choose a discretization of the range of Z(u): z1, . . . , zK

2: Define a path visiting all locations to be simulated
3: for Each location u along the path do
4: Retrieve the neighboring conditioning data: z(uα), α = 1, . . . , n(u)

5: Turn each datum z(uα) into a vector of indicator values:

i(uα) =
[
i(uα, z1), . . . , i(uα, zK)

]
6: Estimate the indicator random variable I (u, zk) for each of the K thresholds

by solving a kriging system
7: After correction of order relation deviations, the estimated values i∗(u, zk) =

Prob∗(Z(u) ≤ zk |(n(u))) define an estimate of the ccdf FZ(u) of the
variable Z(u)

8: Draw a value from that ccdf and assign it as a datum at location u
9: end for
9: Repeat the previous steps to generate another simulated realization

Sampling the estimated distribution function

At each location to be simulated, the ccdf F
(
u; zk |(n)

)
is estimated at the K

thresholds z1, . . . , zK . However, sampling from such ccdf, as described in step 7
of Algorithm 8.7, requires knowledge of the ccdf F(u; z|(n)) for all values z. In
SISIM the ccdf is interpolated as follows:

F∗(u; z) =

⎧⎪⎪⎨⎪⎪⎩
φlti(z), if z ≤ z1

F∗(u; zk) + z−zk
zk+1−zk

(
F∗(u; zk+1) − F∗(u; zk)

)
, if zk ≤ z < zk+1

1 − φuti(z), if zk+1 ≤ z
(8.1)

where F∗(u; zk) = i∗(u, zk) is obtained by indicator kriging and φlti(z) and φuti(z)
are the lower and upper tail extrapolation chosen by the user and described in
Section 6.8. Values between thresholds zi and zi+1 are interpolated linearly, hence
are drawn from a uniform distribution in the interval [zi , zi+1].

150 Stochastic simulation algorithms

Categorical variables

If Z(u) is a categorical variable that only takes the K integer values {0, . . . , K −1},
Algorithm 8.7 is modified as described in Algorithm 8.8.

The categorical indicator variables are defined as:

i(u, k) =
{

1 if Z(u) = k
0 otherwise.

For the categorical case, the median IK option implies that all categories share
the same variogram up to a proportionality factor.

Algorithm 8.8 SISIM with categorical variable

1: Define a path visiting all locations to be simulated
2: for Each location u along the path do
3: Retrieve the neighboring categorical conditioning data:

z(uα), α = 1, . . . , n(u)

4: Turn each datum z(uα) into a vector of indicator data values:

i(uα) =
[
i(uα, z1), . . . , i(uα, zK)

]
5: Estimate the indicator random variable I (u, k) for each of the K categories

by solving a simple kriging system
6: After correction of order relation deviations, the estimated values i∗(u, k) =

Prob∗(Z(u) = k|(n)) define an estimate of the discrete conditional
probability density function (cpdf) of the categorical variable Z(u)

7: Draw a simulated category from that cpdf and assign it as a datum at
location u

8: end for
9: Repeat the previous steps to generate another realization

Parameters description

The SISIM algorithm is activated from Simulation → sisim in the Algorithm Panel.
The main SISIM interface contains three pages: “General”, “Data” and “Vari-
ogram” (see Fig. 8.10). The text inside “[]” is the corresponding keyword in the
SISIM parameter file.

1. Simulation Grid Name [Grid Name] Name of the simulation grid.
2. Property Name Prefix [Property Name] Prefix for the simulation output.

The suffix real# is added for each realization.
3. # of realizations [Nb Realizations] Number of simulations to generate.
4. Seed [Seed] Seed for the random number generator (preferably a large odd

integer).

8.1 Variogram-based simulations 151

10

11

12

13
14

15

16

17

18

19

9

1

2

3
4

5
6

7

8

Figure 8.10 User interface for SISIM

5. Categorical variable [Categorical Variable Flag] Indicates if the data
are categorical or not.

6. # of thresholds/classes [Nb Indicators] Number of classes if the flag
[Categorical Variable Flag] is selected, or number of threshold values for
continuous attributes.

7. Threshold Values [Thresholds] Threshold values in ascending order, sep-
arated by spaces. That field is required only for continuous data.

8. Marginal probabilities [Marginal Probabilities]
If continuous Probability not to exceed each of the above thresholds. The

entries must be monotonically increasing, and separated by spaces.
If categorical Proportion for each category. The first entry corresponds to

category 0, the second to category 1, etc. The sum of all proportions
should be 1.

9. Lower tail extrapolation [lowerTailCdf] Parametrize the lower tail of the
cumulative distribution function for continuous attributes. Input “Min” must
be less than or equal (≤) to the minimum of the hard data, and “omega” is the
power factor.

10. Upper tail extrapolation [upperTailCdf] Parametrize the upper tail of the
cumulative distribution function for continuous attributes. Input “Max” must

152 Stochastic simulation algorithms

be greater than or equal (≥) to the maximum of the hard data, and “omega” is
the power factor.

11. Indicator kriging type If Median IK [Median Ik Flag] is selected, the pro-
gram uses median indicator kriging to estimate the ccdf. Otherwise, if Full IK
[Full Ik Flag] is selected, one IK system is solved for each threshold/class
with a different variogram model.

12. Hard Data Grid [Hard Data Grid] Grid containing the conditioning hard
data.

13. Hard Data Property [Hard Data Property] Conditioning data for the
simulation.

14. Assign hard data to simulation grid [Assign Hard Data] If selected, the
hard data are relocated onto the simulation grid. The program does not proceed
if the copying fails. This option improves execution speed.

15. Interval Data | Object [coded props] Grid containing the interval data.
Cannot be used if Median IK [Median Ik Flag] is selected, instead use the
Full IK [Full Ik Flag] option with the same variogram for all thresholds.

16. Interval Data | Properties [coded grid] Properties with the interval data.
These data must already be properly coded and are all found on the grid
[coded grid]. There must be [Nb Indicators] properties selected.

17. Max Conditioning data [Max Conditioning Data] Maximum number of
data to be retained in the search neighborhood.

18. Search Ellipsoid Geometry [Search Ellipsoid] Parametrization of the
search ellipsoid, see Section 6.4.

19. Variogram [Variogram] Parametrization of the indicator variograms, see
Section 6.5. Only one variogram is necessary if Median IK [Median Ik Flag]

is selected. Otherwise there are [Nb Indicators] indicator variograms.

Example

The SISIM algorithm is run on the point-set grid shown in Fig. 4.1a. Two condi-
tional SISIM realizations with a median IK regionalization are shown in Fig. 8.11.
The single indicator variogram used is:

γ (hx , hy) = 0.07Sph

⎛⎝√(
hx

10

)2

+
(

hy

15

)2
⎞⎠+ 0.14Sph

⎛⎝√(
hx

40

)2

+
(

hy

75

)2
⎞⎠.

The search ellipsoid is of size 80 × 80 × 1, with a maximum of 25 conditioning
data. The lower tail extrapolation is a power model with parameter 3 and minimum
value 3.4; the upper tail extrapolation is a power model with parameter 0.333 and
maximum value 8.4. The ten thresholds considered and their respective cdfs are
given in Table 8.1. Note that the simulated realizations exhibit more continuity of
the extreme thresholds than those obtained by SGSIM.

8.1 Variogram-based simulations 153

Table 8.1 Thresholds and cdfs for SISIM simulation

threshold cdf threshold cdf

3.5 0.0257 6.0 0.6415
4.0 0.1467 6.5 0.7830
4.5 0.2632 7.0 0.8888
5.0 0.3814 7.5 0.9601
5.5 0.5041 8.0 0.9934

(a) Realization #1
3 4 5 6 7 8 3 4 5 6 7 8

(b) Realization #2

Figure 8.11 Two SISIM realizations obtained with median IK

8.1.6 COSISIM: sequential indicator co-simulation

Algorithm COSISIM extends the SISIM algorithm to handle secondary data. In
contrast to SISIM, data must already be indicator-coded prior to using COSISIM.
The algorithm does not differentiate between hard and interval data, both can be
used; for any given threshold both types of data must be related to the same prop-
erty. If no secondary data are selected, algorithm COSISIM performs a traditional
sequential indicator simulation.

The secondary data are integrated using the Markov–Bayes algorithm, see
Section 3.6.4, and Zhu and Journel (1993), Deutsch and Journel (1998, p.90). As
with the primary attribute, the secondary information must be coded into indica-
tors before it is used. The Markov–Bayes calibration coefficients are not internally
computed and must be given as input (Zhu and Journel, 1993). Section 10.2.2
gives a Python script to calculate such coefficient values. SGeMS allows using
the Markov–Bayes algorithm with both a full IK or a median IK regionalization
model.

154 Stochastic simulation algorithms

A note on conditioning

As opposed to SISIM where the indicator coding is done internally, COSISIM does
not exactly honor hard data for a continuous attribute. The algorithm honors these
data approximately in the sense that the simulated values are inside the correct
threshold interval. It is not possible to honor exactly the original continuous data
values since these were never provided to the program. A possible post-processing
is to copy the conditioning hard data values over the simulated nodes once the
realizations are finished.

Parameters description

The COSISIM algorithm is activated from Simulation → cosisim in the Algo-
rithm Panel. The COSISIM interface contains three pages: “General”, “Data” and
“Variogram” (see Fig. 8.12). The text inside “[]” is the corresponding keyword in
the COSISIM parameter file.

1. Simulation Grid Name [Grid Name] Name of the simulation grid.
2. Property Name Prefix [Property Name] Prefix for the simulation output.

The suffix real# is added for each realization.
3. # of realizations [Nb Realizations] Number of simulations to generate.
4. Seed [Seed] Seed for the pseudo random number generator (preferably a

large odd integer).
5. Categorical variable [Categorical Variable Flag] Indicates if the data

are categorical or not.
6. # of thresholds/classes [Nb Indicators] Number of classes if the flag

[Categorical Variable Flag] is selected or number of threshold values for
continuous attributes.

7. Threshold Values [Thresholds] Threshold values in ascending order, there
must be [Nb Indicators] values entered. That field is only for continu-
ous data.

8. Marginal probabilities [Marginal Probabilities]
If continuous Probability not to exceed each of the above thresholds. The

entries must be monotonically increasing.
If categorical Proportion for each category. The first entry corresponds to

category 0, the second to category 1, ...
9. Lower tail extrapolation [lowerTailCdf] Parametrize the lower tail of the

ccdf for continuous attributes. Input “Min” must be less than or equal to (≤)
the minimum of the hard data, and “omega” is the power factor.

10. Upper tail extrapolation [upperTailCdf] Parametrize the upper tail of the
ccdf for continuous attributes. Input “Max” must be greater or equal to (≥) the
maximum of the hard data, and “omega” is the power factor.

8.1 Variogram-based simulations 155

20

21

22

10

11

12

13

14

15

16

17

18

19

1

2

3
4

5
6

7

8

9

Figure 8.12 User interface for COSISIM

11. Kriging Type [Kriging Type] Select the type of kriging system to be solved
at each node along the random path.

12. Indicator kriging type If Median IK [Median Ik Flag] is selected, the
program uses median indicator kriging to estimate the cdf. If Full IK
[Full Ik Flag] is selected, there are [Nb Indicators] IK systems solved at
each location, one for each threshold/class.

13. Hard Data Grid [Primary Hard Data Grid] Grid containing the condition-
ing hard data.

14. Hard Data Indicators Properties [Primary Indicators] Conditioning
primary data for the simulation. There must be [Nb Indicators] properties
selected, the first corresponding to class 0, the second to class 1, and so on.
If Full IK [Full Ik Flag] is selected, a location may not be informed for all
thresholds.

156 Stochastic simulation algorithms

15. Primary Max Conditioning data [Max Conditioning Data Primary] Max-
imum number of primary indicator data to be retained in the search neighbor-
hood.

16. Primary Search Ellipsoid Geometry [Search Ellipsoid 1] Parametriza-
tion of the search ellipsoid for the primary variable, see Section 6.4.

17. Secondary Data Grid [Secondary Harddata Grid] Grid containing the
conditioning soft data indicators. If no grid is selected, a univariate simulation
is performed.

18. Secondary Data Indicators Properties [Secondary Indicators] Condi-
tioning secondary data for the simulation. There must be [Nb Indicators]

properties selected, the first corresponding to class 0, the second to class 1, and
so on. If Full IK [Full Ik Flag] is selected, a location need not be informed
for all thresholds.

19. B(z,IK) for each indicator [Bz Values] Parameters for the Markov–Bayes
Model, one B-coefficient value must be entered for each indicator. Only
required if secondary data are used.

20. Secondary Max Conditioning data [Max Conditioning Data Secondary]
Maximum number of secondary indicator data to be retained in the search
neighborhood.

21. Secondary Search Ellipsoid Geometry [Search Ellipsoid 1] Parametriza-
tion of the search ellipsoid for the secondary indicator data, see Section 6.4.

22. Variogram [Variogram] Parametrization of the indicator variograms, see
Section 6.5. Only one variogram is necessary if Median IK [Median Ik Flag]

is selected. Otherwise there are [Nb Indicators] indicator variograms.

Example

The COSISIM algorithm is run on the point-set grid shown in Fig. 4.1a. Two
conditional COSISIM realizations with a median IK regionalization are shown
in Fig. 8.13. The variogram for the median indicator threshold of the primary
variable is:

γ (hx , hy) = 0.02 + 0.23Sph

⎛⎝√(
hx

22.5

)2

+
(

hy

84

)2
⎞⎠ .

The search ellipsoid is of size 60 × 60 × 1, with a maximum of 25 conditioning
data. The lower tail extrapolation is a power model with parameter 3 and mini-
mum value 3.4; the upper tail extrapolation is a power model with parameter 0.333
and maximum value 8.4. The ten thresholds and their respective cdfs are given in
Table 8.1.

8.1 Variogram-based simulations 157

(a) Realization #1 (b) Realization #2
3 4 5 6 7 8 3 4 5 6 7 8

Figure 8.13 Two COSISIM realizations with median IK and the Markov–Bayes model

8.1.7 BSSIM: block sequential simulation

BSSIM is an algorithm for simulating point values conditioned to block and point
data. The algorithm utilizes block kriging and direct sequential simulation (Hansen
et al., 2006; Liu, 2007).

Simulation path

There are two simulation path options in BSSIM. The first one is the common
fully random simulation path, i.e. nodes within the simulation field are visited in
random sequence. The second option is to simulate first the nodes covered by a
larger number of blocks. Nodes covered by the same number of blocks have the
same priority in terms of simulation sequence. This stratified random path scheme
is called ‘block-first’ simulation path.

Block and point data search

For each simulation node, all block data are sorted based on decreasing block-to-
node covariance value. Blocks with a zero block-to-node covariance are excluded
from the neighborhood of this node. This block sorting is performed only once and
the results are stored to be used for all realizations. The maximum number N of
retained conditioning blocks is specified by the user.

To reproduce the block data, all previously simulated nodes located in a block
that contains the current simulation node must be included into the point data
search neighborhood, even if this leads to exceeding the specified maximum num-
ber of conditioning point data. For example, the nodes u4 in block #1 and u5 in
block #2 of Fig. 8.14 should be considered for the simulation of node u0. How-
ever, this may result in a very large number of point conditioning data and heavy
CPU demand. In BSSIM, three options are provided to deal with this issue. The

158 Stochastic simulation algorithms

block #2
block #4

block #3

block #1

Search
ellipsoid

u0u1

u4

u2

u3

u5

Figure 8.14 Block and point data search

first option, best but expensive for larger data sets, is to include all the nodes into
the neighborhood. For example, in Fig. 8.14, in addition to the informed nodes u1,
u2 and u3 in the search ellipsoid, informed nodes u4 and u5 are included into the
conditioning data set of u0. The second option considers only the informed nodes
u1, u2 and u3 within the search ellipsoid. The third option specifies the maximum
number N ′ of the informed nodes beyond the search ellipsoid but within blocks
overlapping the location to be simulated. For example, in Fig. 8.14, if N ′ is set to 1,
u4 is included but not u5 because u5 has a smaller covariance value with u0 than u4.

The workflow of BSSIM is given in Algorithm 8.9.

Algorithm 8.9 Block sequential simulation

1: Generate the point-to-point covariance look-up table. If the FFT-integration
hybrid block covariance calculation method is used, compute the block-to-point
covariance map(s)

2: Define either a fully random or a block-first simulation path visiting each node
u of the grid

3: for Each location u along the path do
4: Search the conditioning data consisting of closest original point data,

previously simulated values and block data
5: Compute or retrieve the local block-to-block, block-to-point, point-to-block

and point-to-point covariances
6: Build and solve the mixed-scale kriging system.
7: Define an appropriate local ccdf with its mean and variance given by the

kriging estimate and variance
8: Draw a value from that ccdf and add the simulated value to the data set
9: end for

10: Repeat to generate another simulated realization

8.1 Variogram-based simulations 159

Parameters description

The BSSIM algorithm is activated from Simulation → bssim in the Algorithm
Panel. The BSSIM interface contains four pages: “General”, “Data”, “Variogram”
and “Distribution” (see Fig. 8.15). The text inside “[]” is the corresponding
keyword in the BSSIM parameter file.

1. Simulation Grid Name [Grid Name] Name of the simulation grid.
2. Property Name Prefix [Property Name] Prefix for the simulation output.

The suffix real# is added for each realization.
3. # of realizations [Nb Realizations] Number of simulated realizations to

generate.
4. Seed [Seed] Seed for the random number generator (preferably a large odd

integer).
5. Kriging Type [Kriging Type] Select the type of kriging system to be solved

at each node along the random path: Simple Kriging (SK) or Ordinary
Kriging (OK).

6. SK mean [SK mean] Mean of the attribute. Only required if Kriging Type
[Kriging Type] is set to Simple Kriging(SK).

7. Block Covariance Computation Approach [Block Cov Approach] Select
the method of computing block covariance: FFT with Covariance-Table or
Integration with Covariance-Table.

8. Simulation Path [Simulation Path] Select the simulation path scheme of
visiting each node in the field: Block First or Fully Random.

9. Check block data reproduction [Check Block Reproduction] If checked,
the simulated block average values are calculated and the relative errors
(compared to the input block data) are computed for each realization.
The results are shown in the Commands Panel, which is activated from
View | Commands Panel.

10. Generate E-type if multiple realizations [Generate Etype] If checked, an
E-type is generated if there are more than one realization.

11. Show intermediate Map (Debug) [Debug Info] If set to Show interme-
diate Map (Debug), some intermediate maps or cubes are generated, such
as simulation path, point or block data neighborhood, CPU cost at some
intermediate steps, etc.

12. Hard Data | Object [Hard Data.grid] Name of the grid containing the
conditioning point data. If no grid is selected, the realizations are generated
without conditioning point data.

13. Hard Data | Property [Hard Data.property] Property for conditioning to
point data. Only required if a grid has been selected in Hard Data | Object
[Hard Data.grid].

160 Stochastic simulation algorithms

20

21

22

22

23

24

25

26

27

28

10

11

12

13

14

15

16

17

18

19

1

2

3
4

5

6

7

8

9

Figure 8.15 User interface for BSSIM

8.1 Variogram-based simulations 161

14. Assign hard data to simulation grid [Assign Hard Data] If selected, the
hard data are relocated onto the simulation grid.

15. Max conditioning point data [Max Conditioning Data Point] Maximum
number of point data to be retained in the search neighborhood.

16. Search Ellipsoid for Point Support Data [Search Ellipsoid Point]
Parametrization of the search ellipsoid for point support data.

17. Max conditioning block data [Max Conditioning Data Block] Maximum
number N of block data to be retained in the search neighborhood. All blocks
are sorted based on their covariance with the current simulation node. Only
the closest N or lesser number of blocks with non-zero block-to-current node
covariance are considered.

18. Include Additional Informed Points in Crossing Blocks Three options are
provided here: Include All Available [Include All Available] correspond-
ing to the first option in Section 8.1.7, Not Include [Not Include] correspond-
ing to the second option in Section 8.1.7 and Include, but Set Max Num-
ber [Include, but Set Max Number] corresponding to the third option in
Section 8.1.7.

19. Max conditioning points within blocks [Max Cond Points In Blocks]
Only activated if Include, but Set Max Number is selected. Only the closest
N ′ points within the crossing blocks are considered as additional conditioning
data.

20. Block Data From Select where the block data are to be found. There
are two options: From File [Block From File] and From Point Set Object
[Block From Pset].

21. Block Data From File [Block Data File] Only activated if From File
[Block From File] is selected in Block Data From. The directory address of
the block data file should be specified. The block data file format is shown in
Fig. 7.9. If no block data file is entered, the estimation is performed using only
point data.

22. Block Data From Point Set Objects Only activated if From Point Set
Object [Block From Pset] is selected in Block Data From. More details are
given in Section 7.4.

23. Variogram [Variogram Cov] Parametrization of the variogram model, see
Section 6.5.

24. Distribution type [cdf type] Select the type of ccdf to be built at each
location along the random path: Soares, LogNormal, Gaussian and Uniform.

25. Gaussian parameters Only activated if Distribution type [cdf type] is
set to Gaussian. The parametrization of the global Gaussian distribution is
done through its mean specified by Mean [Gaussian mean] and its variance
specified by Variance [Gaussian variance].

162 Stochastic simulation algorithms

26. LogNormal parameters Only activated if Distribution type [cdf type] is
set to LogNormal. The parametrization of the global lognormal distribution is
done through its mean specified by Mean [LN mean] and its variance specified
by Variance [LN variance].

27. Uniform parameters Only activated if Distribution type [cdf type] is set
to Uniform. Parametrization of the global Uniform distribution, the minimum
is specified by Min [U min] and the maximum by Max [U max].

28. Soares Distribution [nonParamCdf] Only activated if Distribution type
[cdf type] is set to Soares. Parametrization of the global distribution from
which the local distribution is sampled (see Section 6.8).

Examples

The tomography and downscaling cases used in the BKRIG examples (Fig. 7.11)
are run using BSSIM.

In all these BSSIM runs simple kriging is used. The SK mean for the tomog-
raphy case is 3.0 and that for the downscaling case is 2.8. The simulation path
is fully random. The block covariance is calculated through the FFT-integration
hybrid approach. All previously simulated node values within blocks containing
the current simulation node are included into the data neighborhood. The vari-
ogram model (7.11) is used. The maximum number of conditioning data for point
and block are both 12. The Soares method is used for histogram reproduction. The
power function is used for lower tail extrapolation with parameter ω = 3 and the
high tail extrapolation with parameter ω = 0.333.

Figure 8.16a gives a realization for the tomography data set, i.e. conditioned to
both the 18-ray data and the two well data. The general patterns in the reference

(a) One realization (tomography) (b) One realization (downscaling)

4.5

4.

3.5

3

2.5

2

4.5

5

4.

3.5

3

2.5

2

Figure 8.16 Simulation results from BSSIM (tomography and downscaling cases)

8.1 Variogram-based simulations 163

model (Fig. 7.11a) are reasonably reproduced. The realization reproduces the block
data with an average absolute error of 0.8%.

Figure 8.16b gives the results for the downscaling case. Again, the block data
are well reproduced: the average absolute errors are 0.4%. Note that these errors
are less than those for the tomography case because the tomography ray data span
longer distances, exceeding the correlation range, which makes the corresponding
block data reproduction difficult.

8.1.8 BESIM: block error simulation

BESIM (Journel and Huijbregts, 1978; Gloaguen et al., 2005; Liu, 2007) is an alter-
native algorithm to generate stochastic realizations conditioned to both point and
block data; it utilizes the approach of direct error simulation, see Section 3.8.3.
This approach is extended as follows to account for block data. The kriging esti-
mates Z∗

K(u) and Z∗(l)
Ks (u) in expression (3.40) must account for both point data

DP(uα) and block data DB(vβ):

Z∗
K(u) =

∑
α

λα DP(uα) +
∑

β

νβ DB(vβ)

Z∗(l)
Ks (u) =

∑
α

λα DPs(uα) +
∑

β

νβ DBs(vβ)

where the λαs are the kriging weights for point data and the νβs are the kriging
weights for block data.

One issue related to the second kriging estimate Z∗(l)
Ks (u) is that the simulated

conditioning block data DBs (vα) derived from the unconditional simulation do not
contain the error component. In order to restore an error in the simulated condi-
tioning block data, a random error value Rs (vα) is drawn from some distribution,
e.g. a Gaussian distribution with zero mean and variance σ 2

R(vα). Hence:

DBs (vα) = Bs (vα) + Rs (vα) at each block data location vα.

BESIM or BSSIM?

BESIM is a faster algorithm than BSSIM, see Section 3.8.3. There are two rea-
sons. First, it only needs to solve the kriging system once per node no matter the
number of realizations, while in BSSIM, the kriging system has to be solved once
per node and per realization. Second, in BSSIM, all previously simulated node
values within blocks containing the current simulation node are included into the
data neighborhood. This may result in large kriging systems which slow down the
simulation.

164 Stochastic simulation algorithms

BESIM can not reproduce a target histogram unless that histogram is Gaussian.
In all other cases, BESIM realizations can only approximate the target histogram
through a post-processing using programs like TRANS, at the cost of weakening the
block data conditioning, see Section 9.1 and Deutsch and Journel (1998, p.227).

The workflow of BESIM is given in Algorithm 8.10.

Algorithm 8.10 Block error simulation

1: Generate and store the point-to-point covariance look-up table. If the FFT-
integration hybrid block covariance calculation method is used, compute and
store the block-to-point covariance map(s)

2: Perform the kriging estimation for Z∗
K(u), using the original point and block

data. Store all the kriging weights for each simulation location. Note that this
is only done once per location

3: Perform unconditional simulation, ZS(u)

4: The simulated point and block data are retrieved from the unconditional sim-
ulation realization at the original data locations. Add noise drawn from the
Gaussian distributions G(0, σ 2

R(vα)) to the block data
5: Compute the simulated kriging estimate, Z∗

KS(u), using the simulated data and
the previously stored kriging weights

6: Compute the conditional simulation realization, ZCS(u)

7: Repeat the process from step 3 to generate another realization

Parameters description

The BESIM algorithm is activated from Simulation → besim in the Algorithm
Panel. The BESIM interface contains four pages: “General”, “Data”, “Variogram”
and “Distribution” (see Fig. 8.17). The text inside “[]” is the corresponding
keyword in the BESIM parameter file.

1. Simulation Grid Name [Grid Name] Name of the simulation grid.
2. Property Name Prefix [Property Name] Prefix for the simulation output.

The suffix real# is added for each realization.
3. # of realizations [Nb Realizations] Number of simulations to generate.
4. Seed [Seed] Seed for the random number generator (preferably a large odd

integer).
5. Kriging Type [Kriging Type] Select the type of kriging system to be solved

at each node along the random path: Simple Kriging (SK) and Ordinary
Kriging (OK).

6. SK mean [SK mean] Mean of the attribute. Only required if Kriging Type
[Kriging Type] is set to Simple Kriging (SK).

8.1 Variogram-based simulations 165

22

24 25

26

27

28

29

30

23

20

21

10

11

12
13

14 15

16

17 18

19

1

2

3
4

5

6

7

8
9

Figure 8.17 User interface for BESIM

166 Stochastic simulation algorithms

7. Block Covariance Computation Approach [Block Cov Approach] Select
the method of computing block covariance: FFT with Covariance-Table or
Integration with Covariance-Table.

8. Check block data reproduction [Check Block Reproduction] If checked,
the simulated block average values are calculated and the relative errors
as compared to the input block data are computed for each realization.
The results are shown in the Commands Panel, which is activated from
View | Commands Panel.

9. Generate E-type if multiple realizations [Generate Etype] If checked, an
E-type is generated if there are more than one realization.

10. Show intermediate Map (Debug) [Debug Info] If set to Show intermedi-
ate Map (Debug), some intermediate maps are generated, such as simulation
path, point or block data neighborhood, time cost on some intermediate
steps, etc.

11. Hard Data | Object [Hard Data.grid] Name of the grid containing the
conditioning point data. If no grid is selected, the realizations are generated
without conditioning point data.

12. Hard Data | Property [Hard Data.property] Property for the conditioning
to point data. Only required if a grid has been selected in Hard Data | Object
[Hard Data.grid].

13. Assign hard data to simulation grid [Assign Hard Data] If selected, the
hard data are relocated onto the simulation grid.

14. Min conditioning point data [Min Conditioning Data Point] Minimum
number of point data to be retained in the search neighborhood used in the
kriging estimation in BESIM.

15. Max conditioning point data [Max Conditioning Data Point] Maximum
number of point data to be retained in the search neighborhood.

16. Search Ellipsoid for Point Support Data [Search Ellipsoid Point]
Parametrization of the search ellipsoid for point support data, see Section 6.4.

17. Min conditioning block data [Min Conditioning Data Block] Minimum
number of block data to be retained in the search neighborhood used in the
kriging estimation in BESIM.

18. Max conditioning block data [Max Conditioning Data Block] Maximum
number of block data to be retained in the search neighborhood.

19. Block Data From Select where the block data are defined. There are
two options: From File [Block From File] and From Point Set Object
[Block From Pset].

20. Block Data From File [Block Data File] Only activated if From File
[Block From File] is selected in Block Data From. The directory address of
the block data file should be specified. The block data file format is shown in

8.1 Variogram-based simulations 167

Fig. 7.9. If no block data file is entered, the estimation is performed using only
point data.

21. Block Data From Point Set Objects Only activated if From Point Set
Object [Block From Pset] is selected in Block Data From. More details are
given in Section 7.4.

22. Variogram parameters [Variogram Cov] Parametrization of the variogram
model, see Section 6.5.

23. Min and Max for realization(s) [Set Realization Min Max] Set the mini-
mum and maximum values for the final realization(s).

24. Min [Realization Min] Only activated if Min and Max for realization(s)
is checked. Set the minimum value in the final realization(s). All simulated
values smaller than Min are set to Min.

25. Max [Realization Max] Only activated if Min and Max for realization(s)
is checked. Set the maximum value in the final realization(s). All simulated
values larger than Max are set to Max.

26. Intermediate distribution type [cdf type] Select the type of ccdf to be
built at each location along the random path: Soares, LogNormal, Gaussian
and Uniform. This is used only for the non-conditional simulation in BESIM.
It is suggested that you use an intermediate distribution close to your target
one. But histogram reproduction is not expected.

27. Gaussian parameters Only activated if Distribution type [cdf type] is
set to Gaussian. The parametrization of the global Gaussian distribution is
done through its mean specified by Mean [Gaussian mean] and its variance
specified by Variance [Gaussian variance].

28. LogNormal parameters Only activated if Distribution type [cdf type] is
set to LogNormal. The parametrization of the global lognormal distribution is
done through its mean specified by Mean [LN mean] and its variance specified
by Variance [LN variance].

29. Uniform parameters Only activated if Distribution type [cdf type] is set
to Uniform. Parametrization of the global Uniform distribution, the minimum
is specified by Min [U min] and the maximum by Max [U max].

30. Soares Distribution [nonParamCdf] Only activated if Distribution type
[cdf type] is set to Soares. Parametrization of the global distribution from
which the local distribution is sampled (see Section 6.8).

Examples

The two cases used to demonstrate BKRIG (Fig. 7.11) are run again using BESIM.
Both block and point data are used for conditioning.

Figure 8.18a gives one BESIMrealization for the tomography case. The block
data are reproduced with an average absolute error of 2.6%. Figure 8.18b shows a

168 Stochastic simulation algorithms

(a) Tomography realization (b) Downscaling realization

4.5

4.

3.5

3

2.5

2

4.5

5

4.

3.5

3

2.5

2

Figure 8.18 Simulation results from BESIM (tomography and downscaling cases)

realization for the downscaling case. Note how the high value heterogeneity areas
in the lower right and in the middle are captured. The block data reproduction,with
an average absolute error of 1.0%, is better than for the above tomography case,
but not as good as when using BSSIM (Section 8.1.7).

8.2 Multiple-point simulation algorithms

Before the introduction of multiple-point geostatistics, two families of simulation
algorithms for facies modeling were available: pixel-based and object-based. The
pixel-based algorithms build the simulated realizations one pixel at a time, thus
providing great flexibility for conditioning to data of diverse support volumes and
diverse types. Pixel-based algorithms may, however, be slow and have difficulty
reproducing complex geometric shapes, particularly if simulation of these pixel
values is constrained only by 2-point statistics, such as a variogram or a covariance.
Object-based algorithms build the realizations by dropping onto the simulation grid
one object or pattern at a time, hence they can be fast and faithful to the geometry of
the object. However, they are difficult to condition to local data of different support
volumes, particularly when these data are dense as in the case of seismic surveys.

SGeMS provides a program for object-based simulation TIGENERATOR (Sec-
tion 9.9), other programs are available in many free and commercial softwares,
such as “fluvsim” (Deutsch and Tran, 2002) and “SBED” (http://www.
geomodeling.com).

The multiple-point simulation (mps) concept proposed by Guardiano and Sri-
vastava (1993) and first implemented efficiently by Strebelle (2000), combines
the strengths of the previous two classes of simulation algorithms. It operates
pixel-wise with the conditional probabilities for each pixel value being lifted
as conditional proportions from a training image depicting the geometry and
distribution of objects deemed to prevail in the actual field. That training image
(Ti), a purely conceptual depiction without any local accuracy, can be built using

8.2 Multiple-point simulation algorithms 169

object-based algorithms. In mps the spatial patterns and structures lifted from the
training image replace the 2-point structure delivered by the variogram/covariance
model in traditional 2-point geostatistics. In essence, mps tries to match (exactly or
approximately) a whole set of data values found in a search template/neighborhood
to one or more sets of training values. The match sought is not of one datum at a
time, but a match of a pattern of multiple data values taken altogether, hence the
qualifier “multiple-point”.

8.2.1 SNESIM: single normal equation simulation

The original mps implementation by Guardiano and Srivastava (1993) was much
too slow, because it asked for a rescan of the whole Ti for each new multiple-
point (mp) conditioning data event at each simulation node. That scan is needed
to retrieve the required conditional proportion from which to draw the simulated
value. The mps concept became practical with the SNESIM implementation of
Strebelle (2000). In SNESIM, the Ti is scanned only once; all conditional propor-
tions available in that Ti for a given search template size are stored in a search tree
data structure, from which they can be efficiently retrieved.

The SNESIM algorithm contains two main parts, the construction of the search
tree where all training proportions are stored, and the simulation part itself where
these proportions are read and used to draw the simulated values.

Search tree construction

A search template TJ is defined by J vectors h j , j = 1, . . . , J radiating from a
central node u0. The template is thus constituted by J nodes (u0 + h j , j = 1,

. . . , J). That template is used to scan the training image and record all training
patterns pat (u′

0) = {
t (u′

0); t (u′
0 + h j), j = 1, . . . , J

}
, where u′

0 is any central
node of the Ti; t (u′

0 + h j) is the training image value at grid node u′
0 + h j . All

these training patterns are stored in a search tree data structure, such that one can
retrieve easily the following.

1. The total number (n) of patterns with exactly the same J data values DJ ={
d j , j = 1, . . . , J

}
. One such pattern would be {t (u′

0 + h j) = d j , j =
1, . . . , J }.

2. For those patterns, the number (nk) which features a specific value t (u′
0) = k,

(k = 0, . . . , K − 1) at the central location t (u′
0).

There, K is the total number of categories. The ratio of these two numbers gives
the proportion of training patterns featuring the central value t (u′

0) = k among all
those identifying the J “data” values t (u′

0 + h j) = d j :

P(t (u′
0) = k|DJ) = nk

n
, k = 0, . . . , K − 1. (8.2)

170 Stochastic simulation algorithms

Single grid simulation

The SNESIM sequential simulation proceeds one pixel at a time following a ran-
dom path visiting all the nodes within the simulation grid G. Hard data are
relocated to the closest nodes of G, and for all uninformed nodes, the classical
sequential simulation (see Section 3.3.1) is used.

At each simulation node u, the search template TJ is used to retrieve the
conditional data event dev(u) which is defined as

devJ (u) = {z(l)(u + h1), . . . , z(l)(u + hJ)}, (8.3)

where z(l)(u + h j) is an informed nodal value in the lth SNESIM realization;
such value could be either an original hard datum value or a previously simulated
value. Note that there can be any number of uninformed nodal values among the J
possible locations of the template TJ centered at u.

Next, find the number n of training patterns which have the same values as
devJ (u) from the search tree. If n is less than a fixed threshold cmin (the min-
imum number of replicates), define a smaller data event devJ−1(u) by dropping
the furthest away informed node from devJ (u), and repeat the search. This step
is repeated until n ≥ cmin. Let J ′ (J ′ ≤ J) be the data event size for which
n ≥ cmin.

The conditional probability, from which the nodal value z(s)(u) is drawn, is set
equal to the corresponding training image proportion:

P(Z(u) = k|devJ (u)) ≈ P(Z(u) = k|devJ ′(u))

= P(t (u′
0) = k|devJ ′(u)).

This probability is thus conditional to an mp data set (up to J data values) found
with the search template TJ .

Algorithm 8.11 describes the simplest version of the SNESIM algorithm with a
K -category variable Z(u) valued in {0, . . . , K − 1}.

The search tree stores all training replicates
{
t (u′

0); t (u′
0 + hj), j = 1, . . . , J

}
,

and allows a fast retrieval of the conditional probability distribution of step 7 in
O(J). This speed comes at the cost of a possibly large RAM memory demand. Let
NTi be the total number of locations in the training image. No matter the search
template size J , there can not be more than NTi different data events in the training
image; thus an upper-bound of the memory demand of the search tree is:

Memory Demand ≤
j=J∑
j=1

min(K j , NTi)

where K j is the total number of possible data value combinations with K
categories and j nodes.

8.2 Multiple-point simulation algorithms 171

Algorithm 8.11 Simple single grid SNESIM

1: Define a search template TJ

2: Construct a search tree specific to template TJ

3: Relocate hard data to the nearest simulation grid node and freeze them during
simulation

4: Define a random path visiting all locations to be simulated
5: for Each location u along the path do
6: Find the conditioning data event devJ (u) defined by template TJ

7: Retrieve the conditional probability distribution ccdf
P(Z(u) = k|devJ (u)) from search tree

8: Draw a simulated value z(s)(u) from that conditional probability and add it
to the data set

9: end for

Tip 2
The J number of nodes in the search template is critical for SNESIM simulations.
The greater the J value, the better the final simulated realizations, provided the
training image retained is large and varied enough to provide enough replicates of
such large J -point data event. However, the memory cost will increase dramatically
when J is too large. For most of the 3D simulations, the J value should be set
between 60 and 100, for example 80.

Tip 3
The SNESIM memory cost is also related to the K number of categories of the
training image. In general, SNESIM works well with training images with no more
than four categories. If the training image has more than 5 categories, then consider
the hierarchical simulation approach proposed by Maharaja (2004), or use
FILTERSIM (see Section 8.2.2).

Multiple grid simulation

The multiple grid simulation approach (Tran, 1994) is used to capture large scale
structures using a search template TJ large but with a reasonably small number of
nodes. Denoted by G the 3D Cartesian grid on which simulation is to be performed,
define Gg as the gth sub-set of G such that: G1 = G and Gg is obtained by down-
sampling Gg−1 by a factor of 2 along each of the 3 coordinate directions: Gg is the
sub-set of Gg−1 obtained by retaining every other node of Gg−1. Gg is called the
gth level multi-grid. Figure 8.19 illustrates a simulation field which is divided into
3 multiple grids.

172 Stochastic simulation algorithms

n = 2, medium grid

n = 3, coarsest grid

n = 1, finest grid

Figure 8.19 Three multiple grids (coarsest, medium and finest)

coarse grid
template

fine grid
template

un-used nodes

used nodes

Figure 8.20 Multi-grid search template (coarse and fine)

In the gth subgrid Gg, the search template TJ is correspondingly rescaled by a
factor 2g−1 such that

T g
J = {2g−1h1, . . . , 2g−1hJ }.

Template T g
J has the same number of nodes as TJ but has a greater spatial extent,

hence allows capturing large-scale structures without increasing the search tree
size. Figure 8.20 shows a fine template of size 3 × 3 and the expanded coarse
template in the 2nd level coarse grid. Note that for each multiple grid a new search
tree must be built.

During simulation, all nodes simulated in the previous coarser grid are frozen,
i.e. they are not revisited. Algorithm 8.12 describes the implementation of multiple
grids in SNESIM.

Anisotropic template expansion

To get the gth coarse grid, both the base search template and the simulation grid
are expanded by a constant factor 2g−1 in all three directions. This expansion is
thus “isotropic”, and used as default.

The expansion factor in each direction can be made different. The gth coarse
grid Gg is defined by retaining every f g

x node, every f g
y node and every f g

z node
in the X, Y, Z directions, respectively.

8.2 Multiple-point simulation algorithms 173

Algorithm 8.12 SNESIM with multiple grids

1: Choose the number NG of multiple grids
2: Start on the coarsest grid Gg, g = NG

3: while g > 0 do
4: Relocate hard data to the nearest grid nodes in current multi-grid
5: Build a new template T g

J by re-scaling template TJ

6: Build the search tree Treeg using the training image and template T g
J

7: Simulate all nodes of Gg as in Algorithm 8.11
8: Remove the relocated hard data from current multi-grid if g > 1
9: Move to next finer grid Gg−1 (let g = g − 1)

10: end while

The corresponding search template T g
J is then re-scaled as:

T g
J = {fg · h1, . . . , fg · hJ },

where fg = { f g
x , f g

y , f g
z }. Note that the total number J of template nodes remains

the same for all grids. This “anisotropic” expansion calls for the expansion factors
to be input through the SNESIM interface.

Let i = X, Y, Z and 1 ≤ g ≤ G (G ≤ 10). The requirement for the input
anisotropic expansion factors are:

1. all expansion factors (f g
i) must be positive integers;

2. expansion factor for the finest grid must be 1 (f 1
i ≡ 1);

3. expansion factor for the (g − 1)th multi-grid must be smaller than or equal to
that for the gth multi-grid (f g−1

i ≤ f g
i);

4. expansion factor for the (g −1)th multi-grid must be a factor of that for the gth
multi-grid (f g

i mod f g−1
i = 0).

For example, valid expansion factors for three multiple grids are:

1 1 1 1 1 1 1 1 1
2 2 1 or 4 2 2 or 3 3 1 .
4 4 2 8 4 2 9 6 2

A sensitivity analysis of the anisotropic expansion parameter should be performed
before any application. An interesting development, not coded here, would be to
consider a different training image for each different multiple grid.

Marginal distribution reproduction

It is sometimes desirable that the histogram of the simulated variable be close to
a given target distribution, e.g. the sample histogram. There is, however, no con-
straint in SNESIM as described in Algorithm 8.11 or Algorithm 8.12 to ensure that

174 Stochastic simulation algorithms

such target distribution be reproduced. It is recommended to select a training image
whose histogram is reasonably close to the target marginal proportions. SNESIM
provides a servo system to correct the conditional distribution function read at each
nodal location from the search tree (step 7 of Algorithm 8.11) to gradually gear the
histogram of the up-to-now simulated values towards the target.

Let pc
k , k = 0, . . . , K − 1, denote the proportions of values in class k simu-

lated so far, and pt
k , k = 0, . . . , K − 1, denote the target proportions. Step 7 of

Algorithm 8.11 is modified as follows.

1. Compute the conditional probability distribution as originally described in step
7 of Algorithm 8.11.

2. Correct the probabilities P
(
Z(u) = k | devJ (u)

)
into:

P∗(Z(u) = k | devJ (u)
) = P

(
Z(u) = k | devJ (u)

) + ω

1 − ω
∗ (pt

k − pc
k)

where ω ∈ [0, 1) is the servosystem intensity factor. If ω = 0, no correction is
performed. Conversely, if ω → 1, reproducing the target distribution entirely
controls the simulation process, at the risk of failing to reproduce the training
image geological structures.

If P∗(Z(u) = k | devJ (u)
)

/∈ [0, 1], it is reset to the closest bound. All
updated probability values are then rescaled to sum up to 1:

P∗∗(Z(u) = k | devJ (u)
) = P∗(Z(u) = k | devJ (u)

)∑K
k=1 P∗(Z(u) = k | devJ (u)

) .

A similar procedure can be called to reproduce a given vertical proportion curve
for each horizontal layer. The vertical proportion should be provided in input as
a 1D property with number of nodes in X and Y directions equal to 1, and the
number of nodes in the Z direction equal to that of the simulation grid. When the
user inputs both a vertical proportion curve and a global target proportion, the latter
is actually ignored, see Section 8.2.1 for more details about the target proportion
control.

Soft data integration

Soft (secondary) data may be available to constrain the simulated realizations. The
soft data are typically obtained by remote sensing techniques, such as seismic data.
Often soft data provide exhaustive but low resolution information over the whole
simulation grid. SNESIM can account for such secondary information. The soft
data Y (u) must be first calibrated into prior probability data P

(
Z(u) = k|Y (u)

)
,

k = 0, . . . , K − 1 related to presence or absence of a certain category k centered
at location u, where K is the total number of categories.

8.2 Multiple-point simulation algorithms 175

The tau model (Section 3.10) is used to integrate probabilities coming from
the soft data and the training image. The conditional distribution function of
step 7 of Algorithm 8.11, P

(
Z(u) = k | devJ (u)

)
, is updated into P

(
Z(u) =

k | devJ (u), Y (u)
)

as:

P
(
Z(u) = k | devJ (u), Y (u)

) = 1

1 + x
, (8.4)

where the distance x is calculated as
x

x0
= (x1

x0

)τ1
(x2

x0

)τ2
, τ1, τ2 ∈ (−∞, +∞), (8.5)

where the distances x0, x1, x2 are defined as:

x0 = 1 − P
(
Z(u) = k

)
P

(
Z(u) = k

)
x1 = 1 − P

(
Z(u) = k | devJ (u)

)
P

(
Z(u) = k | devJ (u)

)
x2 = 1 − P

(
Z(u) = k | Y (u)

)
P

(
Z(u) = k | Y (u)

) .

P
(
Z(u) = k

)
is the target marginal proportion of category k. The two weights

τ1 and τ2 account for the redundancy (Krishnan et al., 2005) between the local
conditioning data event devJ (u) and the soft data Y (u). The default values are
τ1 = τ2 = 1, corresponding to non-redundant data. See Section 3.10 for more
details about the tau model.

Step 7 of Algorithm 8.11 is then modified as follows.

1. Estimate the probability P
(
Z(u) = k | devJ (u)

)
as described in Algo-

rithm 8.11.
2. Compute the updated probability P

(
Z(u) = k | devJ (u), Y (u)

)
using

Eq. (8.4).
3. Draw a realization from the updated distribution function.

Subgrid concept

As described earlier in Section 8.2.1, whenever SNESIM cannot find enough train-
ing replicates of a given data event devJ , it will drop the furthest node in devJ

and repeat searching until the number of replicates is greater than or equal (≥)
to cmin. This data dropping procedure not only decreases the quality of pattern
reproduction, but also significantly increases CPU cost.

The subgrid concept is proposed to alleviate the data dropping effect.
Figure 8.21a shows the eight contiguous nodes of a 3D simulation grid, also seen

176 Stochastic simulation algorithms

A C C C C

C C C C

C B C B C B C B

A A A

A A A A

C C C C

C B C B C B C B

A A A A

C C C C

C B C B C B C B

A A A A

C B C B C B C B

A C C C C

C C C C

C B C B C B C B

A A A

A A A A

C C C C

C B C B C B C B

A A A A

C C C C

C B C B C B C B

A A A A

C B C B C B C B

3rd grid

2nd grid

A : 1st sub-grid
B : 2nd sub-grid
C : 3rd sub-grid

A

A C

C

C

CB

B

A

BC

C

(a)

(b)

(c) (d)

Figure 8.21 Subgrid concept: (a) 8 close nodes in 3D grid; (b) 8 nodes repre-
sented in the corners of a cubic; (c) 4 close nodes in 2D grid; (d) 3 subgrids in the
2nd multi-grid.

as the 8 corners of a cube (Fig. 8.21b). Among them, nodes 1 and 8 belong to
subgrid 1; nodes 4 and 5 belong to subgrid 2, and all other nodes belong to sub-
grid 3. Figure 8.21c shows the subgrid concept in 2 dimensions. The simulation
is performed first over subgrid 1, then subgrid 2 and finally over subgrid 3. This
subgrid simulation concept is applied to all multiple grids except the coarsest grid.
Figure 8.21d shows the 3 subgrids over the 2nd multi-grid, where “A” denotes the
1st subgrid nodes, “B” denotes the 2nd subgrid nodes, and “C” denotes the 3rd
subgrid nodes.

In the 1st subgrid of the gth multi-grid, most of the nodes (of type A) would
have been already simulated in the previous coarse (g + 1)th multi-grid: with the
default isotropic expansion, 80% of these nodes are already simulated in the pre-
vious coarser grid in 3D and 100% of them in 2D. In that 1st subgrid, the search
template is designed to only use the A-type nodes as conditioning data, hence the
data event is almost full. Recall that the nodes previously simulated in the coarse
grid are not resimulated in this subgrid.

In the 2nd subgrid, all the nodes marked as “A” in Fig. 8.21d are now informed
by a simulated value. In this subgrid, the search template TJ is designed to use only
the A-type nodes, but conditioning includes in addition the J ′ closest B-type nodes;
the default is J ′ = 4. In total, there are J + J ′ nodes in the search template T for
that 2nd subgrid. The left plot of Fig. 8.22 shows the 2nd subgrid nodes and the
template nodes of a simple 2D case with isotropic expansion: the basic search tem-
plate of size 14 is marked by the solid circles, the J ′ = 4 additional conditioning

8.2 Multiple-point simulation algorithms 177

A

B B B B

A A A

A A A A

B ? B B

A A A A

B B B B

A A A A

B B B B

A

B B B B

A A A

A A A A

B ? B B

A A A A

B B B B

A A A A

B B B B

basic node

added node

A C C C C

C C C C

C B C B C B C B

A A A

A A A A

C C C C

C B C B ? B C B

A A A A

C C C C

C B C B C B C B

A A A A

C B C B C B C B

A C C C C

C C C C

C B C B C B C B

A A A

A A A A

C C C C

C B C B ? B C B

A A A A

C C C C

C B C B C B C B

A A A A

C B C B C B C B

3rd grid

2nd grid

A : 1st sub-grid
B : 2nd sub-grid
C : 3rd sub-grid

Figure 8.22 Simulation nodes and search template in subgrid (left: 2nd subgrid;
right: 3rd subgrid)

nodes are marked by the dash circles. Note that the data event captured by the basic
template nodes (solid circles) is always full.

When simulating over the 3rd subgrid, all nodes in both the 1st and the 2nd
subgrids (of types A and B) are fully informed with simulated values. In that 3rd
subgrid, the base template TJ is designed to search only nodes of types A and B
for a conditioning data event informed as either original hard data or previously
simulated data. Again, J ′ nearest nodes of type C in the current subgrid are used as
additional conditioning data. In the right plot of Fig. 8.22, the basic search template
for the 3rd subgrid is marked by solid circles, the J ′ = 4 additional conditioning
nodes are marked by dash circles.

The subgrid approach mimics a staggered grid, allowing more conditioning data
to be found during simulation in each subgrid; also the search for these data is much
faster. It is strongly recommended to use this subgrid option for 3D simulation.
Algorithm 8.12 is modified as shown in Algorithm 8.13.

Tip 4
If the user wants to use the subgrid concept and the anisotropic template expansion
simultaneously, all expansion factors should be power 2 value, i.e. f g

i = 2n, where
i = X, Y, Z and g is the coarse grid number. Otherwise, the subgrid option will be
turned off automatically, because the SNESIM cannot mimic a staggered grid any
more.

Node re-simulation

The other solution for reducing data dropping effect is to re-simulate those nodes
that were simulated with too small a number of conditioning data, i.e. less than a

178 Stochastic simulation algorithms

Algorithm 8.13 SNESIM with multi-grids and subgrid concept

1: for Each subgrid s do
2: Build a combined search template T s

J,J ′ = {hi , i = 1, . . . , . . . , (J + J ′)}
3: end for
4: Choose the number L of multiple grids to consider
5: Start with the coarsest grid Gg, g = L
6: while g > 0 do
7: Relocate hard data to the nearest grid nodes in current multi-grid
8: for Each subgrid s do
9: Build a new geometrical template T g,s

J,J ′ by re-scaling template T s
J,J ′

10: Build the search tree Treeg,s using the training image and template T g
J,J ′

11: Simulate all nodes of Gg,s as in Algorithm 8.11
12: end for
13: Remove the relocated hard data from current multi-grid if g > 1
14: Move to next finer grid Gg−1 (let g = g − 1)
15: end while

given threshold. SNESIM records the number Ndrop of data event nodes dropped
during simulation. After the simulation on each subgrid of each multiple grid, the
simulated values at those nodes with Ndrop larger than a threshold are de-allocated,
and pooled into a new random path. Then SNESIM is performed again along
this new random path. This post-processing technique (Remy, 2001) improves
reproduction of the large-scale patterns.

In the current SNESIM coding, the threshold value is input through the graphic
interface. SNESIM also allows to repeat this post-processing through multiple
iterations.

Accounting for local non-stationarity

Any training image should be reasonably stationary so that meaningful statis-
tics can be inferred by scanning it. It is however possible to introduce some
non-stationarity in the simulation through local rotation and local scaling of an
otherwise stationary Ti. SNESIM provides two approaches to handle such non-
stationary simulation: (1) modify locally the training image; (2) use different
training images. The first approach is presented in this section; the second will
be detailed in Section 8.2.1.

The simulation field G can be divided into several rotation regions, each region
associated with a rotation angle. Let r i (i = 0, . . . , Nrot − 1) be the rotation angle
about the (vertical) Z-axis in the i th region Ri , where Nrot is the total number of
regions for rotation, and R0∪· · ·∪RNrot−1 = G. In the present SNESIM version one
single azimuth rotation is allowed around the Z-axis, with the angle measured in

8.2 Multiple-point simulation algorithms 179

degree increasing clockwise from the Y-axis. If needed, additional rotations of both
the data sets and the simulation grids could be performed prior to using SNESIM.

The simulation grid G can also be divided into a set of scaling regions, each
region associated with scaling factors in X/Y/Z directions. Let f j = { f j

x , f j
y , f j

z }
(j = 0, . . . , Naff − 1) be the scaling factors, also called affinity ratios, in the j th
region S j , where Naff is number of regions for scaling, S0 ∪ · · · ∪ SNaff−1 = G, and
f j
x , f j

y , f j
z are the affinity factors in the X/Y/Z directions, respectively. All affinity

factors must be positive ∈ (0,+∞). The larger the affinity factor, the larger the
geological structure in that direction. An affinity factor equal to 1 means no training
image scaling.

The Nrot rotation regions and Naff scaling regions can be independent from one
another, thus allowing overlap of rotation regions with scaling regions.

Given Nrot rotation regions and Naff affinity regions, the total number of new
training images after scaling and rotation is Nrot · Naff. Correspondingly, one differ-
ent search tree must be constructed using template TJ for each new training image
Tii, j defined as:

Tii, j (u) = �i · � j · T i(u),

where u is the node in the training image, �i is the rotation matrix for rotation
region i , and � j is the scaling matrix for affinity region j :

�i =
⎡⎣ cos r i sin r i 0

− sin r i cos r i 0
0 0 1

⎤⎦ � j =

⎡⎢⎣ f j
x 0 0
0 f j

y 0
0 0 f j

z

⎤⎥⎦ . (8.6)

Nrot = 1 means to rotate the Ti globally, which can be also achieved by specifying
one global rotation angle (see the latter parameter description section). Similarly
Naff = 1 corresponds to a global scaling of the Ti.

The corresponding SNESIM algorithm is described in Algorithm 8.14.
This solution can be very memory demanding as one new search tree has to be

built for each pair of scaling factor f j and rotation angle ri . Practice has shown that
it is possible to generate fairly complex models using a limited number of regions:
a maximum of five rotation regions and five affinity regions is sufficient in most
cases with a reasonable size training image.

Region concept

The rotation and affinity concepts presented in the previous section allow to
account only for limited non-stationarity in that the geological structures in the
different subdomains are similar except for orientation and size. In more difficult
cases, the geological structures may be fundamentally different from one zone or
region to another, calling for different training images in different regions, see
R1, R2 and R3 in Fig. 8.23. Also, parts of the study field may be inactive (R4

180 Stochastic simulation algorithms

Algorithm 8.14 SNESIM with locally varying azimuth and affinity

1: Define a search template TJ

2: for Each rotation region i do
3: for Each affinity region j do
4: Construct a search tree Tri, j for training image Tii, j using template TJ

5: end for
6: end for
7: Relocate hard data to the nearest simulation grid nodes
8: Define a random path visiting all locations to be simulated
9: for Each location u along the path do

10: Find the conditioning data event devJ (u) defined by template TJ

11: Locate the region index (i, j) of location u
12: Retrieve the conditional probability distribution ccdf P(Z(u) = k|devJ (u))

from the corresponding search tree Tri, j

13: Draw a simulated value z(s)(u) from that conditional distribution and add it
to the data set

14: end for

in Fig. 8.23), hence there is no need to perform SNESIM simulation in those loca-
tions, and the target proportion should be limited to only the active cells. There may
be a slow transition between these subdomains, calling for data sharing at borders.
The region concept allows for such gradual transitions as opposed to a set of totally
independent simulations.

The simulation grid G is first divided into a set of subdomains (regions) Gi , i =
0, . . . , NR −1, where NR is the total number of regions, and G0 ∪· · ·∪G NR−1 = G.
Perform normal SNESIM simulation for each active region with its specific training
image and its own parameter settings. The regions can be simulated in any order,
or can be simulated simultaneously through a random path visiting all regions.

To simulate a domain with regions, the user has to simulate each region sequen-
tially. Except for the first region, the simulations in any region are conditioned to
close-by values simulated in other regions, in order to reduce discontinuity across
region boundaries. The simulated result contains not only the property values in the
current region, but also the property copied from the other conditioning regions.
For instance in Fig. 8.23, when region 2 (R2) is simulated conditional to the prop-
erty re1 in region 1 (R1), the simulated realization re1,2 contains the property in
both R1 and R2. Next the property re1,2 can be used as conditioning data to perform
SNESIM simulation in region 3 (R3), which will result in a realization over all the
active areas (R1 + R2 + R3).

8.2 Multiple-point simulation algorithms 181

R4
R3

R2

R1

inactive area

TI 3

TI 2TI 1

Figure 8.23 Simulation with region concept: each region is associated to a specific Ti

Tip 5
Although the region concept has to be applied manually, advanced users can use
Python scripts to automate the simulation tasks (see details in Section 10.2). Because
the regions are processed in sequence, only one search tree is actually saved in
memory during the simulation. This significantly reduces the memory cost. Hence
with the Python scripts, the user can account for local non-stationary constraints
with more rotation and scaling regions, for instance Nrot × Naff > 25.

Target distributions

SNESIM allows three types of target proportions: a global target proportion, a ver-
tical proportion curve and a soft probability cube. Three indicators I1, I2, I3 are
defined as follows.

I1 =
{

1 a global target is given

0 no global target

I2 =
{

1 a vertical proportion curve is given

0 no vertical proportion curve

I3 =
{

1 a probability cube is given

0 no probability cube

182 Stochastic simulation algorithms

There is a total 23 = 8 possible options. The SNESIM program will proceed as
follows, according to the given option.

1. I1 = I2 = I3 = 1 [global target, vertical proportion curve and probability
cube all given] SNESIM ignores the global target, and checks consistency
between the soft probability cube and the vertical proportion. If these are not
consistent, a warning is prompted in the algorithm status bar, and the program
continues running without waiting for correction of the inconsistency. The local
conditional probability distribution (ccdf) is updated first for the soft probabil-
ity cube using a tau model, then the servosystem is enacted using the vertical
probability values as target proportion for each layer.

2. I1 = I2 = 1, I3 = 0 [global target, vertical proportion curve, no proba-
bility cube] SNESIM ignores the global target, and corrects the ccdf with
the servosystem using the vertical probability value as target proportion for
each layer.

3. I1 = 1, I2 = 0, I3 = 1 [global target, no vertical proportion curve, probability
cube] SNESIM checks the consistency between the soft probability cube and
the global target proportion. If these are not consistent, a warning is prompted
in the algorithm status bar and the program continues running without correct-
ing the inconsistency. The ccdf is updated first for the soft probability cube
using the tau model, then the servosystem is enacted to approach the global
target proportion.

4. I1 = 1, I2 = I3 = 0 [global target, no vertical proportion curve, no probability
cube] SNESIM corrects the ccdf with the servosystem to approach the global
target proportion.

5. I1 = 0, I2 = I3 = 1 [no global target, vertical proportion curve, probability
cube] Same as case 1.

6. I1 = 0, I2 = 1, I3 = 0 [no global target, vertical proportion curve, no
probability cube] Same as case 2.

7. I1 = I2 = 0, I3 = 1 [no global target, no vertical proportion curve, probability
cube] SNESIM gets the target proportion from the training image, then checks
the consistency between the soft probability cube and that target proportion.
If these are not consistent, a warning is prompted in the algorithm status bar
and the program continues running without correcting the inconsistency. The
ccdf is updated first for the soft probability cube using a tau model, then the
servosystem is enacted to approach the target proportion.

8. I1 = I2 = I3 = 0 [no global target, no vertical proportion curve, no proba-
bility cube] SNESIM gets the target proportion from the training image, then
corrects the ccdf with the servosystem to approach the global proportion.

8.2 Multiple-point simulation algorithms 183

Parameters description

The SNESIM algorithm is activated from Simulation → snesim std in the upper
part of the Algorithm Panel. The main SNESIM interface contains four pages:
“General”, “Conditioning”, “Rotation/Affinity” and “Advanced” (see Fig. 8.24).
The SNESIM parameters will be presented page by page in the following. The text
inside “[]” is the corresponding keyword in the SNESIM parameter file.

1. Simulation Grid Name [GridSelector Sim] The name of grid on which
simulation is to be performed.

2. Property Name Prefix [Property Name Sim] Prefix for the simulation out-
put. The suffix real# is added for each realization.

3. # of Realizations [Nb Realizations] Number of realizations to be simu-
lated.

4. Seed [Seed] A large odd integer to initialize the pseudo-random number
generator.

5. Training Image | Object [PropertySelector Training.grid] The name
of the grid containing the training image.

6. Training Image | Property [PropertySelector Training.property] The
training image property, which must be a categorical variable whose value
must be between 0 and K − 1, where K is the number of categories.

7. # of Categories [Nb Facies] The number K of categories contained in the
training image.

8. Target Marginal Distribution [Marginal Cdf] The target category propor-
tions, must be given in sequence from category 0 to category Nb Facies-1. The
sum of all target proportions must be 1.

9. # of Nodes in Search Template [Max Cond] The maximum number J of
nodes contained in the search template. The larger the J value, the better the
simulation quality if the training image is correspondingly large, but the more
demand on RAM memory. Usually, around 60 nodes in 2D and 80 nodes in
3D with multigrid option should create fairly good realizations.

10. Search Template Geometry [Search Ellipsoid] The ranges and angles
defining the ellipsoid used to search for neighboring conditioning data. The
search template TJ is automatically built from the search ellipsoid retaining
the J closest nodes.

11. Hard Data | Object [Hard Data.grid] The grid containing the hard con-
ditioning data. The hard data object must be a point set. The default input is
“None”, which means no hard conditioning data are used.

12. Hard Data | Property [Hard Data.property] The property of the hard con-
ditioning data, which must be a categorical variable with values between 0 and
K − 1. This parameter is ignored when no hard data conditioning is selected.

184 Stochastic simulation algorithms

30
31

33

35

36

37

38

39

40
41

42

43 44

45

32

34

20

21

22

23

24

25 26

27

28

29

10

11

12

13

14

15

16

17

18

19

1

2

3
4

5

6

7

8

9

Figure 8.24 SNESIM interface

8.2 Multiple-point simulation algorithms 185

13. Use Probability Data Calibrated from Soft Data [Use ProbField] This
flag indicates whether the simulation should be conditioned to prior local
probability cubes. If marked, perform SNESIM conditional to prior local
probability information. The default is not to use soft probability cubes.

14. Soft Data | Choose Properties [ProbField properties] Selection for the
soft probability data. One property must be specified for each category k. The
property sequence is critical to the simulation result: the kth property corre-
sponds to P

(
Z(u) = k | Y (u)

)
. This parameter is ignored if Use ProbField

is set to 0. Note that the soft probability data must be given over the same
simulation grid defined in (1).

15. Tau Values for Training Image and Soft Data [TauModelObject] Input
two tau parameter values: the first tau value is for the training image, the
second tau value is for the soft conditioning data. The default tau values are
“1 1”. This parameter is ignored if Use ProbField is set to 0.

16. Vertical Proportion | Object [VerticalPropObject] The grid containing
the vertical proportion curve. This grid must be 1D: the number of cells in the
X and Y directions must be 1, and the number of cells in the Z direction must
be the same as that of the simulation grid. The default input is “None”, which
means no vertical proportion data is used.

17. Vertical Proportion | Choose Properties [VerticalProperties] Select
one and only one proportion for each category k. The property sequence is
critical to the simulation result. If VerticalPropObject is “None”, then this
parameter is ignored.

18. Use Azimuth Rotation [Use Rotation] The flag to use the azimuth rotation
concept to handle non-stationary simulations. If marked (set as 1), then use
rotation concept. The default is not to use rotation.

19. Use Global Rotation [Use Global Rotation] To rotate the training image
with a single azimuth angle. If marked (set as 1), a single angle must be
specified in “Global Rotation Angle”.

20. Use Local Rotation [Use Local Rotation] To rotate the training image
for each region. If selected, a rotation angle must be specified for each
region in Rotation categories. Note that Use Global Rotation and
Use Local Rotation are mutually exclusive.

21. Global Rotation Angle [Global Angle] The global azimuth rotation angle
given in degrees. The training image will be rotated clockwise by that angle
prior to simulation. This parameter is ignored if Use Global Rotation is set
to 0.

22. Property with Azimuth Rotation Categories [Rotation property] The
property containing the coding of the rotation regions, must be given over
the same simulation grid as defined in (1). The region code ranges from 0

186 Stochastic simulation algorithms

to Nrot −1 where Nrot is the total number of regions. The angles corresponding
to all the regions are specified by Rotation categories.

23. Rotation Angles per Category [Rotation categories] The angles,
expressed in degrees, corresponding to each region. The angles must be given
in sequence separated by a space. If Use Global Rotation is set to 0, then this
parameter is ignored.

24. Use Scaling [Use Affinity] The flag to use the affinity concept to handle
non-stationary simulations. If marked (set as 1), use the affinity concept. The
default is not to use scaling.

25. Use Global Affinity [Use Global Affinity] The flag to indicate whether to
scale the training image with the same constant factor in each X/Y/Z direction.
If checked (set as 1), three affinity values must be specified in “Global Affinity
Change”.

26. Use Local Affinity [Use Local Affinity] To scale the training image for
each affinity region. If set to 1, three affinity factors must be specified for
each region. Note that Use Global Affinity and Use Local Affinity are
mutually exclusive.

27. Global Affinity Change [Global Affinity] Input three values (separated
by spaces) for the X/Y/Z directions, respectively. If the affinity value in a cer-
tain direction is f , then the category width in that direction is f times the
original width; the larger f the wider the simulated bodies.

28. Property with Affinity Changes Categories [Affinity property] The
property containing the coding of the affinity regions, must be given over
the same simulation grid as defined in (1). The region code ranges from 0 to
Naff − 1 where Naff is the total number of affinity regions. The affinity factors
should be specified by Affinity categories.

29. Affinity Changes for Each Category [Affinity categories] Input the
affinity factors in the table: one scaling factor for each X/Y/Z direction and
for each region. The region index (the first column in the table) is actually the
region indicator plus 1.

30. Min # of Replicates [Cmin] The minimum number of training replicates of
a given conditioning data event to be found in the search tree before retrieving
its conditional probability. The default value is 1.

31. Servosystem Factor [Constraint Marginal ADVANCED] A parameter (∈
[0, 1]) which controls the servosystem correction. The higher the servosystem
parameter value, the better the reproduction of the target category proportions.
The default value is 0.5.

32. Re-simulation Threshold [resimulation criterion] The threshold value
needed for re-simulation. Those simulated nodes with Ndrop (number of

8.2 Multiple-point simulation algorithms 187

conditioning nodes dropped during simulation) larger than the input threshold
value are re-simulated. The default value is −1, which means no re-simulation.

33. Re-simulation Iteration # [resimulation iteration nb] The number of
iterations to repeat the above post-processing procedure. This parameter is
ignored when resimulation criterion is −1. The default value is 1.

34. # of Multigrids [Nb Multigrids ADVANCED] The number of multiple grids
to consider in the multiple grid simulation. The default value is 3.

35. Debug Level [Debug Level] The option controls the output in the simulation
grid. The larger the debug level, the more outputs from SNESIM:
• if 0, then only the final simulation result is output (default value);
• if 1, then a map showing the number of nodes dropped during simulation is

also output;
• if 2, then intermediate simulation results are output in addition to the outputs

from options 0 and 1.
36. Use subgrids [Subgrid choice] The flag to divide the simulation nodes on

the current multi-grid into three groups to be simulated in sequence. It is
strongly recommended to use this option for 3D simulation.

37. Previously simulated nodes [Previously simulated] The number of
nodes in current subgrid to be used for data conditioning. The default value
is 4. This parameter is ignored if Subgrid choice is set to 0.

38. Use Region [Use Region] The flag indicates whether to use the region con-
cept. If marked (set as 1), perform SNESIM simulation with the region concept;
otherwise perform SNESIM simulation over the whole grid.

39. Property with Region Code [Region Indicator Prop] The property con-
taining the index coding of the regions, must be given over the same simulation
grid as defined in (1). The region code ranges from 0 to NR − 1 where NR is
the total number of regions.

40. List of Active Regions [Active Region Code] Input the index of the region
to be simulated, or indices of the regions to be simulated simultaneously. If
simulation with multiple regions, the input region indices (codes) should be
separated by spaces.

41. Condition to Other Regions [Use Previous Simulation] The option to
perform region simulation conditional to data from other regions.

42. Property of Previously Simulated Regions [Previous Simulation Pro]
The property simulated in the other regions. The property can be different
from one region to another. See Section 8.2.1.

43. Isotropic Expansion [expand isotropic] The flag to use isotropic expan-
sion method for generating the series of cascaded search templates and
multiple grids.

188 Stochastic simulation algorithms

44. Anisotropic Expansion [expand anisotropic] The flag to use anisotropic
factors for generating a series of cascaded search templates and multiple grids.

45. Anisotropic Expansion Factors [aniso factor] Input an integer expansion
factor for each X/Y/Z direction and for each multiple grid in the given table.
The first column of the table indicates the multiple grid level; the smaller the
number, the finer the grid. This option is not recommended to beginners.

Examples

This section presents four examples showing how SNESIM algorithm works with
categorical training images with or without data conditioning for both 2D and 3D
simulations.

EXAMPLE 1: 2D unconditional simulation
Figure 8.25a shows a channel training image of size 150 × 150. This training
image contains four facies: mud background, sand channel, levee and crevasse.
The facies proportions are 0.45, 0.2, 0.2 and 0.15 respectively. An uncon-
ditional SNESIM simulation is performed with this training image using a
maximum of 60 conditioning data, and a servosystem 0.5. The search template
is isotropic in 2D with isotropic template expansion. Four multiple grids are
used to capture large scale channel structures. Figure 8.25b gives one SNESIM
realization, whose facies proportions are 0.44, 0.19, 0.2 and 0.17 respectively.
It is seen that the channel continuities and the facies attachment sequence are
reasonably well reproduced.

EXAMPLE 2: 3D simulation conditioning to well data and soft seismic data
In this example, the large 3D training image (Fig. 8.26a) is created with the
object-based program “fluvsim” (Deutsch and Tran, 2002). The dimension of

(a) Four categories training image (b) One SNESIM realization

Figure 8.25 [Example 1] Four facies training image and one SNESIM simulation
(black: mud facies; dark gray: channel; light gray: levee; white: crevasse)

8.2 Multiple-point simulation algorithms 189

(a) Three categories training image

(c) Probability of mud facies

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

(e) Probability of crevasse facies

(b) Well conditioning data

(d) Probability of channel facies

(f) One SNESIM realization

1

0.8

0.6

0.4

0.2

0

Figure 8.26 [Example 2] Three facies 3D training image (black: mud facies;
gray: channel; white: crevasse), well hard data, facies probability cubes and one
SNESIM realization. Graphs (c)–(f) are given at the same slices: X = 12, Y = 113,
Z = 4

190 Stochastic simulation algorithms

this training image is 150 × 195 × 30, and the facies proportions are 0.66,
0.3 and 0.04 for mud background, sand channel and crevasse respectively. The
channels are oriented in the North–South direction with varying sinuosities and
widths.

The simulated field is of size 100×130×10. Two vertical wells, five deviated
wells and two horizontal wells were drilled during the early production period.
Those wells provide hard conditioning data at the well locations, see Fig. 8.26b.
One seismic survey was collected, and was calibrated, based on the well hard
data, into soft probability cubes for each facies as shown in Fig. 8.26c–e.

For SNESIM simulation, 60 conditioning data nodes are retained in the
search template. The ranges of three major axes of the search ellipsoid are 20,
20 and 5, respectively. The angles for azimuth, dip and rake are all zero. Four
multiple grids are used with isotropic template expansion. The subgrid concept
is adopted with 4 additional nodes in the current subgrid for data conditioning.
The servosystem value is 0.5. One SNESIM realization conditioning to both
well hard data and seismic soft data is given in Fig. 8.26f. This simulated field
has channels oriented in the NS direction, with the high sand probability area
(light gray to white in Fig. 8.26d) having more sand facies. The simulated facies
proportions are 0.64, 0.32 and 0.04 respectively.

EXAMPLE 3: 2D hard conditioning simulation with affinity and rotation regions
In this example, SNESIM is performed with scaling and rotation to account

for local non-stationarity. The simulation field is the last layer of Fig. 8.26b,
which is divided into affinity regions (Fig. 8.27a) and rotation regions (Fig.
8.27b). For the given channel training image of Fig. 8.27c which is the 4th layer
of Fig. 8.26a, the channel width in each affinity region (0, 1, 2) is multiplied by
a factor of 2, 1 and 0.5, respectively; and the channel orientation in each rotation
region (0, 1, 2) is 0◦, −60◦ and 60◦, respectively. The simulations are performed
with three multiple grids using isotropic template expansion. The servosystem
is set as 0.5. Figure 8.27d gives one SNESIM realization conditioned only to the
well data using both the affinity regions and the rotation regions. It is seen that
the channel width varies from one region to another; and the channels between
regions are reasonably well connected.

EXAMPLE 4: 2D simulation with soft data conditioning
In this last example, the simulation grid is again the last layer of Fig. 8.26b.
Both the soft data and well hard data from that layer are used for data condi-
tioning. Figure 8.28a gives the mud probability field. Figure 8.27c is used as
the training image. The search template is isotropic with 60 conditioning nodes.
Four multiple grids are retained with isotropic template expansion. SNESIM is
run for 100 realizations. Figure 8.28c–e present three realizations: the chan-
nels are well connected in the NS direction; and their positions are consistent
with the soft probability data (see the dark area in Fig. 8.28a for the channel

8.2 Multiple-point simulation algorithms 191

(a) Affinity region

(c) Three facies 2D training image

(b) Rotation region

(d) One SNESIM realization

Figure 8.27 [Example 3] Affinity and rotation regions (black: region 0; gray:
region 1; white: region 2); three facies 2D training image and one SNESIM sim-
ulation with both affinity and rotation regions (black: mud facies; gray: sand
channel; white: crevasse)

locations). Figure 8.28b gives the experimental mud facies probability obtained
from the simulated 100 realizations, this experimental probability is consistent
with the input mud probability Fig. 8.28a.

8.2.2 FILTERSIM: filter-based simulation

SNESIM is designed for modeling categories, e.g. facies distributions. It is
limited in the number of categorical variables it can handle. SNESIM is

192 Stochastic simulation algorithms

(a) Probability of mud facies

0.85

0.69

0.53

0.37

0.21

0.05

0.85

0.69

0.53

0.37

0.21

0.05

(c) SNESIM realization 12 (d) SNESIM realization 27 (e) SNESIM realization 78

(b) Simulated mud probability

Figure 8.28 [Example 4] Input target mud facies probability, simulated mud prob-
ability from 100 SNESIM realizations and three SNESIM realizations (black: mud
facies; gray: sand channel; white: crevasse)

memory-demanding when the training image is large with a large number of
categories and a large variety of different patterns. The mps algorithm FILTER-
SIM, called filter-based simulation (Zhang et al., 2006; Wu et al., in press), has
been proposed to circumvent these problems. The FILTERSIM algorithm is much
less memory demanding yet with a reasonable CPU cost, and it can handle both
categorical and continuous variables, but FILTERSIM has several shortcomings,
see hereafter.

FILTERSIM utilizes a few linear filters to classify training patterns in a filter
space of reduced dimension. Similar training patterns are stored in a class char-
acterized by an average pattern called prototype. During simulation, the prototype
closest to the conditioning data event is determined. A training pattern from that
prototype class is then drawn, and pasted back onto the simulation grid. This is
similar to constructing a jigsaw puzzle from stacks of similar pieces.

8.2 Multiple-point simulation algorithms 193

Instead of saving faithfully all training replicates in a search tree as does
SNESIM, FILTERSIM only saves the central location of each training pattern in
memory, hence reducing RAM demand.

The original FILTERSIM algorithm has been coded into two programs: FIL-
TERSIM CONT for continuous simulation and FILTERSIM CATE for categorical
simulation. The following generic descriptions apply to both programs.

Filters and scores

A filter is a set of weights associated with a specific data configuration/template of
size J , TJ = {u0; hi , i = 1, . . . , J }. Each node ui of the template is defined by a
relative offset vector hi = (x, y, z)i from the template center u0 and is associated
with a specific filter value or weight fi . The offset coordinates x, y, z are integer
values. For a J -nodes template, its associated filter is { f (hi); i = 1, . . . , J }. The
filter configuration can be of any shape: Fig. 8.29a shows an irregular shaped filter
and Fig. 8.29b gives a block-shaped filter of size 5 × 3 × 5. Many different filters
are considered and applied to each training pattern.

A search template is used to define patterns from a training image. The search
template of FILTERSIM must be rectangular of size (nx , ny, nz), where nx , ny, nz

0

hi

ui

X

Y

Z

(a) (b)

(c)

nx = 5; ny = 3; nz = 5

–2 0 2

2

0

–2

1
0

X

Z

Y

–1

7

0

–7

filter pattern score

apply result

to in

1

0.5

0

–7 0 7

Figure 8.29 Filter and score: (a) a general template; (b) a cube-shaped template;
(c) from filter to score value

194 Stochastic simulation algorithms

are odd positive integers. Each node of this search template is recorded by its
relative offset to the centroid. Figure 8.29b shows a search template of size
5 × 3 × 5.

FILTERSIM requires that all filter configurations be the same as the search tem-
plate, such that the filters can be applied to the training pattern centered at location
u. Each training pattern is then summarized by a set of score values ST(u), one
score per filter:

ST(u) =
J∑

j=1

f (h j) · pat (u + h j), (8.7)

where pat (u + hi) is the pattern nodal value, J = nx × ny × nz . Figure 8.29c
illustrates the process of creating a filter score value with a specific 2D filter.

Clearly, one filter is not enough to capture the information carried by any given
training pattern. A set of F filters should be designed to capture the diverse
characteristics of a training pattern. These F filters create a vector of F scores
summarizing each training pattern, Eq. (8.7) is rewritten as:

Sk
T(u) =

J∑
j=1

fk(h j) · pat (u + h j), k = 1, . . . , F. (8.8)

Note that the pattern dimension is reduced from the template size nx × ny × nz

to F . For example a 3D pattern of size 11 × 11 × 3 can be described by the nine
default filter scores proposed in FILTERSIM.

For a continuous training image (Ti), the F filters are directly applied to the con-
tinuous values constituting each training pattern. For a categorical training image
with K categories, this training image is first transformed into K set of binary
indicators Ik(u), k = 0, . . . , K − 1, u ∈ Ti:

Ik(u) =
{

1 if u belongs to kth category
0 otherwise

. (8.9)

A K -categories pattern is thus represented by K sets of binary patterns, each indi-
cating the presence/absence of a single category at a certain location. The F filters
are applied to each one of the K binary patterns resulting in a total of F ×K scores.
A continuous training image can be seen as a special case of a categorical training
image with a single category K = 1.

Filters definition

FILTERSIM accepts two filter definitions: the default filters defined hereafter and
user-defined filters.

8.2 Multiple-point simulation algorithms 195

By default, FILTERSIM provides three filters (average, gradient and curvature)
for each X/Y/Z direction, with the filters configuration being identical to that of the
search template. Let ni be the template size in the i direction (i denotes either X,
Y or Z), mi = (ni − 1)/2, and αi = −mi , . . . , +mi be the filter node offset in the
i direction, then the default filters are defined as:

• average filter: f i
1 (αi) = 1 − |αi |

mi
∈ [0, 1]

• gradient filter: f i
2 (αi) = αi

mi
∈ [−1, 1]

• curvature filter: f i
3 (αi) = 2|αi |

mi
− 1 ∈ [−1, 1]

The default total is six filters for a 2D search template and nine in 3D.
Users can also design their own filters and enter them into a data file. The filter

data file should follow the following format (see Fig. 8.30).

• The first line must be an integer number indicating the total number of filters
included in this data file. Starting from the second line, list each filter definition
one by one.

• For each filter, the first line gives the filter name which must be a string and
the weight associated to the corresponding filter score (this weight is used later
for pattern classification). In each of the following lines, list the offset (x, y, z)
of each template node and its associated weight (f (x, y, z)). The four numbers
must be separated by spaces.

Although the geometry of the user-defined filters can be of any shape and any
size, only those filter nodes within the search template are actually retained for
the score calculation to ensure that the filter geometry is the same as that of the

2

Filter_1 1

1.516860

–0.000139

… …

Filter_2 1

–0.005870

–0.082183

–4 –4 0

–2 1 0

0 0 0

2 3 0

3 –3 0 –2.413187

0.948038

2.413187

–3 –3 0

–3 –2 0

–3 1 0 0.082183

… …

filter name

of filters

1st filter (k = 1)

2nd filter (k = 2)

offset to the
central node

weight associated
with filter score

filter weight

Figure 8.30 Format of user-defined filter

196 Stochastic simulation algorithms

search template. For those nodes in the search template but not in the filter template,
FILTERSIM adds dummy nodes associated with a zero filter value. There are many
ways to create the filters, Principal Component Analysis (PCA) (Jolliffe, 1986) is
one alternative.

Tip 6
For simple training geometries, the last curvature filter of the three default filters in
each direction might be redundant. One may consider dropping this curvature filter
in each direction using the user-defined filters, thus reducing the total number of
filters to six in 3D; this would result in substantial CPU savings, especially for
categorical simulations, at the risk of poorer pattern reproduction.

Pattern classification

Sliding the F filters over a K -category training image will result in F · K score
maps, where each local training pattern is summarized by a F · K -length vector in
the filter score space. In general, F · K is much smaller than the size of the filter
template T , hence the dimension reduction is significant.

Similar training patterns will have similar F · K scores. Hence by partitioning
the filter score space, similar patterns can be grouped together. Each pattern class
is represented by a pattern prototype prot , defined as the point-wise average of all
training patterns falling into that class. A prototype has the same size as the filter
template, and is used as the pattern group ID (identification number).

For a continuous training image, a prototype associated with search template TJ

is calculated as:

prot (hi) = 1

c

c∑
j=1

pat (u j + hi), i = 1, . . . , J (8.10)

where hi is the i th offset location in the search template TJ , c is the number of
training replicates within that prototype class; u j (i = 1, . . . , c) is the center of a
specific training pattern.

For a categorical variable, Eq. (8.10) is applied to each of the K sets of binary
indicator maps defined as in Eq. (8.9). Hence a categorical prototype consists of K
proportion maps, each map giving the probability of a certain category to prevail
at a template location u j + hi :

prot(hi) = {
protk(hi), k = 1, . . . , K

}
, (8.11)

where protk(hi) = P (z(u + hi) = k).

8.2 Multiple-point simulation algorithms 197

For maximal CPU efficiency, a two-step partition approach is proposed.

1. Group all training patterns into some rough pattern clusters using a fast classi-
fication algorithm; these rough pattern clusters are called parent classes. Each
parent class is characterized by its own prototype.

2. Partition those parent classes that have both too many and too diverse pat-
terns in it using the same (previous) classification algorithm. The resulting
sub-classes are called children classes. These children classes might be fur-
ther partitioned if they contain too many and too diverse patterns. Each final
child class is characterized by its own prototype of type Eq. (8.10).

For any class and corresponding prototype, the diversity is defined as the
averaged filter variance:

V = 1

F · K

F ·K∑
k=1

ωk · σ 2
k (8.12)

where ωk ≥ 0 is the weight associated with the kth filter score,
∑F ·K

k=1 ωk = 1. For
the default filter definition, ωk goes decreasing, 3, 2 and 1 for average, gradient
and curvature filters, respectively. For the user-defined filters, the ωk value for each
filter must be specified in the filter data file (Fig. 8.30):

σ 2
k = 1

c

∑c
i=1(Si

k − mk)
2 is the variance of the kth score value over the c

replicates;
Si

k is the score of the i th replicate of kth filter score defining the prototype;
mk = 1

c

∑c
i=1 Si

k,l is the mean value of the kth score value over the c
replicates.

The prototypes with diversity higher than a threshold (calculated automatically)
and with too many replicates are further partitioned.

This proposed two-step partition approach allows finding quickly the prototype
which is the closest to the data event. Consider a case with 3000 prototypes (par-
ents and children), without the two-step partition it would take at each node 3000
distance comparisons; with a two-step partition considering 50 parent prototypes
it would take 50 comparisons to find the best parent prototype, then in average 60
comparisons to find the best child prototype, thus in average a total of 110 distance
comparisons.

Partition method

Two classification methods are provided: cross partition (Zhang et al., 2006) and
K-Mean clustering partition (Hartigan, 1975). The cross partition consists of par-
titioning independently each individual filter score into equal frequency bins (see

198 Stochastic simulation algorithms

sit2t1 t3

data

cluster centroid

(a) Divide scores into 4 equal frequency bins

(b) Group scores into 2 clusters with K-Mean clustering

pdf

Figure 8.31 Two classification methods

S1

S2

Figure 8.32 Illustration of cross partition in a 2-filter score space. Each dot rep-
resents a local training pattern; the solid lines show first parent partition (M = 3);
the dash lines give the secondary children partition (M = 2)

Fig. 8.31a). Given a score space of dimension F ·K , if each filter score is partitioned
into M bins (2 ≤ M ≤ 10), thus the total number of parent classes is M F ·K . How-
ever, because the filter scores are partitioned independently of one another, many
of these classes will contain no training patterns. Figure 8.32 shows the results

8.2 Multiple-point simulation algorithms 199

S1

S2

Figure 8.33 Illustration of K-Mean clustering partition in a 2-filter score space.
Each dot represents a local training pattern; the solid lines show first parent
partition (M = 4); the dash lines give the secondary children partition (M = 3)

of cross partition in a 2-filter score space using the proposed two-step approach
splitting parent classes into children.

The cross partition approach is fast; however, it is rough and may lead to many
classes having few or no replicates.

A much better but costlier partition method using K-Mean clustering is also
proposed: given an input number of clusters, the algorithm will find the opti-
mal centroid of each cluster, and assign each training pattern to a specific cluster
according to a distance between the training pattern and the cluster centroid (see
Fig. 8.31b). This K-Mean clustering partition is one of the simplest unsupervised
learning algorithms; it creates better pattern groups all with a reasonable number
of replicates, however it is slow compared to the cross partition. Also the number
of clusters is critical to both CPU cost and the final simulation results. Figure 8.33
shows the results of K-Mean clustering partition in a 2-filter score space with the
proposed two-step approach.

Single grid simulation

After creating the prototype list (for all parents and children) built from all the
training patterns, one can proceed to generate simulated realizations.

The classic sequential simulation paradigm defined in Section 3.3.1 is extended
to pattern simulation. At each node u along the random path visiting the simulation
grid G, a search template T of the same size as the filter template is used to extract
the conditioning data event dev(u). The prototype closest to that data event, based
on some distance function, is found. Next a pattern pat is randomly drawn from

200 Stochastic simulation algorithms

that closest prototype class, and is pasted onto the simulation grid G. The inner part
of the pasted pattern is frozen as hard data, and will not be revisited during simu-
lation on the current (multiple) grid. The simple single grid FILTERSIM approach
is summarized in Algorithm 8.15.

Algorithm 8.15 Simple, single grid FILTERSIM simulation

1: Create score maps with given filters
2: Partition all training patterns into classes and prototypes in the score space
3: Relocate hard conditioning data into the simulation grid G
4: Define a random path on the simulation grid G
5: for Each node u in the random path do
6: Extract the conditioning data event dev centered at u
7: Find the parent prototype protp closest to dev
8: if protp has children prototype lists then
9: Find the child prototype protc closest to dev

10: Randomly draw a pattern pat from protc
11: else
12: Randomly draw a pattern pat from protp
13: end if
14: Paste pat to the realization being simulated, and freeze the nodes within a

central patch
15: end for

Distance definition

A distance function is used to find the prototype closest to a given data event dev.
The distance between dev and any prototype is defined as:

d =
J∑

i=1

ωi · |dev(u + hi) − prot (u0 + hi)| (8.13)

where
J is the total number of nodes in the search template T ;
ωi is the weight associated to each template node;
u is the center node of the data event;
hi is the node offset in the search template T ;
u0 is the center node location of the prototype.

8.2 Multiple-point simulation algorithms 201

Given three different data types: original hard data (d = 1), previously simu-
lated values frozen as hard data (d = 2), other values informed by pattern pasting
(d = 3). The above weight ωi is defined as

ωi =

⎧⎪⎨⎪⎩
W1/N1 : hard data (d = 1)

W2/N2 : patch data (d = 2)

W3/N3 : other (d = 3)

,

where Wd (d = 1, 2, 3) is the weight associated with data type d, and Nd is the
number of nodes of data type d within the data event dev. It is required that W1 +
W2 + W3 = 1, and W1 ≥ W2 ≥ W3, to emphasize the impact of hard data and
data frozen as hard (inner patch values). The weights W are user input parameters,
and the default values are 0.5, 0.3 and 0.2 for hard, patch, and other data type
respectively.

Note that the template of a data event dev is usually not fully informed, thus
only those informed nodes are retained for the distance calculation.

Multiple grid simulation

Similar to the SNESIM algorithm, the multiple grid simulation concept (see Sec-
tion 8.2.1) is used to capture the large scale structures of the training image with a
large but coarse template T . In the gth (1 ≤ g ≤ L) coarse grid, the filters defined
on the rescaled template T g are used to calculate the pattern scores. Sequential
simulation proceeds from the coarsest grid to the finest grid. All nodes simulated
in the coarser grid are re-simulated in the next finer grid.

The template is expanded isotropically as described in the SNESIM algo-
rithm (Section 8.2.1). The FILTERSIM multiple grid simulation is summarized
in Algorithm 8.16.

Algorithm 8.16 FILTERSIM simulation with multiple grids

1: repeat
2: For the gth coarse grid, rescale the geometry of the search template, the inner

patch template and the filter template
3: Create score maps with the rescaled filters
4: Partition the training patterns into classes and corresponding prototypes
5: Define a random path on the coarse simulation grid Gg

6: Relocate hard conditioning data into the current coarse grid Gg

7: Perform simulation on current grid Gg (Algorithm 8.15)
8: If g �= 1, delocate hard conditioning data from the current coarse grid Gg

9: until All multi-grids have been simulated

202 Stochastic simulation algorithms

Score-based distance calculation

The distance function defined in Eq. (8.13) works well for both continuous and
categorical simulations over 2D grids. However, it becomes slow for 3D simu-
lations, especially for multiple categorical variables. Given Np prototype classes,
and J = nx × ny × nz number of nodes in the search template (see Fig. 8.29), the
total number of distance calculation time will be ∝ Np · J . For a large 3D training
image, Np might be in the order of 104, hence the Np · J distance calculations using
Eq. (8.13) will be very time consuming.

One solution is to reduce the dimensions of both the data event dev and the
training prototypes prot from J to F · K using the pre-defined filters, where F is
the number of filters and K is the number of categories (K = 1 for a continuous
variable). Then the distance function Eq. (8.13) can be modified as:

d =
F ·K∑
i=1

∣∣Si
dev(u) − Si

prot(u0)
∣∣ , (8.14)

where S is the score value. Because F · K << J , the distance calculation with
Eq. (8.14) is much faster than with Eq. (8.13). Hence the overall FILTERSIM
simulation will be speeded up significantly.

However, in order to apply filters to the data event dev, that dev must be fully
informed. With the multiple grid simulation concept, any coarse grid (g > 1) is
only partially informed. The challenge here is how to fill in those uninformed loca-
tions. Because in 3D simulation, more than 85% of time is spent on the finest grid,
the dual template concept (Arpat, 2004) is used to fill in the uninformed locations
on the penultimate grid (g = 2). A dual template has the same spatial extent as the
expanded next coarser grid template, but with all the fine grid nodes falling into
that template present and informed. For instance, in Fig. 8.20 the expanded coarse
grid template has the same number (9) of nodes as the finest grid template; the dual
template has the same extent as the coarse grid template but with all the 25 nodes
inside it all informed. Boundary nodes received a special treatment.

The FILTERSIM simulation in the last (finest) grid is described as in Algo-
rithm 8.17.

Soft data integration

The FILTERSIM algorithm allows users to constrain simulations to soft data
defined over the same simulation grid. The soft data when simulating a continu-
ous variable should be a spatial trend (local varying mean) of the attribute being
modeled, hence only one soft data set is allowed with the unit of the variable being
simulated. For categorical training images, there is one soft data set per category.

8.2 Multiple-point simulation algorithms 203

Algorithm 8.17 Fine grid FILTERSIM simulation with score-based distance

1: After completing the simulation on the penultimate coarse grid, use the dual
template to fill in the uninformed locations on the finest grid

2: Create score maps with the pre-defined filters
3: Partition the training patterns into classes and corresponding prototypes
4: Apply filters to all pattern prototypes
5: Define a random path on the finest simulation grid G1

6: Relocate hard conditioning data into the finest grid G1

7: for Each node u in the random path do
8: Extract the conditioning data event dev centered at u
9: Calculate dev scores Sdev with the same pre-defined filters

10: Find the best prototype prot closest to dev using Eq. (8.14)
11: Randomly draw a pattern pat from prot
12: Paste pat to the realization being simulated, and freeze the nodes within a

central patch
13: end for

Each soft cube is a probability field related to the presence/absence of a category
at each simulation grid node u, hence there is a total of K probability cubes.

• The procedure of integrating soft data for a continuous variable is described in
Algorithm 8.18. The soft data event sdev is used to fill in the data event dev:
at any uninformed location u j of the data event template, set its value to the
soft data value at the same location (dev(u j) = sdev(u j)). Because these soft
data contribute to the prototype selection, the choice of the sampled pattern is
constrained by the local trend.

• For a categorical variable, the original training image has been internally trans-
formed into K binary indicator maps (category probabilities) through Eq. (8.9),
thus each resulting prototype is a set of K probability templates (Eq. (8.11)). At
each simulation location u, the prototype closest to the data event dev is a prob-
ability vector prob(u). The same search template T is used to retrieve the soft
data event sdev(u) at the location u. The tau model (see Section 3.10), is used to
combine sdev(u) and prob(u) pixel-wise at each node u j of the search template
T into a new probability cube dev∗. A prototype is found which is closest to
dev∗, and a pattern is randomly drawn and pasted onto the simulation grid. The
detailed procedure of integrating soft probability data for categorical attributes
is presented in Algorithm 8.19.

204 Stochastic simulation algorithms

Algorithm 8.18 Data integration for continuous variables

1: At each node u along the random path, use the search template T to extract
both the data event dev from the realization being simulated, and the soft data
event sdev from the soft data field

2: if dev is empty (no informed data) then
3: Replace dev by sdev
4: else
5: Use sdev to fill in dev at all uninformed data locations within the search

template T centered at u
6: end if
7: Use dev to find the closest prototype, and proceed to simulation of the node u

Algorithm 8.19 Data integration for categorical variables

1: At each node u along the random path, use the search template T to retrieve
both the data event dev from the realization being simulated and the soft data
event sdev from the input soft data field

2: if dev is empty (no informed data) then
3: Replace dev by sdev, and use the new dev to find the closest prototype.
4: else
5: Use dev to find the closest prototype prot
6: Use tau model to combine prototype prot and the soft data event sdev into

a new data event dev∗ as the local probability map
7: Find the prototype closest to dev∗, and proceed to simulation
8: end if

Tip 7
The present algorithms for integrating soft data in FILTERSIM are stopgaps and
should be rapidly replaced by better ones where the soft data would be used for more
than the distance calculations. If the user is very confident with the soft probability
cubes (for the categorical simulations), then increase the τ2 value to 10 or 15 which
results in increasing the soft data impact.

Accounting for local non-stationarity

The same region concept as presented in the SNESIM algorithm (Section 8.2.1)
is introduced here to account for local non-stationarity. It is possible to perform
FILTERSIM simulation over regions, with each region associated with a specific

8.2 Multiple-point simulation algorithms 205

training image and its own parameter settings. See Section 8.2.1 of the SNESIM
algorithm for greater details.

The rotation and affinity concept is not coded in the current FILTERSIM algo-
rithm; however, it can be done with the region concept by rotating or rescaling the
training image explicitly. The Python script, introduced in Section 10.2.2, can be
used to automate this task.

Parameters description: FILTERSIM CONT

The FILTERSIM CONT for continuous variable simulations can be invoked from
Simulation → filtersim cont in the upper part of the Algorithm Panel. Its inter-
face has four pages: “General”, “Conditioning”, “Region” and “Advanced” (see
Fig. 8.34). The FILTERSIM CONT parameters is presented page by page in the
following. The text inside “[]” is the corresponding keyword in the FILTER-
SIM CONT parameter file.

1. Simulation Grid Name [GridSelector Sim] The name of grid on which
simulation is to be performed.

2. Property Name Prefix [Property Name Sim] The name of the property to
be simulated.

3. # of Realizations [Nb Realizations] Number of realizations to be simu-
lated.

4. Seed [Seed] A large odd integer to initialize the pseudo-random number
generator.

5. Training Image | Object [PropertySelector Training.grid] The name
of the grid containing the training image.

6. Training Image | Property [PropertySelector Training.property] The
training image property, which must be a continuous variable.

7. Search Template Dimension [Scan Template] The size of the 3D template
used to define the filters. The same template is used to retrieve training patterns
and data events during simulation.

8. Inner Patch Dimension [Patch Template ADVANCED] The size of the 3D
patch of simulated nodal values frozen as hard data during simulation.

9. Match Training Image Histogram [Trans Result] This flag indicates
whether the simulated result on the penultimate coarse grid should be trans-
formed to honor the training image statistics. If marked, perform internal
TRANS (Section 9.1) on those simulated results. The default is not to use
internal TRANS.

10. Hard Data | Object [Hard Data.grid] The grid containing the hard con-
ditioning data. The hard data object must be a point-set. The default input is
“None”, which means no hard conditioning data are used.

206 Stochastic simulation algorithms

20

21

22

23 24

25

26

27 28

29 30

31

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

7

8

9

Figure 8.34 FILTERSIM CONT interface

8.2 Multiple-point simulation algorithms 207

11. Hard Data | Property [Hard Data.property] The property of the hard
conditioning data, which must be a continuous variable.

12. Use Soft Data [Use SoftField] This flag indicates whether the simulation
should be conditioned to prior local probability cubes. If marked, perform
FILTERSIM conditional to soft data. The default is not to use soft data.

13. Soft Data Property [SoftData] Selection for local soft data conditioning.
Note that only one soft conditioning property is allowed which is treated as a
local varying mean, and the soft data must be given over the same simulation
grid as defined in item 1.

14. Use Region [Use Region] The flag indicates whether to use region concept.
If marked (set as 1), perform SNESIM simulation with the region concept;
otherwise perform FILTERSIM simulation over the whole grid.

15. Property with Region Code [Region Indicator Prop] The property con-
taining the index coding of the regions, must be given over the same simulation
grid as defined in (1). The region code ranges from 0 to NR − 1 where NR is
the total number of regions.

16. List of Active Regions [Active Region Code] Input the index of region
to be simulated, or indices of the regions to be simulated simultaneously. If
simulation with multiple regions, the input region indices (codes) should be
separated by spaces.

17. Condition to Other Regions [Use Previous Simulation] The option to
perform region simulation conditional to data from other regions.

18. Property of Previously Simulated Regions [Previous Simulation Pro]
The property simulated in the other regions. The property can be different
from one region to another. See Section 8.2.1.

19. # of Multigrids [Nb Multigrids ADVANCED] The number of multiple grids
to consider in the multiple grid simulation. The default value is 3.

20. Min # of Replicates for Each Grid [Cmin Replicates] A pattern prototype
split criteria. Only those prototypes with more than Cmin Replicates can be
further divided. Input a Cmin Replicates value for each multiple coarse grid.
The default value is 10 for each multigrid.

21. Weights to Hard, Patch & Other [Data Weights] The weights assigned to
different data types (hard data, patched data and all the other data). The sum
of these weights must be 1. The default values are 0.5, 0.3 and 0.2.

22. Debug Level [Debug Level] The flag controls the output in the simula-
tion grid. The larger the debug level, the more outputs from FILTERSIM
simulation:

• if 0, then only the final simulation result is output (default value);
• if 1, then the filter score maps associated with the original fine grid search

template are also output in the training image grid;

208 Stochastic simulation algorithms

• if 2, then the simulation results on the coarse grids are output in addition to
the outputs of options 0 and 1;

• if 3, then output one more property in the training image grid, which is the
indicator map for all parent prototypes.

23. Cross Partition [CrossPartition] Perform pattern classification with
cross partition method (default option).

24. Partition with K-Mean [KMeanPartition] Perform pattern classifica-
tion with K-Mean clustering method. Note that ‘Cross Partition’ and
‘Partition with K-mean’ are mutually exclusive.

25. Number of Bins for Each Filter Score | Initialization [Nb Bins ADVANCED]
The number of bins for parent partition when using cross partition; the default
value is 4. Or the number of clusters for parent partition when using K-Mean
partition; the default value is 200.

26. Number of Bins for Each Filter Score | Secondary Partition
[Nb Bins ADVANCED2] The number of bins for children partition when using
cross partition; the default value is 2. Or the number of clusters for children
partition when using K-Mean partition; the default value is 2.

27. Distance Calculation Based on | Template Pixels [Use Normal Dist] The
distance as the pixel-wise sum of differences between the data event values
and the corresponding prototype values (Eq. (8.13)). This is the default option.

28. Distance Calculation Based on | Filter Scores [Use Score Dist] The dis-
tance is defined as the sum of differences between the data event scores and
the pattern prototype scores.

29. Default Filters [Filter Default] The option to use the default filters pro-
vided by FILTERSIM: 6 filters for a 2D search template and 9 filters for a 3D
search template.

30. User Defined Filters [Filter User Define] The option to use user’s own
filter definitions. Note that ‘Default’ and ‘User Defined’ are mutually
exclusive.

31. The Data File with Filter Definition [User Def Filter File] Input a data
file with the filter definitions (see Fig. 8.30). This parameter is ignored if
Filter User Define is set to 0.

Parameters description: FILTERSIM CATE

The FILTERSIM CATE algorithm for categorical variable simulations can be
invoked from Simulation → filtersim cate in the upper part of the Algorithm Panel.
Its interface has four pages: “General”, “Conditioning”, “Region” and “Advanced”
(the first two pages are given in Fig. 8.35, and the last two pages are given in
Fig. 8.34). Because most of FILTERSIM CATE parameters are similar to those of

8.2 Multiple-point simulation algorithms 209

10

9a

9b
9c

11

12

13a

13b

1

2

3
4

5

6

7
8

Figure 8.35 FILTERSIM CATE interface

FILTERSIM CONT program, only the parameters unique to FILTERSIM CATE
(items 6, 9, 11 and 13) are presented in the following. Refer to FILTERSIM CONT
parameter descriptions for all other parameters. The text inside “[]” is the
corresponding keyword in the FILTERSIM CONT parameter file.

6. Training Image | Property [PropertySelector Training.property]
The training image property, which must be a categorical variable whose
value must be between 0 and K − 1, where K is the number of categories.

9a. # of Categories [Nb Facies] The total number of categories when working
with categorical variable. This number must be consistent with the number of
categories in the training image.

9b. Treat as Continuous Data for Classification [Treat Cate As Cont] The
flag to treat the categorical training image as a continuous training image for
pattern classification (but the simulation is still performed with categorical
variables). With this option, the F filters are directly applied on the training
image without having to transform the categorical variable numerical code
into K sets of binary indicators, hence the resulting score space is of dimen-
sion F instead of F · K , and it is faster. Note that the training image specific
categorical coding will affect the simulation results.

9c. Match Training Image Proportions [Trans Result] This flag indicates
whether the simulated result on the next to last grid should be transformed

210 Stochastic simulation algorithms

to honor the training image statistics. If marked, TRANSCAT (Section 9.2) is
performed on those simulated results. The default is not to use TRANSCAT.

11. Hard Data | Property [Hard Data.property] The property of the hard
conditioning data, which must be a categorical variable with values between
0 and K − 1. This parameter is ignored when no hard data conditioning is
selected.

13a. Soft Data | Choose Properties [SoftData properties] Selection for
local soft data conditioning. For a categorical variable, select one and only
one property for each category. The property sequence is critical to the sim-
ulation result: the kth property corresponds to k category. This parameter is
ignored if Use ProbField is set to 0. Note that the soft data must be given
over the same simulation grid as defined in item 1.

13b. Tau Values for Training Image and Soft Data [TauModelObject] Input
two Tau parameter values: the first tau value is for the training image, the
second tau value is for the soft conditioning data. The default tau values are
“1 1”. This parameter is ignored if Use SoftField (item 12) is set to 0.

Examples

In this section, FILTERSIM is run for both unconditional and conditional sim-
ulations. The first example illustrates the ability of FILTERSIM algorithm to
handle continuous variables with FILTERSIM CONT; the other three exam-
ples demonstrate FILTERSIM algorithm with categorical training images with
FILTERSIM CATE.

EXAMPLE 1: 3D simulation of continuous seismic data
The FILTERSIM algorithm is used to complete a 3D seismic image.
Figure 8.36a shows a 3D seismic image with a large center area uninformed
because of shadow effect. The whole grid is of size 450 × 249 × 50, and the
percentage of the missing data is 24.3%. The goal here is to fill in those missing
data locations by extending the geological information available in the neigh-
boring areas. The North part of the original seismic image is retained as the
training image, which is of size 150 × 249 × 50, see the area in the rectangular
box at the left of the white boundary.

For the FILTERSIM simulation, the size of search template is 21 × 21 × 7,
the size of patch template is 15 × 15 × 5, the number of multiple grids is
3, and the number of bins for parent cross partition is 3. All the known data
are used for hard conditioning. One FILTERSIM realization is given in Fig.
8.36b. The simulation area lies between the white line and the black line.
On the simulation the layering structures are extended from the condition-
ing area to the simulation area, and the horizontal large scale structures are

8.2 Multiple-point simulation algorithms 211

(a) Simulation grid with conditioning data

256
213.3
170.7
128
85.33
42.67
0

(b) Uninformed area filled in with FILTERSIM (c) Uninformed area filled in with SGSIM

Figure 8.36 [Example 1] Use FILTERSIM and SGSIM to fill in the uninformed
area of a 3D seismic cube

reasonably well reproduced. For comparison, the variogram-based algorithm
SGSIM is also used to fill in the empty area with the variogram modeled from
the training image. Figure 8.36c shows one SGSIM realization, in which the
layering structures are completely lost.

EXAMPLE 2: 2D unconditional simulation
This example relates to a four facies unconditional simulation using Fig. 8.25a
as training image. The search template is of size 23 × 23 × 1, and the patch
template is of size 15 × 15 × 1. The number of multiple grid is 3, and the
minimum number of replicates for each multiple grid is 10. Cross partition is
used with 4 bins for the parent classification and 2 bins for the children classi-
fication. Figure 8.37 shows two FILTERSIM realizations, which depict a good
training pattern reproduction. The facies proportions for these two realizations
are given in Table 8.2. Compared to the SNESIM simulation of Fig. 8.25b,
the FILTERSIM algorithm appears to better capture the large scale channel
structures.

212 Stochastic simulation algorithms

Table 8.2 Facies proportions of both SNESIM and FILTERSIM simulations

mud background sand channel levee crevasse

training image 0.45 0.20 0.20 0.15
SNESIM realization 0.44 0.19 0.20 0.17
FILTERSIM realization 1 0.51 0.20 0.17 0.12
FILTERSIM realization 2 0.53 0.18 0.18 0.11

Figure 8.37 [Example 2] Two FILTERSIM realizations using Fig. 8.25a as train-
ing image (black: mud facies; dark gray: channel; light gray: levee; white:
crevasse)

(a) Simulation with affinity regions (b) Simulation with rotation regions

Figure 8.38 [Example 3] FILTERSIM simulation with affinity regions and with
rotation regions using Fig. 8.27c as training image (black: mud facies; gray: sand
channel; white: crevasse)

8.2 Multiple-point simulation algorithms 213

(a) FILTERSIM realization 18 (b) FILTERSIM realization 59

(c) FILTERSIM realization 91 (d) Simulated mud probability

0.85

0.69

0.53

0.37

0.21

0.05

Figure 8.39 [Example 4] Three FILTERSIM realizations (black: mud facies; gray:
sand channel; white: crevasse) and the simulated mud probability obtained from
100 FILTERSIM realizations. The training image is given in Fig. 8.27c

EXAMPLE 3: 2D unconditional simulation with affinity and rotation
In this example, the region concept is used to account for local non-stationarity.
The simulation field is of size 100×130×1, the same as used in the third exam-
ple of SNESIM algorithm (see Fig. 8.27a). The 2D training image is given in
Fig. 8.27c. The affinity regions were given in Fig 8.27a, the rotation regions
in Fig 8.27b. The region settings are exactly the same as used for the third
SNESIM example.

FILTERSIM is performed with a search template of size 11 × 11 × 1,
patch template of size 7 × 7 × 1, three multiple grids, 4 bins for the par-
ent partition and 2 bins for the children partition. Figure 8.38a shows one
FILTERSIM simulation using the affinity region only; it reflects the channel

214 Stochastic simulation algorithms

width decrease from South to North without significant discontinuity across
the region boundaries. Figure 8.38b shows one FILTERSIM realization using
only the rotation region. Again, the channel continuity is well preserved across
the region boundaries.

EXAMPLE 4: 2D simulation conditioning to well data and soft data
A 2D three facies FILTERSIM simulation is performed with soft data condi-
tioning. The problem settings are exactly the same as those used in the fourth
SNESIM example (see Fig. 8.28): the probability fields are taken from the last
layer of Fig. 8.26 c–e; and the training image is given in Fig. 8.27c. FILTER-
SIM is run for 100 realizations with a search template of size 11×11×1, patch
template of size 7 × 7 × 1, three multiple grids, 4 bins for the parent partition
and 2 bins for the children partition. Figure 8.39 a–c show three of those real-
izations, and Fig. 8.39d gives the simulated mud facies probability calculated
from the 100 realizations. Figure 8.39d is consistent with Fig.8.28a, but slightly
more blurry than the SNESIM simulated mud probability (Fig.8.28b), because
in FILTERSIM the soft data are used only for distance calculation instead of as
probability field directly.

9

Utilities

This chapter presents service algorithms helpful in many geostatistical studies.
The first algorithm is the histogram transformation TRANS. Program TRANS in
Section 9.1 allows the transforming of any histogram into any other histogram
by matching their quantiles. The second algorithm (Section 9.2) is a propor-
tion transformation appropriate for categorical variables. Program TRANSCAT
not only matches target proportions but also preserves the image structures. The
third algorithm is POSTKRIGING (Section 9.3) which extracts useful information
from kriging or indicator kriging maps. Program POSTSIM (Section 9.4) per-
forms the same tasks but on a set of stochastic realizations resulting from any of
the simulation algorithms presented in Chapter 8. Section 9.5 presents algorithm
NU-TAU MODEL related to the nu/tau model, see Section 3.10: this algorithm
allows the combining of different probabilities stored as properties. Section 9.6
presents utility program BCOVAR, which allows the user to calculate the covari-
ance map between any point or block, and the covariance value between any points
or blocks. Section 9.7 presents program IMAGE PROCESSING, used to perform
scaling and rotation on a Cartesian grid. These operations are particularly use-
ful for preparing a training image. MOVING WINDOW in Section 9.8 calculates
local statistics such as moving average, moving variance, the default FILTERSIM
filters, a Gaussian low pass filter and the Sobel filter for edge detection; it also
accepts user-defined filters. Finally, a training image generator TIGENERATOR is
presented in Section 9.9.

9.1 TRANS: histogram transformation

Algorithm TRANS allows the user to transform any histogram of a continuous
attribute into any other one. For example, the Gaussian simulation algorithms
(SGSIM and COSGSIM), as described in Sections 8.1.2 and 8.1.3, apply only
to Gaussian variables. If the attribute of interest does not display a Gaussian
histogram, it is possible to transform that attribute into a Gaussian distribution,

215

216 Utilities

then work on that transformed variable. The histogram transformation is detailed
in Algorithm 9.1.

Algorithm 9.1 Histogram transformation

1: for Each value zk to be rank-transformed do
2: Get the quantile from the source histogram associated with zk , pk = FZ (zk)

3: Get the values yk from the target distribution associated with pk , yk =
F−1

Y (pk)

4: if weighted transformation then
5: Applied weighting to the transform
6: end if
7: end for

Algorithm TRANS transforms a property following a source distribution into a
new variable that follows a target distribution. The transformation of a variable Z
with a source cdf FZ into variable Y with target cdf FY is written (Deutsch and
Journel, 1998):

Y = F−1
Y

(
FZ

(
Z

))
. (9.1)

When the data used to build the source distribution contain identical values, it is
likely that the target distribution will not be matched. In that case, use the “break
ties” option available when building the non-parametric distribution function, see
Section 6.8.

Note: the transformation of a source distribution to a Gaussian distribution does
not ensure that the new variable Y is multivariate Gaussian, it is only univariate
Gaussian. One should check that the multivariate (or at least bivariate) Gaussian
hypothesis holds for Y before performing Gaussian simulation. If the hypothe-
sis is not appropriate, other algorithms that do not require Gaussianity, e.g. direct
sequential simulation (DSSIM) or sequential indicator simulation (SISIM), should
be considered.

Histogram transformation with conditioning data

It is possible to apply a weighting factor to control how much each specific original
value should be transformed (Deutsch and Journel, 1998, p.228):

y = z − ω(z − F−1
Y (FZ (z))). (9.2)

When ω = 0 then y = z, there is no transformation. When ω = 1 then y =
F−1

Y (FZ (z))) which is the standard rank transform, see Eq. (9.1). The weight ω

9.1 TRANS: histogram transformation 217

can be set equal to a standardized kriging variance as provided by simple kriging
with a unit sill variogram. At Z -data locations the kriging variance is zero, hence
there is no transform and the datum value is unchanged: y = z. Away from data
locations the kriging variance increases allowing for a larger transform. That option
is to be used for slight adjustments of the marginal distribution. When the weights
ω are used the transform is not rank-preserving anymore and the target distribution
would only be matched approximately.

The histogram transformation algorithm is given in Algorithm 9.1.

Parameters description

The TRANS algorithm is activated from Utilities → trans in the Algorithm Panel.
The TRANS interface contains three pages: “Data”, “Source” and “Target” (see
Fig. 9.1). The text inside “[]” is the corresponding keyword in the TRANS
parameter file.

1. Object Name [grid] Selection of the grid containing the properties to be
transformed.

2. Properties [props] Properties to be transformed.
3. Suffix for output [out suffix] The name for each output property consists

of the original name plus the suffix entered here.
4. Local Conditioning [is cond] Enables the use of weights for the histogram

transformation. This allows a gradual transformation away from the data.

10

11

12

13

14

15

16

1

2

3

4

5
6

7

8

9

Figure 9.1 User interface for TRANS

218 Utilities

5. Weight Property [cond prop] Property with weights for transformation of
the histogram conditional to data, see Eq. (9.2). The standardized kriging
variance is a good weighting option. Only required if Local Conditioning
[is cond] is selected.

6. Control Parameter [weight factor] Value between 0 and 1 adjusting the
weights. Only required if Local Conditioning [is cond] is selected.

7. Source histogram [ref type source] Define the type of the source his-
togram: non-parametric, Gaussian, LogNormal, or Uniform (see items 8 to 11).

8. Non Parametric The non-parametric distribution is entered in
[nonParamCdf source], see Section 6.8 for format.

9. Gaussian parameters The mean is given in Mean [G mean source] and the
variance in Variance [G variance source].

10. LogNormal parameters The mean is given in Mean [LN mean source] and
the variance in Variance [LN variance source].

11. Uniform parameters The minimum value is given in Min [Unif min source]

and the maximum in Max [Unif max source].
12. Target histogram [ref type target] Define the type of the target his-

togram: non-parametric, Gaussian, LogNormal, or Uniform (see items
13 to 16).

13. Non Parametric The non-parametric distribution is entered in
[nonParamCdf target], see Section 6.8 for format.

14. Gaussian parameters The mean is given in Mean [G mean target] and the
variance in Variance [G variance target].

15. LogNormal parameters The mean is given in Mean [LN mean target] and
the variance in Variance [LN variance target].

16. Uniform parameters The minimum value is given in Min [Unif min target]

and the maximum in Max [Unif max target].

9.2 TRANSCAT: categorical transformation

Algorithm TRANS works well with continuous variables. The TRANSCAT program
was developed to handle the categorical case: it aims at matching target proportions
while preserving structures and patterns.

TRANSCAT uses a filter F (defined hereafter) to retrieve local statistics from the
pattern centered at node u, then updates the categorical value at that center node
using the filter (Deutsch, 2002). The local pattern is defined over a rectangular
moving window W of size nx ×ny ×nz , where nx , ny , nz are positive odd integers.
Each node inside W is identified by its offset h j relative to the window centroid
(j = 1, . . . , J with J = nx × ny × nz).

9.2 TRANSCAT: categorical transformation 219

Similar to the FILTERSIM algorithm (Section 8.2.2), TRANSCAT accepts two
alternative filter definitions: the default filter or any user-defined filter.

The default filter has the same geometry
{
h j : j = 1, . . . , J

}
as the moving

window W , and the filter weight fh j is defined as follows:

1. the filter value of the central node is Vc = max
{
nx , ny, nz

}
;

2. all outer aureole nodes have unit filter value;
3. the filter values for the nodes along the major axes (X, Y and Z) are linearly

interpolated as an integer between 1 and Vc based on their absolute offsets
∣∣h j

∣∣;
4. the filter at any other node is set equal to Vc/(1+dist), where dist is the square

root distance between that node and the central node. The values are rounded
to the nearest integer.

For example, a default filter of size 5 × 5 × 5 is as follows.

Layers 1,5 Layers 2,4 Layer 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 2 2 1 1 2 3 2 1
1 1 1 1 1 1 2 3 2 1 1 3 5 3 1
1 1 1 1 1 1 2 2 2 1 1 2 3 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The users can also design their own filter and enter it as a data file. This user-
defined filter data file must have the same definition and format as those used by
FILTERSIM, see Section 8.2.2 and Fig. 8.30. Notice that the number of filters (first
line in the filter data file) must be exactly 1, and the filter weights can be any real
values.

Given a K -categorical variable Z with current proportions pc
k (k = 1, . . . , K),

a J -node filter F = {
(h j , fh j), j = 1, . . . , J

}
, and target proportions pt

k

(k = 1, . . . , K), the TRANSCAT algorithm proceeds as follows.

• At each node u of the grid to be processed, extract the local pattern pat (u)

within the moving window W .
• Calculate the local category pseudo proportions pk(u), k = 1, . . . , K of that

pattern pat (u) as

pk(u) = 1

NW

∑
j∈{N k

W }
ω · fh j (9.3)

where:{
N k

w

}
is the set of nodes in window W which are informed as category k,

NW = ∑K
k=1

∣∣N k
W

∣∣ ≤ J is the total number of nodes informed in pat (u),
ω = 1 if node (u+h j) is not a hard data location; otherwise ω = f0, where

f0 is an input control parameter giving more weight to hard data loca-
tions. The default value is f0 = 10.

220 Utilities

• Calculate the relative category pseudo proportions as

pr
k(u) = pk(u) ·

(
pt

k

pc
k

)fk

, k = 1, . . . , K (9.4)

where fk ≥ 1 is an input factor associated with category k. The greater fk , the
more importance is given to the reproduction of target proportion pt

k .
• Find the category k F which maximizes pr

k .
• Update the property at location u into Znew(u) = kF .

Note that for the default filter fk = 1, (k = 1, . . . , K), TRANSCAT acts as a
de-noise program to clean a pixel-based image (Schnetzler, 1994).

Parameters description

The TRANSCAT algorithm is activated from Utilities → transcat in the Algo-
rithm Panel. The TRANSCAT interface is given in Fig. 9.2, and the parameters

10

11

12

13

14

15

1

2

3

4

5

6
7

8

9

Figure 9.2 User interface for TRANSCAT

9.2 TRANSCAT: categorical transformation 221

are described in the following. The text inside “[]” is the corresponding keyword
in the TRANSCAT parameter file.

1. Object [Working Grid.grid] The name of the grid to be transformed.
2. Property [Working Grid.property] The name of the property to be trans-

formed.
3. Suffix for output [Out Suffix] The name for the output property consists

of the original name plus the suffix entered here.
4. # of Categories [Nb Categories] The number K of categories contained in

the working property (item 2).
5. Target Marginal Distribution [Marginal Pdf] The target categorical pro-

portions must be given in sequence from category 0 to Nb Categories-1. The
sum of all target proportions must be 1.

6. Factors for Target Proportions [Marginal Pdf Factor] Relative factor fk

associated with each category in Eq. (9.4). The larger the factor, the greater
control on its proportion adjustment. The total number of weights to be input
is Nb Categories.

7. # of Iterations [Nb Iterations] The number of iterations to perform TRAN-
SCAT algorithm, the default value is 1.

8. Moving Window Dimension [Moving Window] The size of a 3D template
to retrieve the local image patterns. The three input numbers must be positive
odd integers, and separated by a space. This template is used to retrieve the
required user-defined filter values.

9. Default Filter [Filter Default] The option to use the default filters pro-
vided by TRANSCAT.

10. User Defined Filter [Filter User Define] The option to use the user’s
own filter definition. Note that ‘Default’ and ‘User Defined’ are mutually
exclusive.

11. Data File with Filter Definition [User Def Filter File] Input a data file
with the filter definitions (see Fig. 8.30), same as for FILTERSIM. This
parameter is ignored if Filter User Define is set to 0.

12. Local Conditioning [Is Cond] Enables a transformation honoring local hard
data.

13. Object [Cond Data.grid] The name of the grid containing the local hard
data.

14. Property [Cond Data.property] The name of the local hard data
property.

15. Control Parameter [Weight Factor] Relative weight f0 defined in formula
Eq. (9.3), and used for the hard conditioning data; must be larger than the
weights fk given in item 6 to privilege the impact of hard data.

222 Utilities

9.3 POSTKRIGING: post-processing of kriging estimates

Some applications require more displays than just the kriging estimate or kriging
variance. One may be interested in knowing the probability to be above or below
a threshold value for example. Algorithm POSTKRIGING builds at each location
a probability distribution for the unknown and retrieves information from it. In the
case of indicator kriging, a non-parametric ccdf is built from the vector of estimated
probabilities of being below the input threshold values, with the tail distributions
defined by the user using the SGeMS parametrization presented in Section 6.8.
From that ccdf, the conditional mean and variance as well as quantiles, probability
of being above or below a threshold and the interquartile range can be retrieved.
The same information can be retrieved from the results of kriging or cokriging a
continuous variable, by identifying the kriging estimate and the kriging variance
with the mean and the variance of a Gaussian distribution. If there is no reason
to believe the variable follows a Gaussian distribution, estimation from indicator
kriging should be preferred to retrieve probability-type information.

Parameters description

The POSTKRIGING algorithm is activated from Utilities → postKriging in the
Algorithm Panel. The main POSTKRIGING interface contains two pages: “Dis-
tribution” and “Statistics” (see Fig. 9.3). The text inside “[]” is the corresponding
keyword in the POSTKRIGING parameter file.

1. Grid Name [Grid Name] Name of the grid.
2. Distribution type Either choose a non-parametric distribution [is non param cdf]

or Gaussian distribution [is Gaussian].
3. Properties with probabilities [props] Properties containing the probabil-

ities to be below given thresholds. The results from INDICATOR KRIGING
yields directly such properties.

4. Thresholds [marginals] Thresholds associated with each of the properties.
5. Lower tail extrapolation [lowerTailCdf] Parametrization of the lower

tail.
6. Upper tail extrapolation [upperTailCdf] Parametrization of the upper

tail.
7. Gaussian Mean [gaussian mean prop] Property containing the local mean

of a Gaussian distribution, e.g. obtained from kriging.
8. Gaussian Variance [gaussian var prop] Property containing the local

variance of a Gaussian distribution, e.g. obtained from kriging.
9. Mean If [mean] is selected then the conditional mean is computed locally

from the local distribution and output in the property [mean prop].

9.3 POSTKRIGING: post-processing of kriging estimates 223

10

11

12

13

14

1

2

3

4

5

6

7

8

9

Figure 9.3 User interface for POSTKRIGING

10. Variance If [cond var] is selected then the conditional variance is computed
from the local distribution and output in the property [cond var prop].

11. Interquartile range If [iqr] is selected then the interquartile range (q75 −
q25) is computed and output in the property [iqr prop].

12. Quantile If [quantile] is selected then the quantile for the specified
probability values in [quantile vals] are computed from the local distri-
bution. Each quantile is written in a property with base name given by
[quantile prop] with the quantile value appearing as suffix.

13. Probability above thresholds If [prob above] is selected then the probabil-
ity to be above the thresholds specified in [prob above vals] are computed
from the local distribution. Each probability is written in a property with base
name given by [prob above prop] with the threshold value appearing as a
suffix.

224 Utilities

(a) Conditional mean
3 4 5 6 7 0 0.5 1 1.5 2 2.5

(b) Conditional variance
0 0.5 1 1.5 2 2.5

(c) Interquartile range

Figure 9.4 Post-processing of median indicator kriging

14. Probability below thresholds If [prob below] is selected then the proba-
bility to be below the thresholds specified in [prob below vals] is computed
locally from the local distribution. Each probability is written in a prop-
erty with base name given by [prob below prop] with the threshold value
appearing as a suffix.

Example

The POSTKRIGING algorithm is used on a set of 8 estimated indicators obtained
from median indicator kriging; the kriging map for three of these indicators is
shown in Fig. 7.5. From the kriging indicator results, the conditional mean, condi-
tional variance and interquartile range are computed and shown in Fig. 9.4. The
conditional mean results can be compared to the ordinary kriging map shown
in Fig. 7.3. Particularly interesting is the difference between the estimation vari-
ances resulting from simple kriging and from the indicator kriging approach. The
inter-quartile range provides a different measure of uncertainty from the variance.

9.4 POSTSIM: post-processing of realizations

The POSTSIM algorithm extracts local statistics from a set of simulated realiza-
tions. For each node in a grid, a probability distribution is built from the realizations
available, then user-specified statistics such as mean, variance, interquartile range,
probability to be above or below a threshold, and the mean above or below a thresh-
old, can be computed. Each realization provides a structurally accurate map, i.e. a
map that reproduces the spatial patterns implicit to a variogram model or extracted
from a training image. The point-wise averaging of multiple equiprobable realiza-
tions provides a single so-called E-type map with local accuracy similar to that of
the corresponding kriging map.

9.4 POSTSIM: post-processing of realizations 225

10

1

2

3

4

5

6

7

8

9

Figure 9.5 User interface for POSTSIM

Parameters description

The POSTSIM algorithm is activated from Utilities → postSim in the Algorithm
Panel. The text inside “[]” is the corresponding keyword in the POSTSIM
parameter file. The user interface is shown in Fig. 9.5.

1. Object Name [Grid Name] Name of the working Cartesian grid or point-set.
2. Properties [props] Realizations to be processed.
3. E-type If [mean] is selected then the local conditional mean is computed

from the set of realizations and output in the property [mean prop].
4. Variance If [cond var] is selected then the local conditional variance is com-

puted from the set of realizations and output in the property [cond var prop].
5. Interquartile range If [iqr] is selected then the local interquartile range is

computed from the set of realizations and output in the property [iqr prop].
6. Quantile If [quantile] is selected then the local quantile for the values

specified in [quantile vals] is computed from the set of realizations; each
quantile is written in a property with base name given by [quantile prop]

with the quantile value for suffix.

226 Utilities

7. Probability below thresholds If [prob below] is selected then the local
probability to be below the thresholds specified in [prob below vals] is com-
puted from the set of realizations; each probability is written in a property
with base name given by [prob below prop] with the threshold value for
suffix.

8. Probability above thresholds If [prob above] is selected then the local
probability to be above the thresholds specified in [prob above vals] is com-
puted from the set of realizations; each probability is written in a property
with base name given by [prob above prop] with the threshold value for
suffix.

9. Mean above thresholds If [mean above] is selected then the local mean
above the thresholds specified in [mean above vals] is computed from the set
of realizations; the mean for each threshold is written in a property with base
name given by [mean above prop] with the threshold value for suffix.

10. Mean below thresholds If [mean below] is selected then the local mean
below the thresholds specified in [mean below vals] is computed from the set
of realizations; the mean for each threshold is written in a property with base
name given by [mean below prop] with the threshold value for suffix.

Example

The POSTSIM algorithm is used to get the conditional mean (E-type), variance and
interquartile range of a set of 50 realizations as generated by the direct sequential
simulation algorithm. The POSTSIM results, shown in Fig. 9.6, are to be com-
pared with the kriging results (Fig. 7.3) and the post-processing of indicator kriging
(Fig. 9.4a).

(a) Conditional mean (b) Conditional variance (c) Interquartile range
3 4 5 6 7 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

Figure 9.6 Post-processing of 50 DSSIM realizations

9.5 NU-TAU MODEL: combining probability fields 227

9.5 NU-TAU MODEL: combining probability fields

Combining sources of information can be done using the nu/tau model described in
Section 3.10. The nu/tau model allows to merge N elementary probabilities, each
conditional to a single datum event, into a single posterior probability conditional
to all data events considered jointly. The nu/tau parameters account for information
redundancy between these data events.

The SGeMS implementation of the NU-TAU MODEL allows to enter the redun-
dancy either with the tau (τ) or the nu (ν) parameters. Recall that the conversion
between ν and τ is data dependent.

The N ν parameters can be lumped into a single product, the ν0 parameter. By
default ν0 is set to one which corresponds to no data redundancy. SGeMS offers
three ways to enter the redundancy correction: (a) enter a single ν0 value, (b) enter
one ν or τ value for each source of information, and (c) enter a property that con-
tains a ν0 value at each location or similarly a vector of properties with the τi

values. Options (a) and (b) amount to assuming the same redundancy model at all
locations. Option (c) allows to define a location-specific redundancy model. Recall
that the νi and the ν0 values must be positive.

Wherever a location has contradictory information, e.g. one source of informa-
tion gives a probability of one while a second source gives a probability of zero,
that location is left uninformed and a warning message is issued.

Parameters description

The NU-TAU MODEL algorithm is activated from Utilities → nutauModel in the
Algorithm Panel. The text inside “[]” is the corresponding keyword in the NU-TAU
MODEL parameter file. The user interface is shown in Fig. 9.7.

1. Object Name [Grid] Name of the grid.
2. Properties [props] Properties containing the single event conditional prob-

ability. More than one property must be selected.
3. Properties [nu prop] Name for the output property: the combined condi-

tional probability.
4. Redundancy Model Model selection: select [is tau] for the tau model or

[is nu] for the nu model.
5. Redundancy Value Indicate if the ν or τ are constant ([redun constant]

is selected) or location specific ([redun specific] is selected). In the former
case, the user can either enter the single value ν0 or one ν value for each prob-
ability map. In the latter case, the ν0 are stored on a property. Only needed if
[is nu] is selected.

228 Utilities

1

2

3

4

5

6

7

Figure 9.7 User interface for NU-TAU MODEL

6. Redundancy parameters [redun input] Required if [redun constant] is
selected. The τ or the ν are entered for each property selected in [props]. For
the nu model, if a single value is entered it will be considered as ν0.

7. Redundancy property [redun prop] Required if [redun specific] is
selected. Select a property containing the ν0 value for each location of the
grid when [is nu] is selected, or a vector of properties with the τi parameters
when [is tau] is selected. Uninformed nodes are skipped.

9.6 BCOVAR: block covariance calculation

Given a variogram/covariance model and a gridded field, it is useful to visualize
the spatial correlation between any point or block and other point in the field; this
is provided by the point-to-point or block-to-point covariance map. It is also help-
ful to calculate and display the covariance value between any two given points or

9.6 BCOVAR: block covariance calculation 229

blocks. BCOVAR is the utility program to achieve that. It allows calculation of the
types of covariances or covariance maps required by the kriging equations using
block data, see Section 3.6.3 and Eq. (7.10).

Block-to-point covariance map

In BCOVAR, the covariance between any given block average and any point node
within a gridded field is computed. Either the traditional integration method or the
integration-hybrid method can be used. A property map or cube associated with the
grid is generated that holds the calculated covariance values; such a map is easy to
visualize. Also, those covariance values can be saved into a file through SGeMS
menu: Objects | Save Object.

Point-to-point covariance map

The covariance map between any node and the gridded field is calculated. The
covariance values are stored on a property map for visualization. Again, these can
be saved into a file through SGeMS menu: Objects | Save Object.

Block-to-block, block-to-point and point-to-point covariance value

BCOVAR allows to compute one single covariance value related to block-to-block,
block-to-point or point-to-point. This value is shown on a pop-up window. Such a
covariance value provides a quantitative measure of spatial correlation between the
two specified blocks or points.

Parameters description

The BCOVAR algorithm is activated from Utilities → bcovar in the Algorithm
Panel. The main BCOVAR interface contains two pages: “General” and “Vari-
ogram” (see Fig. 9.8). The text inside “[]” is the corresponding keyword in the
BCOVAR parameter file.

1. Grid Name [Grid Name] Name of the simulation grid.
2. Block Covariance Computation Approach [Block Cov Approach] Select

the method of computing block covariance: FFT with Covariance-Table or
Integration with Covariance-Table.

3. Covariance Calculation Type [Cov Cal Type] Select the type of covari-
ance for computation: Block-to-Point Cov. Map, Point-to-Point Cov. Map,
Block-to-Block Cov. Value, Block-to-Point Cov. Value and Point-to-Point
Cov. Value.

4. Block-to-Point Cov. Map Parameters Only activated if Covariance Cal-
culation Type [Cov Cal Type] is set to Block-to-Point Cov. Map. The block

230 Utilities

10

11

12

13

14

1

2

3

4

5

6

7

8

9

Figure 9.8 User interface for BCOVAR

used is entered by its block ID through the parameter Block index value
[Block Index for Map]. All blocks are internally assigned a block ID from 0
to N − 1 based on their locations in the block data file, where N is the number
of blocks. The output block covariance map/cube property name is specified
through Output map/cube name [Block Cov Output Prop Name].

5. Point-to-Point Cov. Map Parameters Only activated if Covariance Cal-
culation Type [Cov Cal Type] is set to Point-to-Point Cov. Map. The
point used is entered by its i j k index through the parameter Point I
J K location [Point IJK for Point Cov Map]. Note that all indexes start
from 0. The input i j k are separated by blanks. The output point covari-
ance map/cube property name is specified through Output map/cube name
[Point Cov Output Prop Name].

6. Block-to-Block Cov. Value Parameters Only activated if Covariance Cal-
culation Type [Cov Cal Type] is set to Block-to-Block Cov. Value. The two
blocks used are entered by its block index through the parameters First
block index value [First Block Index] and Second block index value
[Second Block Index]. Note that all blocks are internally assigned a block

9.6 BCOVAR: block covariance calculation 231

index from 0 to N − 1 based on their input sequence in the block data file,
where N is the number of blocks. The calculated covariance value is shown on
a pop-up window at the end of the calculation.

7. Block-to-Point Cov. Value Parameters Only activated if Covariance Cal-
culation Type [Cov Cal Type] is set to Block-to-Point Cov. Value. The block
used is entered by its block index through the parameter Block index value
[Block Index for BP Cov] and the point used is entered by its i j k index
through Point I J K location [Point IJK for BP Cov]. Note that all blocks
are internally assigned a block index from 0 to N − 1 based on their input
sequence in the block data file, where N is the number of blocks. All point
indexes start from 0. The input i j k are separated by blanks. The calculated
covariance value is shown on a pop-up window at the end of the calculation.

8. Point-to-Point Cov. Value Parameters Only activated if Covariance Cal-
culation Type [Cov Cal Type] is set to Point-to-Point Cov. Value. The
two points used are entered by their indexes through the parameters First
point I J K location [First Point IJK] and Second point I J K location
[Second Point IJK]. Note that all indexes start from 0. The input i j k are
separated by blanks. The calculated covariance value is shown on a pop-up
window at the end of the calculation.

9. Block Data From Select where the block data are to be found. There are two
options: From File [Block From File] and From Point Set Object
[Block From Pset].

10. Block Data From File [Block Data File] Only activated if From File
[Block From File] is selected in Block Data From. The directory address of
the block data file should be specified. The block data file format is shown in
Fig. 7.9. If no block data file is entered, the estimation is performed using only
point data.

11. Block Data From Point Set Objects Only activated if From Point Set
Object [Block From Pset] is selected in Block Data From.

12. Number of blocks [Number of Blocks] Number of blocks entered from
point-set objects.

13. Point set objects [Block Grid i] Enter the point-set block grids. This allows
users to conveniently use the pre-loaded point-set objects. No property is
required to be associated with the input point-set grids. The maximum number
of grids entered in this way is 50. They have to be loaded from a file if there
are more than 50 blocks. The number of input point-set grids should be equal
to or larger than the Number of blocks [Number of Blocks].

14. Variogram [Variogram Cov] Parametrization of the variogram model, see
Section 6.5.

232 Utilities

Examples

BCOVAR is run on a Cartesian grid of 40×40 with grid dimension of 0.025×0.025.
The variogram model (7.11) is used.

The block-to-point covariance map of the block (whose geometry is given in
Fig. 9.9a) is generated, see Fig. 9.9b. The covariance value is higher close to the
block location and decreases away from the block.

The covariance map of a point (15, 25, 0) (see location in Fig. 9.9c) is generated,
see Fig. 9.9d. At the point location, the covariance value is 1 and decreases away
from it. The anisotropy character of the input variogram model is revealed. The
covariance value between the block and the point (see Fig. 9.9e) is calculated and
the result is shown on the pop-up window (Fig. 9.9f).

(a) Block geometry

(c) Point location (15, 25, 0)

(e) Point and block location (f) Block-to-point covariance value
 displayed on a pop-up window

(d) Point covariance map

(b) Block covariance map

0.2

0.16

0.12

0.08

0.04

0

1

0.8

0.6

0.4

0.2

0

Figure 9.9 Covariance map or value obtained from BCOVAR

9.7 IMAGE PROCESSING 233

9.7 IMAGE PROCESSING

The IMAGE PROCESSING algorithm allows one to scale and rotate properties on
a Cartesian grid. It is especially useful for mp simulations either with SNESIM or
FILTERSIM. For instance, geological structures from the available training image
may not have the desired thickness or orientation. IMAGE PROCESSING allows
to process that imperfect training image to provide more relevant structural infor-
mation to the mps simulation algorithms. With the rotation and scaling operations,
the IMAGE PROCESSING program can modify both the geobodies’ directions and
size but not their topology.

Given the central location us
0 of the original training image (source), the central

location ut
0 of the new training image (target), the three rotation angles α, β, θ ,

and the three affinity factors fx , fy, fz , each node ut in the new training image
(Tinew) has the same value at node us in the original training image (Tiold), here
u = (x, y, z)′. The relationship between ut and us is given by

ut = T · � · (us − us
0) + ut

0 , (9.5)

where the rotation matrix T is defined as:

T =
⎡⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤⎦ ⎡⎣ 1 0 0
0 cos β sin β

0 − sin β cos β

⎤⎦ ⎡⎣ cos α sin α 0
− sin α cos α 0

0 0 1

⎤⎦
and the scaling matrix � is defined as

� =
⎡⎣ fx 0 0

0 fy 0
0 0 fz

⎤⎦ .

The three rotation angles α, β, θ are the azimuth, dip and plunge, see Section 2.5.
Note that the rotation sequence is important: rotation is performed first around

the Z-axis, then around the X-axis, and finally around the Y-axis. The larger the
input affinity factor, the larger the geobody in the output training image.

Parameters description

The IMAGE PROCESSING algorithm is activated from Utilities → ImageProcess
in the Algorithm Panel. The IMAGE PROCESSING interface is given in Fig. 9.10,
and the parameters are described in the following. The text inside “[]” is the
corresponding keyword in the IMAGE PROCESSING parameter file.

1. Source Grid [Source Grid] The object holding the training image property
to be modified. It must be a Cartesian grid.

234 Utilities

1

2

3

4

5

6

Figure 9.10 User interface for IMAGE PROCESSING

2. Source Property [Source Property] The original training image property
to be modified.

3. Target Grid [Target Grid] The object that holds the modified training
image property must be a Cartesian grid.

4. Target Property [Target Property] The new training image property
name after modification.

5. Rotation Angles (degree) around X/Y/Z Axes The input rotation angles
around each X/Y/Z axis; these angles must be given in degree units, see
Section 2.5 for a description of the rotation angles. The three keywords are:
[Angle0], [Angle1] and [Angle2].

6. Affinity Factors in X/Y/Z Directions The input affinity factors along each
X/Y/Z direction, these scaling factors must be positive. The larger the input
affinity factor, the larger the structures in the output property. The three
keywords are: [Factor0], [Factor1] and [Factor2].

9.8 MOVING WINDOW: moving window statistics

The MOVING WINDOW algorithm allows one to process both Cartesian grid and
point-set grid with a moving window. At every location along a grid, statistics
related to values within the window are computed and assigned to the window
central point. A moving weighted linear average, or filter, is used in the FILTER-
SIM algorithm where patterns are classified according to scores defined from such
filters. Moving windows statistics are useful during exploratory data analysis to
detect trends, or non-stationary regions within a grid.

The filters available in MOVING WINDOW are as follows.

9.8 MOVING WINDOW: moving window statistics 235

Moving average Compute the linear average of the neighborhood.
Gaussian low pass Weighted linear average with weights given by a Gaussian

function with maximum value at the center pixel and decreasing away from
the center. The weights are given by

λ(h) = 1

σ
exp

(− ‖ h ‖2

σ

)
where σ is a user-defined parameter controlling the rate of decrease of the
weights with distance ‖ h ‖.

Moving variance Compute the variance of the neighborhood.
Default filtersim filters These filters are the same as used in the FILTERSIM

algorithm described in Section 8.2.2.
Sobel filters Edge detection filters; the intensity and direction of edges can also

be retrieved. This is a 2D filter; when applied to 3D grids, it will process the
full volume one layer or section at a time. The user can specify the plan in
which the Sobel filter is to be applied (XY, XZ or YZ)

Gx =
⎡⎣ −1 0 1

−2 0 2
−1 0 1

⎤⎦ G y =
⎡⎣ 1 2 1

0 0 0
−1 −2 −1

⎤⎦ .

From the Sobel filter’s output, the intensity of an edge G is given by G =√
G2

x + G2
y and its orientation by θ = tan−1

(
G y/Gx

)
.

User-defined filters Filters with weights and shape fully defined by the
user. They have the same definition and format as with FILTERSIM, see
Section 8.2.2 and Fig. 8.30.

With the exception of the Sobel filter, all filters are 3D with user-specified
window dimension. Grid edge pixels are not processed and are left uninformed.

Tip 8 Canny segmentation
The Canny segmentation method (Canny, 1986) is an edge detection technique
widely used in image processing that can be easily implemented in SGeMS. It
consists of first applying a Gaussian low pass filter followed by the Sobel filter.

Tip 9 Categorical variables
The filters defined above are designed for a continuous attribute but can also be
applied on binary variables. In case of a categorical attribute, we suggest
transforming these categories into a set of indicator variables on which these
filters can be applied.

236 Utilities

Parameters description

The MOVING WINDOW algorithm is activated from Utilities → MovingWindow
in the Algorithm Panel. The main MOVING WINDOW interface is given in
Fig. 9.11, and the parameters are described in the following. The text inside “[]”
is the corresponding keyword in the MOVING WINDOW parameter file.

1

2

3

4

5

6

7

8

9

10

Figure 9.11 User interface for MOVING WINDOW

1. Input—Object [Input data.grid] Grid containing the property to be pro-
cessed.

2. Input—Property [Input data.property] Property to be processed.
3. Prefix [prefix out] Prefix to be added to the input property name to identify

the output property.

9.9 TIGENERATOR: object-based image generator 237

4. Filter Type [filter type] Selection of the filter; the choices are: moving
average, moving variance, default FILTERSIM filter, Gaussian low pass, Sobel
edge detection filter or the user-defined option.

5. Half template size This entry parametrizes a rectangular moving window.
If [grid] is a Cartesian grid, [size x] [size y] and [size z] correspond to the
number of template pixels on each side of the center pixel, (e.g. the total size
of pixel in x would be 2 × [size x] + 1). A Cartesian grid requires integer
values. If [grid] is a point-set then the entries correspond to the radius of an
ellipsoid.

6. Ellipsoid definition This entry parametrizes an ellipsoid moving window.
7. User-defined filter [filter filename] Load the user-defined filters with

the same format as in FILTERSIM, see Section 8.30.
8. Plane for the Sobel filter The Sobel filter is only 2D, and can be applied

in the XY, XZ or YZ planes by selecting [plan xy], [plan xz] or [plan yz]

respectively.
9. Sigma [sigma] The variance of the Gaussian filter, only available when the

“Gaussian low pass” option is selected, see item 4.
10. Half template size The size of the FILTERSIM filters, see Section 8.30.

9.9 TIGENERATOR: object-based image generator

The multiple-point simulation algorithms SNESIM and FILTERSIM require, as
input structural model, a training image (Ti) that is a numerical description of the
perceived geological heterogeneity. This training image is a conceptual represen-
tation of the type of structures deemed present in the field/reservoir. Unconditional
realizations of object-based algorithms such as fluvsim (Deutsch and Tran, 2002)
and ellipsim (Deutsch and Journel, 1998) have been used for generating Tis with
channel and elliptical geometries respectively. However, owing to the lack of a
common interface, modeling interactions between the different objects is limited
to simple overlap of the generated objects.

TIGENERATOR provides a single program to generate different parametric
shapes using non-iterative, unconditional Boolean simulation. In addition, any non-
parametric shape can be simulated by specifying a rasterized template of that shape.
TIGENERATOR is fast because it is unconditional. It is flexible because the pat-
tern distribution of a variety of depositional environments can be modeled using
the available shapes and constraints. The various object geometry parameters and
orientation can be kept constant or made to follow pre-defined probability distri-
butions. Interaction between objects can be modeled by specifying erosion and
overlap rules.

The structure of the TIGENERATOR program is outlined in Algorithm 9.2.

238 Utilities

Algorithm 9.2 Training image generator

1: Initialize a list of geobodies and their input proportions
2: for Each geobody i in the list do
3: Define a random path visiting each node of the grid
4: for Each node u along the path do
5: Draw geobody i
6: Update the proportion of geobody i
7: if Simulated proportion ≥ target proportion of geobody i then
8: Break out of loop
9: end if

10: end for
11: end for
12: Repeat for another realization

The current implementation provides four parametric shapes: sinusoid, ellipsoid,
half-ellipsoid, and cuboid.

Sinusoid In the horizontal plane a sinusoid is parametrized by an amplitude and
a wavelength (Fig. 9.12a). Its vertical cross-section is a lower half-ellipse,
which is described by a width and a thickness (Fig. 9.12b). The sinusoid
object can be rotated only in the horizontal plane.

Ellipsoid The ellipsoid object is parametrized by a maximum, medium and min-
imum axis exactly like the search ellipsoid of Section 2.5. It can be rotated
only in the horizontal plane.

Half-ellipsoid The vertical upper or lower section of a full ellipsoid. It can be
rotated only in the horizontal plane.

Cuboid A rectangular parallelepiped characterized by its X, Y and Z dimen-
sions. It can be rotated in both the horizontal and vertical planes.

Width

Thickness

Amplitude

Wavelength

(a) Horizontal view (b) Vertical cross-section

Figure 9.12 Horizontal and vertical views of a sinusoid

9.9 TIGENERATOR: object-based image generator 239

The object geometry and orientation parameters can be made to follow indepen-
dently three types of distributions: Dirac, uniform or triangular.

Constant value or Dirac distribution Completely defined by the single param-
eter [Mean]; it is used to input constant parameters.

Uniform distribution A uniform distribution is parametrized with [Min] and
[Max], the lower and the upper bounds of the distribution.

Triangular distribution A triangular distribution is parametrized with [Min],
[Mode] and [Max]: the lower bound, the mode and the upper bound of the
distribution.

9.9.1 Object interaction

A training image must not only depict each object, but also how these objects spa-
tially relate to each other. Geological events cause objects to overlap and erode
one another. In TIGENERATOR these spatial relationships between objects are
modeled by user-specified erosion and overlap rules.

Erosion rules: these must be specified between a geobody and all geobodies that
are simulated prior to it. A geobody can either erode (code 1) or be eroded by
(code 0) the previously simulated geobodies. All geobodies erode the background
by default.

Overlap rules: these help constrain the fraction of volumetric overlap between
two geobodies. The overlap is controlled by two parameters, minimum overlap
and maximum overlap, which are bounded by [0, 1]. For each geobody, the user
must specify an overlap rule with all previous geobodies. If the volumetric overlap
between two geobodies is to be the same, then minimum and maximum overlap
should be set equal.

To illustrate some end member overlap cases, consider the example of a three
facies training image – background, ellipsoid and cuboid – simulated in that order.
Prior to any geobody simulation all grid nodes are set to background facies. The
ellipsoid object is simulated first. No erosion or overlap rules need to be specified
for the ellipsoid object because it is simulated first. The cuboid objects, which are
simulated next (second), erode the ellipsoids. Consider the following four cases
of overlap between the cuboid and ellipsoid objects: if, for the cuboid object, min
overlap and max overlap are both set to 0, i.e. 0% volumetric overlap, then the
two geobodies will not be in contact (Fig. 9.13a). On the other hand, if min and
max overlap are both set to 1, then cuboids will be completely contained within
the ellipsoids (Fig. 9.13b). Setting min overlap to 0.01 will ensure that cuboids
are attached with at least a 1% volumetric overlap to ellipsoids (Fig. 9.13c). If no

240 Utilities

(a) No overlap (min = 0, max = 0)

(c) Attachment (min = 0.01, max = 1) (d) Random overlap (min = 0, max = 1)

(b) Complete overlap (min = 1, max = 1)

Figure 9.13 Examples of interaction between ellipsoid and cuboid objects using
different values of minimum and maximum overlap values. The values specified
are for the cuboid object

specific overlap relationship exists between the two geobodies then set min overlap
to 0 and max overlap to 1, which results in a random overlap (Fig. 9.13d).

Warning: it is the user’s responsibility to ensure consistency between the dif-
ferent overlap rules. If one or more geobodies cannot be simulated owing to
inconsistent overlap criteria, the simulation can be stopped by clicking Abort on
the progress dialog.

Parameters description

The TIGENERATOR algorithm is activated from Utilities → TiGenerator in the
Algorithm Panel. The main TIGENERATOR interface is given in Fig. 9.14, and the
parameters are described below. The text inside “[]” is the corresponding keyword
in the TIGENERATOR parameter file.

9.9 TIGENERATOR: object-based image generator 241

1. Simulation Grid Name [ti grid] The name of the simulation grid.
2. Property Name Prefix [ti prop name] Prefix for the simulation output. The

suffix real# is added for each realization.
3. Nb of realizations [nb realizations] Number of simulations to generate.
4. Seed [seed rand] Seed for the random number generator (should be a large

odd integer).
5. Nb of geobodies [nb geobodies] Number of different geobody types to be

simulated. Minimum value of this parameter is set to 1 (at least one geobody
must be simulated). Total number of facies in the Ti is equal to the number of
geobodies plus the background facies (index 0).

6. Geobody information Information about a geobody is collected using a
geobody selector [geobodySelector]. For each geobody the following input is
required: index [gbIndex], geobody type [gbType], geobody parameters, pro-
portion [gbProp], and interaction rules with all previously simulated geobod-
ies. Note that the geobodies are simulated in the order in which they are spec-
ified; geobody indexing should be sequential (1, 2, 3, etc). Select one geobody
type from the drop-down menu and click on the adjacent push button to invoke
the corresponding geobody dialog. The geobody parameters can either be set
as constant or specified as a uniform or triangular distribution. All dimensions
should be specified in number of cells. Rotation for all geobodies, except the
cuboid, is limited to the horizontal plane and the 3D search ellipsoid conven-
tion is used, see Section 2.5. The cuboid object can be rotated in both the hori-
zontal (azimuth) and vertical (dip) planes. The types of geobodies available in
TIGENERATOR and a description of their parameters are as follows.

Sinusoid The dimensions of the sinusoid object are determined by three
parameters: length [sinLen], width [sinWid] and thickness [sinThk].
The horizontal sinuosity is specified by an amplitude [sinAmp] and a
wavelength [sinWvl]. Horizontal orientation of the sinusoid [sinRot] is
specified as clockwise rotation in degrees. No rotation implies that the
sinusoid axis is North–South.

Ellipsoid The geometry of the ellipsoid object is determined by three
radii: Max radius [ellipMaxr], Med radius [ellipMedr], and Min radius
[ellipMinr]. Ellipsoid orientation [ellipRot] is specified as clockwise
rotation in degrees from North (y-axis).

Half-ellipsoid The half-ellipsoid object can be either a lower half ellip-
soid [lhellip] or an upper half ellipsoid [uhellip]. Its geometry
is determined by three radii: Max radius [hellipMaxr], Med radius
[hellipMedr], and Min radius [hellipMinr]. Half-ellipsoid orienta-
tion [hellipRot] is specified as clockwise rotation in degrees from
North (y-axis).

242 Utilities

Cuboid The cuboid object has three parameters: length [cubLen], width
[cubWid] and height [cubHgt]. Cuboid orientation is specified through
two angles: [cubRotStrike] is the clockwise rotation in the horizontal
plane, and [cubRotDip] is dip rotation in degrees from the horizon-
tal plane. When [cubRotStrike] is set to 0, the cuboid length runs
North–South.

User-defined User-defined shape refers to any rasterized shape provided
by the user through a text file [filename]. The file should contain three
columns and as many lines as number of points in the raster. Each line
contains, separated by spaces, the i, j, and k coordinates of a point in
the raster relative to a center location (0, 0, 0). The shape need not be
symmetric. Orientation [udefRot] is specified as clockwise rotation in
degrees in the horizontal plane. The user-defined shape can be scaled
by providing affinity factors in x, y, and z directions [udefScal]; these
factors should be greater than zero.

For any given geobody, the interaction with previous geobodies must be spec-
ified by invoking the Interaction dialog shown in Fig. 9.14. Three types of
interaction rules are required.

7. Erosion rules with previous geobodies The erosion rules are specified as a
space-separated string of 0s and 1s. If the current geobody erodes a previous
geobody, then the erosion value is 1, 0 otherwise. For the first geobody this
field should be left blank as there are no previously simulated geobodies.

8. Overlap with previous geobodies The overlap rules control the fraction of
volumetric overlap between two geobodies. It is specified as a pair of mini-
mum [min] and maximum [max] overlap values, which are between [0, 1]. For
the first geobody these fields should be left blank as there are no previously
simulated geobodies. See Section 9.9.1 for details.

1

2
3

4
5

6

7

8

9

Figure 9.14 User interface for the TIGENERATOR

9.9 TIGENERATOR: object-based image generator 243

(a) Channels cut by the fractures (b) Channels with crevasse-like
 attachment

Figure 9.15 Examples of parametric shapes generated using the TIGENERATOR

(a) User-defined shape (b) Channels with crevasse-like
 attachment

Figure 9.16 Examples of training images containing both parametric and user-
defined shapes

(a) Original raster (b) 90° rotation (c) 45° rotation; 0.5 affinity

Figure 9.17 Rotation and affinity of user-defined shapes

244 Utilities

9. No overlap with self The minimum and maximum overlap rules are for
modeling overlap with previous geobodies. If no overlap is desired between
geobodies of the same type (i.e. same index), then this box should be checked.

Examples

Some example training images and their corresponding parameters are presented
in this section. The simulation grids in Fig. 9.15 and Fig. 9.16 each contain 100 ×
100 × 30 grid blocks.

Figure 9.15a shows a channelized training image. Channels are modeled using
the sinuosoid objects and all their parameters are kept constant. The horizontal
channels are oriented at 15◦ from North and are cut by fractures which are striking
North and dipping at 45◦. Fractures are modeled using elongated cuboids and they
erode the channels. The input channel proportion is 0.10; the simulated proportion
in Fig. 9.15a is 0.09. Note that input geobody proportions may not be honored
exactly due to erosion by other objects and discretization round-ups.

Figure 9.15b depicts a three facies Ti with background, channels and crevasse
splays simulated in that order. The channels are modeled using sinusoids, which
are oriented at 15◦ from North and all their parameters are kept constant. Crevasse
splays are modeled by small ellipsoid objects which are oriented at 15◦. The
crevasse splays are forced to be attached to the channels by specifying a minimum
overlap of 0.01. To prevent excess overlap between the channels and the crevasse
splays, their maximum overlap is set to 0.02. The simulated proportion of channels
is smaller than the target proportion partly due to the erosion by crevasse splays.
With some practice, the user should be able to factor in the impact of such erosion
and overlap on his input target proportions.

Figure 9.16a shows a training image generated using a user-defined template.
This feature adds great versatility to the type of shapes that can be generated with
the TIGENERATOR. All object interaction rules described in Section 9.9.1 are
also applicable to the user-defined shapes. Figure 9.16b shows the non-parametric
crevasse splays attached to channels. The user-defined shapes can be scaled as well
as rotated (Fig. 9.17). Note that some shapes may not maintain their original char-
acteristics when rotated and scaled because of the discretization induced by the
Cartesian grid. In such cases it is better to provide a rotated or scaled raster as
input shape.

10

Scripting, commands and plug-ins

It is often necessary to repeat similar tasks, e.g. to study the sensitivity of an algo-
rithm to a given parameter. Such sensitivity analysis would be tedious if using the
sole graphical interface, manually editing fields and clicking. SGeMS provides two
ways to automate tasks: commands and Python scripts.

10.1 Commands

Most of the tasks performed in SGeMS using the graphical interface, such as cre-
ating a new Cartesian grid or performing a geostatistics algorithm, can also be
executed using a command. A command is composed of a command name, e.g.
NewCartesianGrid followed by a list of arguments delimited by “::”. For
example, the following command

NewCartesianGrid mygrid::100::100::10

creates a new Cartesian grid called mygrid, of dimensions 100 × 100 × 10. To
execute this command, type it in the command line editor, located on the Command
Panel (see Fig. 10.1) and press Enter. If the Command Panel is not visible (it is
hidden by default), display it by selecting Commands Panel from the View menu.

The SGeMS Commands History tab keeps a log of all commands performed
either from the graphical interface or the command line. Executed commands
appear in black. Messages, such as the time it took to execute the command, are
displayed in blue, and warnings or errors in red. Commands can be copied from
the Commands History, pasted in the command line, edited and executed.

The log of all SGeMS executed commands is also kept in a data file called
sgems history.log. Such a file is created in the directory from which SGeMS
was started and contains all the commands executed during a SGeMS session,
i.e. until SGeMS is exited. Note that the next time SGeMS is started, a new

245

246 Scripting, commands and plug-ins

Figure 10.1 SGeMS Command Panel

sgems history.log will be created, over-writing any existing log file with
the same name.

Such log files allow one conveniently to record and replay a set of actions: to
execute all the commands contained in a file, click the Execute Commands File...
button and select the commands file. A commands file contains one command per
line and lines that start with # are ignored.

10.1.1 Command lists

SGeMS understands many commands and it may not be easy to remember their
names and expected parameters. The simplest way to recall a command name and
its syntax is to execute the corresponding task using the graphical interface and
copy the command from the History tab or the sgems history.log file.

Another option is to use the Help command (just type Help in the command line
editor). Help will list all available commands and briefly recall their syntax. The
following is a list of all SGeMS commands with their input parameters. Parameters
between square brackets are optional.

• Help List all the commands available in SGeMS.
• ClearPropertyValueIf Grid::Prop::Min::Max Set to not-informed all val-

ues of property Prop in grid Grid that are in range [Min,Max].
• CopyProperty GridSource::PropSource::GridTarget::

PropTarget[::Overwrite::isHardData] Copy a property from one object
(point-set or Cartesian grid) to another. PropSource is the property to be
copied, from object GridSource to object GridTarget. The copied property is
called PropTarget. If optional parameter Overwrite is equal to 1, the copy
would overwrite values already on PropTarget. Parameter isHardData sets
the copied values as hard data if isHardData=1. By default, Overwrite=0 and
isHardData=0.

• DeleteObjectProperties Grid::Prop1[::Prop2::...::PropN]

Delete all the specified properties from Grid.

10.1 Commands 247

• DeleteObjects Grid1[::Grid2::...::GridN] Delete the specified objects.
• SwapPropertyToRAM Grid::Prop1[::Prop2::...::PropN] Loads the speci-

fied properties into the random access memory (RAM). Operating on properties
loaded in RAM is faster than working with properties accessed from the disk.

• SwapPropertyToDisk Grid::Prop1[::Prop2::...::PropN] Removes the
specified properties from RAM and stores them on the disk. Accessing those
properties, for example displaying them, will be slower. This is useful to control
RAM consumption. The SGeMS simulation algorithms (SGSIM, SISIM, etc.)
store all but the latest realization on the disk.

• LoadProject ProjectName Load the specified project. The ProjectName must
be given as a full path folder, e.g. D:/user/test2d.prj/.

• SaveGeostatGrid Grid::Filename::Filter Save the specified grid on file.
The Filename must be given with a full directory path. Filter specifies the
data format: either ASCII GSLIB or binary sgems.

• LoadObjectFromFile Filename Load the object from the specified file. The
Filename must be given with a full directory path.

• NewCartesianGrid Name::Nx::Ny::Nz[::SizeX::SizeY::SizeZ]

[::Ox::Oy::Oz] Create a new Cartesian grid with the specified geometry. The
default pixel size value for [SizeX,SizeY,SizeZ] is 1 and the default origin
[Ox,Oy,Oz] is 0.

• RotateCamera x::y::z::angle Rotate the camera: (x,y,z) defines the rotation
axis; the rotation angle is in radians and measured clockwise.

• SaveCameraSettings Filename Save the position of the camera into Filename.
The Filename must be given with a full directory path.

• LoadCameraSettings Filename Retrieve the camera position from Filename.
The Filename must be given with a full directory path.

• ResizeCameraWindow Width::Height Set the width and the height of the
camera to Width and Height.

• ShowHistogram Grid::Prop[::NumberBins::LogScale] Display the his-
togram of the specified property. The number of bins may also be input with
NumberBins; the default value is 20. The x axis can also be changed to log scale
by setting LogScale to true (value 1).

• SaveHistogram Grid::Prop::Filename[::Format]

[::NumberBins][::LogScale][::ShowStats][::ShowGrid] Save the
specified histogram into Filename with format specified by Format. The avail-
able file formats are PNG and BMP. The default format is PNG. When
ShowStats is set to true (value 1), it saves the statistics in the file, ShowGrid adds
a grid to the histogram. The Filename must be given with a full directory path.

• SaveQQplot Grid::Prop1::Prop2::Filename[::Format]

[::ShowStats][::ShowGrid] Save the QQ plot between Prop1 and Prop2 into

248 Scripting, commands and plug-ins

Filename. The available file formats are PNG and BMP. The default format is
PNG. When ShowStats is set to true (value 1), it saves the statistics in the file,
ShowGrid adds a grid to the QQ plot. The Filename must be given with a full
directory path.

• SaveScatterplot Grid::Prop1::Prop2::Filename

[::Format][::ShowStats][::ShowGrid][::YLogScale:: XLogScale] Save
the scatter plot between Prop1 and Prop2 into Filename. The available file for-
mats are PNG and BMP. The default format is PNG. When ShowStats is set to
true (value 1), it saves the statistics in the file, ShowGrid adds a grid to the scatter
plot. The Filename must be given with a full directory path.

• DisplayObject Grid[::Prop] Display Prop on the viewing window. When
Prop is not specified, only the grid geometry is displayed.

• HideObject Grid Remove Grid from the viewing window.
• TakeSnapshot Filename[::Format] Take the snapshot of the current viewing

window and save it into Filename. The available file formats are PNG, PS, BMP
and PPM. The default format is PNG. The Filename must be given with a full
directory path.

• RunGeostatAlgorithm AlgorithmName::ParametersHandler::

AlgorithmParameters Run the algorithm specified by AlgorithmName.
ParametersHandler tells SGeMS how to parse the parameters. Use
/GeostatParamUtils/XML unless you know what you are doing. The parame-
ters of the algorithm are provided as an XML string, identical to the one obtained
by saving the algorithm parameters to a file (the only difference is that all the
parameters must be on a single line).

10.1.2 Execute command file

As mentioned previously it is possible to create a commands file which contains
a list of commands to be performed. A commands file is executed by clicking the
Execute Commands File... button and browsing to the file location. SGeMS will
automatically run all the commands, in the order they appear. Each command in
the script file must start on a new line and be contained on a single line; lines that
start with a # sign are ignored. Figure 10.2 shows a simple example that loads
a SGeMS project, creates a Cartesian grid, runs the SGSIM algorithm over that
grid, and finally saves the grid with all its properties in gslib format. Note that
for formatting purposes, the parameters of the RunGeostatAlgorithm command
span multiple lines. In an actual command file, all these parameters should be on a
single line.

10.2 Python script 249

#Load a SGeMS project, run sgsim and save data in gslib format
LoadObjectFromFile D:/program/test.prj/TI::s-gems NewCartesianGrid
grid::250::250::1::1.0::1.0::1.0::0::0::0 RunGeostatAlgorithm
sgsim::/GeostatParamUtils/XML::<parameters>

<algorithm name="sgsim"/>
<Grid_Name value="grid"/>
<Property_Name value="sgsim"/>
<Nb_Realizations value="1"/>
<Seed value="14071789"/>
<Kriging_Type value="Simple Kriging (SK)"/>
<Trend value="0 0 0 0 0 0 0 0 0"/> <Local_Mean_Property value=""/>
<Assign_Hard_Data value="1"/> <Hard_Data grid="" property=""/>
<Max_Conditioning_Data value="20"/>
<Search_Ellipsoid value="40 40 1 0 0 0"/>
<Use_Target_Histogram value="0"/>
<nonParamCdf ref_on_file ="0" ref_on_grid ="1"

filename ="" grid ="" property =""> <LTI_type function ="Power"
extreme ="0" omega ="3"/> <UTI_type function ="Power" extreme
="0" omega ="0.333"/>

</nonParamCdf>
<Variogram nugget="0.1" structures_count="1">

<structure_1 contribution="0.9" type="Spherical">
<ranges max="30" medium="30" min="1"/>
<angles x="0" y="0" z="0"/>

</structure_1>
</Variogram>

</parameters>
SaveGeostatGrid grid::D:/program/sgsim.out::gslib

Figure 10.2 An example of command script file

Commands files are an easy way to automate tasks in SGeMS. They, however,
offer limited flexibility: there is indeed no support for control structures such as
loops or tests. Hence performing twenty runs of a given algorithm, each time
changing a parameter, would require that the twenty corresponding commands
be written in the commands file. To address the need for such more powerful
scripting capabilities, SGeMS supports another automation mechanism: Python
scripts.

10.2 Python script

Python is a popular scripting language which provides all the facilities expected
from modern programming languages such as variable definition, function def-
inition or object-oriented programming. Please refer to www.python.org for
resources on Python, including tutorials and extension libraries. By embedding a

250 Scripting, commands and plug-ins

Python interpreter, SGeMS provides a powerful way of performing repetitive tasks
and even extending its functionalities.

10.2.1 SGeMS Python modules

Python can interact with SGeMS through the three functions defined by the sgems

module.

• execute(’Command’) Executes SGeMS command Command. This achieves
the same result as typing command Command in the command line editor (see
Section 10.1). This function is very useful as it enables you to programmati-
cally control SGeMS: it is possible to run several geostatistics algorithms with
dynamically set parameters, display the results, save a screen capture, plot
histograms, etc.

• get property(GridName, PropertyName) Returns an array (actually a list
in Python terminology) containing the values of property PropertyName of
object GridName.

• set property(GridName, PropertyName, Data) Sets the values of prop-
erty PropertyName of object GridName to the values of list Data. If object
GridName has no property called PropertyName, a new property is created.

10.2.2 Running Python scripts

Python script files are executed by selecting Run Script... from the Scripts menu
and browsing to the script location. SGeMS also provides a rudimentary script
editor that can directly execute scripts by pressing its Run button or by pressing
the F5 key. Outputs generated by the script, e.g. messages, warnings, errors, are
displayed in the Scripts Output tab of the Commands Panel, and, if the scripts
editor is used, in the Script Output Messages section of the editor.

Figure 10.3 is an example script that computes the logarithm of values taken
from property samples of a grid named grid. It then writes the logarithms to a
new property called log samples, displays that property in the 3D view and saves
a snapshot in PNG format.

Providing an introduction to Python is beyond the scope of this chapter, and the
reader is encouraged to read the tutorial available at http://docs.python.org/
tut/tut.html. However, the script of Fig. 10.3 is simple enough so hopefully a
beginner can understand the following line-by-line explanation.

line 1 Python scripts that interact with SGeMS should always start with this
line: it makes the SGeMS-specific functions (see Section 10.2.1) available to
Python.

10.2 Python script 251

1 import sgems
2 from math import *
3

4 data = sgems.get_property(’grid’, ’samples’)
5

6 for i in range(len(data)):
7 if data[i]>0 :
8 data[i] = log(data[i])
9 else:
10 data[i] = -9966699
11

12 sgems.set_property(’grid’, ’log_samples’, data)
13 sgems.execute(’DisplayObject grid::log_samples’)
14 sgems.execute(’TakeSnapshot log_samples.png::PNG’)

Figure 10.3 Python script example

line 2 load all the functions defined in the standard math library (module).
line 4 copy the values of property samples of grid grid into list data.
lines 6–10 iterate through all the values in data. If the current value data[i] is

strictly positive, take its logarithm, otherwise, set the value to the default code
for no-data-value: −9966699. List data now contains the logarithms of the
samples

property.
line 12 write the log values to a new property of grid grid, called log samples.

Function set property is one of the functions defined by the sgems module.
Note that if object grid already had a property called log samples, it would
have been over-written.

line 13 use the execute function defined by module sgems to run SGeMS com-
mand DisplayObject (see Section 10.1.1 for a description of the SGeMS
commands).

line 14 use the execute function to run SGeMS command TakeSnapshot.

Figure 10.4 shows another Python script used to calculate the calibration
coefficient required by the Markov–Bayes model in COSISIM (Section 8.1.6).
The original Ely point-set data, both primary and secondary (Section 4.1.1),
have been transformed into indicator variables giving thresholds in line 4
(Fig. 10.4).

Many libraries are available to extend the capabilities of Python, for example
to execute system commands (package os), display graphs (package matplotlib,
http://matplotlib.sourceforge.net), build simple graphical interfaces (pack-
age wxPython, http://www.wxpython.org) or compute a Fast Fourier transform
(package SciPy, http://www.scipy.org).

252 Scripting, commands and plug-ins

1 import sgems # import sgems modulus
2

3 # thresholds z_ks
4 tr = [3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8]
5

6 for t in tr: # for each threshold
7 m0 = 0 # $mˆ0(Z)$
8 m1 = 0 # $mˆ1(Z)$
9 cnt_p = 0 # nb of data when $I(u;z_k)$=1
10

11 # get the secondary data
12 sec = sgems.get_property(’Ely1_pset’,’Secondary_soft_’+str(t))
13 # get the primary data
14 prim = sgems.get_property(’Ely1_pset’,’Primary_id’+str(t))
15

16 for p,s, in zip(prim,sec): # for each data pair
17 cnt_p += p # p value is either 1 or 0
18 if p == 1: # when I(u; z)=1
19 m1 += s # add secondary data vale
20 else: # when I(u; z)=0
21 m0 += s
22

23 # output B(z) value
24 print m1/cnt_p - m0/(len(prim)-cnt_p)

Figure 10.4 Python script to calculate the calibration coefficient values for
Markov–Bayes model in COSISIM

Notice that SGeMS provides a minimal install of Python. If you wish to install
Python and extension libraries, be sure to delete the Python dynamic library (called
python.dll on Windows systems and installed in the same directory as the sgems
executable) included in the SGeMS distribution.

10.3 Plug-ins

One of the objectives of SGeMS is to provide a flexible platform in which new
ideas can be conveniently implemented and made available through a user-friendly
interface. Integrating the Python scripting language into SGeMS is a first answer
to that requirement. Python enables quick prototyping of algorithms that capital-
ize on the existing tools of SGeMS, for example a history matching algorithm that
iteratively generates stochastic realizations of a permeability field based on the out-
put of a flow simulator. However, Python scripts have two main limitations: scripts
can not capitalize on the SGeMS graphical interface to gather user input parame-
ters, and Python does not have access to the low-level capabilities of SGeMS. For
example, the many algorithms coded in SGeMS for searching neighboring data on
a grid (Cartesian grid or set of points) are not accessible to Python scripts.

10.3 Plug-ins 253

These limitations are alleviated by using the SGeMS plug-in mechanism. A
plug-in is a piece of software that does not run by itself but is automatically rec-
ognized and executed by SGeMS. Plug-ins can be used to add new geostatistics
algorithms (the new algorithms appear in the algorithms list, just like the standard
SGeMS geostatistics tools) or new input/output filters to support more data file
formats. Plug-ins can even extend the set of supported grid types beyond Cartesian
grids and sets of points. Unlike Python scripts, plug-ins can use the entire SGeMS
API (i.e. all the C++ objects and methods defined in SGeMS), enabling faster
and more robust implementation of new algorithms: tested routines for common
operations such as neighbors retrieval or Monte Carlo sampling from a distribution
are readily available and do not have to be implemented anew.

Since SGeMS aims to be a development platform for new geostatistics
ideas, plug-ins defining new algorithms are of particular interest. These are
usually composed of two files: a dynamic library file (often called dll in
Microsoft Windows) which contains all the compiled code for the algorithm,
and a text file with extension .ui that describes a graphical interface (for
user parameters input). An algorithm plug-in is installed by placing these two
files in the plugins/Geostat directory of SGeMS: on Microsoft Windows, if
SGeMS was installed in C:/Program Files/SGeMS, the files should be placed
in C:/Program Files/SGeMS/plugins/Geostat. When SGeMS is started, it
automatically recognizes the new plug-in.

It is beyond the scope of this book to explain how to write plug-ins. The inter-
ested reader is invited to refer to the SGeMS website (sgems.sourceforge.net)
for tutorials and references.

Plug-ins are the favored solution to develop and distribute new algorithms within
SGeMS.

Bibliography

Alabert, F. G. 1987, The practice of fast conditional simulations through the LU
decomposition of the covariance-matrix, Mathematical Geology
19(5), 369–386.

Almeida, A. S. and Journel, A. G. 1994, Joint simulation of multiple variables with a
Markov-type coregionalization model, Mathematical Geology 26(5), 565–588.

Anderson, T. W. 2003, An Introduction to Multivariate Statistical Analysis, 3rd edn,
New York, John Wiley & Sons.

Armstrong, M., Galli, A. G., Le Loc’h, G., Geffroy, F. and Eschard, R. 2003,
Plurigaussian Simulations in Geosciences, Berlin, Springer.

Arpat, B. 2004, Sequential simulation with patterns, Ph.D. thesis, Stanford University,
Stanford, CA.

Barnes, R. and Johnson, T. 1984, Positive kriging, in G. Verly et al. (eds.), Geostatistics
for Natural Resources Characterization, Vol. 1, Dordrecht, Holland, Reidel,
pp. 231–244.

Benediktsson, J. A. and Swain, P. H. 1992, Consensus theoretic classification methods,
IEEE Transactions on System, Man and Cybernetics 22(4), 688–704.

Bordley, R. F. 1982, A multiplicative formula for aggregating probability assessments,
Management Science 28(10), 1137–1148.

Boucher, A. and Kyriakidis, P. C. 2006, Super-resolution land cover mapping with
indicator geostatistics, Remote Sensing of Environment 104(3), 264–282.

Bourgault, G. 1994, Robustness of noise filtering by kriging analysis, Mathematical
Geology 26, 733–752.

Bourgault, G. 1997, Using non-Gaussian distributions in geostatistical simulations,
Mathematical Geology 29(3), 315–334.

Caers, J. 2005, Petroleum Geostatistics, Society of Petroleum Engineers.
Caers, J. and Hoffman, T. 2006, The probability perturbation method: a new look at

bayesian inverse modeling, Mathematical Geology 38(1), 81–100.
Canny, J. 1986, A computational approach to edge detection, IEEE Transactions on

Pattern Analysis and Machine Intelligence 8(6), 679–698.
Castro, S. 2007, A Probabilistic Approach to Jointly Integrate 3D/4D Seismic, Production

Data and Geological Information for Building Reservoir Models, Ph.D. thesis,
Stanford University, Stanford, CA.

Chauvet, P. 1982, The variogram cloud, in T. Johnson and R. Barnes (eds.), Proceedings
of the 17th APCOM International Symposium, Golden, Colorado, Society of Mining
Engineers, New York, pp. 757–764.

254

Bibliography 255

Chilès, J. and Delfiner, P. 1999, Geostatistics: Modeling Spatial Uncertainty, New York,
John Wiley & Sons.

Christakos, G. 1984, On the problem of permissible covariance and variogrammodels,
Water Resources Research 20(2), 251–265.

Cressie, N. 1993, Statistics for Spatial Data, New York, John Wiley & Sons.
Daly, C. and Verly, G. W. 1994, Geostatistics and data integration, in R. Dimitrakopoulos

(ed.), Geostatistics for the Next Century, Kluwer, pp. 94–107.
David, M. 1977, Geostatistical Ore Reserve Estimation, Amsterdam, Elsevier.
Davis, M. 1987, Production of conditional simulations via the LU decomposition of the

covariance matrix, Mathematical Geology 19(2), 91–98.
Deutsch, C. V. 1994, Algorithmically-defined random function models, in

Dimitrakopoulos (ed.), Geostatistics for the Next Century, Dordrecht, Holland,
Kluwer, pp. 422–435.

Deutsch, C. V. 1996, Constrained modeling of histograms and cross plots with simulated
annealing, Technometrics 38(3), 266–274.

Deutsch, C. V. 2002, Geostatistical Reservoir Modeling, New York, Oxford University
Press.

Deutsch, C. V. and Journel, A. G. 1998, GSLIB: Geostatistical Software Library and
User’s Guide, 2nd edn, New York, Oxford University Press.

Deutsch, C. V. and Tran, T. T. 2002, Fluvsim: a program for object-based stochastic
modeling of fluvial depositional system, Computers & Geosciences 28(4), 525–535.

Dietrich, C. R. and Newsam, G. N. 1993, A fast and exact method for multidimensional
Gaussian stochastic simulation, Water Resource Research 29(8), 2861–2869.

Dimitrakopoulos, R. and Luo, X. 2004, Generalized sequential Gaussian simulation,
Mathematical Geology 36, 567–591.

Dubrule, O. 1994, Estimating or choosing a geostatistical model?, in R. Dimitrakopoulos
(ed.), Geostatistics for the Next Century, Kluwer, pp. 3–14.

Farmer, C. 1992, Numerical rocks, in P. King (ed.), The Mathematical Generation of
Reservoir Geology, Oxford, Clarendon Press.

Frigo, M. and Johnson, S. G. 2005, The design and implementation of FFTW3,
Proceedings of the IEEE 93(2), 216–231.

Gloaguen, E., Marcotte, D., Chouteau, M. and Perroud, H. 2005, Borehole radar velocity
inversion using cokriging and cosimulation, Journal of Applied Geophysics
57, 242–259.

Goldberger, A. 1962, Best linear unbiased prediction in the generalized linear regression
model, Journal of the American Statistical Association 57, 369–375.

Gómez-Hernández, J. J. and Cassiraga, E. F. 1994, Theory and practice of sequential
simulation, in M. Armstrong and P. Dowd (eds.), Geostatistical Simulations,
Dordrecht, Holland, Kluwer Academic Publishers, pp. 111–124.

Gómez-Hernández, J. J. and Journel, A. G. 1993, Joint sequential simulation of
multiGaussian fields, in A. Soares (ed.), Geostatistics-Troia, Vol. 1, Dordrecht,
Kluwer Academic Publishers, pp. 85–94.

Gómez-Hernández, J. J., Froidevaux, R. and Biver, P. 2005, Exact conditioning to linear
constraints in kriging and simulation, in O. Leuangthong and C. V. Deutsch (eds.),
Geostatistics Banff 2004, Vol. 2, Springer, pp. 999–1005.

Goovaerts, P. 1997, Geostatistics for Natural Resources Evaluation, New York, Oxford
University Press.

Guardiano, F. and Srivastava, R. M. 1993, Multivariate geostatistics: beyond bivariate
moments, in A. Soares (ed.), Geostatistics-Troia, Vol. 1, Dordrecht, Kluwer
Academic Publishers, pp. 133–144.

256 Bibliography

Haldorsen, H. H. and Damsleth, E. 1990, Stochastic modeling, Journal of Petroleum
Technology, pp. 404–412.

Hansen, T. M., Journel, A. G., Tarantola, A. and Mosegaard, K. 2006, Linear inverse
Gaussian theory and geostatistics, Geophysics 71(6), R101–R111.

Hartigan, J. A. 1975, Clustering Algorithms, New York, John Wiley & Sons Inc.
Hu, L. Y., Blanc, G. and Noetinger, B. 2001, Gradual deformation and iterative calibration

of sequential stochastic simulations, Mathematical Geology 33(4), 475–489.
Isaaks, E. H. 2005, The kriging oxymoron: a conditionally unbiased and accurate

predictor (2nd edn), in O. Leuangthong and C. V. Deutsch (eds.), Geostatistics Banff
2004, Vol. 1, Springer, pp. 363–374.

Isaaks, E. H. and Srivastava, R. M. 1989, An Introduction to Applied Geostatistics, New
York, Oxford University Press.

Jensen, J. L., Lake, L. W., Patrick, W. C. and Goggin, D. J. 1997, Statistics for Petroleum
Engineers and Geoscientists, New Jersey, Prentice Hall.

Johnson, M. 1987, Multivariate Statistical Simulation, New York, John Wiley & Sons.
Jolliffe, I. T. 1986, Principal Component Analysis, New York, Springer-Verlag.
Journel, A. G. 1980, The lognormal approach to predicting local distribution of selective

mining unit grades, Mathematical Geology 12(4), 285–303.
Journel, A. G. 1983, Non-parametric estimation of spatial distributions, Mathematical

Geology 15(3), 793–806.
Journel, A. G. 1986, Geostatistics: models and tools for the earth sciences, Mathematical

Geology 18(1), 119–140.
Journel, A. G. 1989, Fundamentals of Geostatistics in Five Lessons, Vol. 8, Short Course

in Geology, Washington, D.C., American Geophysical Union.
Journel, A. G. 1993, Geostatistics: roadblocks and challenges, in A. Soares (ed.),

Geostatistics-Troia, Vol. 1, Dordrecht, Kluwer Academic Publishers, pp. 213–224.
Journel, A. G. 1994, Modeling uncertainty: some conceptual thoughts, in

R. Dimitrakopoulos (ed.), Geostatistics for the Next Century, Kluwer, pp. 30–43.
Journel, A. G. 1999, Markov models for cross covariances, Mathematical Geology

31(8), 955–964.
Journel, A. G. 2002, Combining knowledge from diverse sources: An alternative to

traditional data independence hypotheses, Mathematical Geology 34(5), 573–596.
Journel, A. G. and Alabert, F. G. 1989, Non-Gaussian data expansion in the earth

sciences, Terra Nova 1, 123–134.
Journel, A. G. and Deutsch, C. 1993, Entropy and spatial disorder, Mathematical Geology

25(3), 329–355.
Journel, A. G. and Froidevaux, R. 1982, Anisotropic hole-effect modeling, Mathematical

Geology 14(3), 217–239.
Journel, A. G. and Huijbregts, C. J. 1978, Mining Geostatistics, New York, Academic

Press.
Journel, A. G. and Kyriakidis, P. C. 2004, Evaluation of Mineral Reserves: A Simulation

Approach, New York, Oxford University Press.
Journel, A. G. and Rossi, M. E. 1989, When do we need a trend model?, Mathematical

Geology 21(7), 715–739.
Journel, A. G. and Xu, W. 1994, Posterior identification of histograms conditional to local

data, Mathematical Geology 26, 323–359.
Journel, A. G. and Zhang, T. 2006, The necessity of a multiple-point prior model,

Mathematical Geology 38(5), 591–610.
Koch, G. S. and Link, R. F. 1970, Statistical Analysis of Geological Data, John Wiley and

Sons Inc.

Bibliography 257

Krige, D. G. 1951, A statistical approach to some mine valuations and allied problems at
the Witwatersrand, M.S. thesis, University of Witwatersrand, South Africa.

Krishnan, S. 2004, Combining diverse and partially redundant information in the earth
sciences, Ph.D. thesis, Stanford University, Stanford, CA.

Krishnan, S., Boucher, A. and Journel, A. G. 2005, Evaluating information redundancy
through the tau model, in O. Leuangthong and C. V. Deutsch (eds.), Geostatistics
Banff 2004, Vol. 2, Springer, pp. 1037–1046.

Kyriakidis, P. C. and Yoo, E. H. 2005, Geostatistical prediction and simulation of point
values from areal data, Geographical Analysis 37(2), 124–151.

Kyriakidis, P. C., Schneider, P. and Goodchild, M. F. 2005, Fast geostatistical areal
interpolation, 7th International Conference on Geocomputation, Ann Arbor,
Michigan.

Lantuéjoul, C. 2002, Geostatistical Simulation: Models and Algorithms, Berlin, Germany,
Springer-Verlag.

Liu, Y. 2007, Geostatistical Integration of Coarse-scale Data and Fine-scale Data, Ph.D.
thesis, Stanford University, Stanford, CA.

Liu, Y. and Journel, A. G. 2005, Average data integration (implementation and case
study), Report 18 of Stanford Center for Reservoir Forecasting, Stanford, CA.

Liu, Y., Jiang, Y. and Kyriakidis, P. 2006a, Calculation of average covariance using Fast
Fourier Transform (fft), Report 19 of Stanford Center for Reservoir Forecasting,
Stanford, CA.

Liu, Y., Journel, A. G. and Mukerji, T. 2006b, Geostatistical cosimulation and
downscaling conditioned to block data: Application to integrating vsp, travel-time
tomography, and well data, SEG Technical Program Expanded Abstracts,
pp. 3320–3324.

Luenberger, D. G. 1969, Optimization by Vector Space Methods, New York, John
Wiley & Sons.

Maharaja, A. 2004, Hierarchical simulation of multiple facies reservoir using
multiple-point geostatistics, M.S. thesis, Stanford University, Stanford, CA.

Mallet, J. L. 2002, Geomodeling, New York, Oxford University Press.
Matheron, G. 1962, Traité de géostatistique appliquée, tome ii. Vol. 1, ed. Technip,

Paris.
Matheron, G. 1963, Traité de géostatistique appliquée, tome ii. Vol. 2, ed. Technip,

Paris.
Matheron, G. 1970, La théorie des variables régionalisées, et ses applications. Les cahiers

du Centre de Morphologie Mathématique de Fontainebleau, Fascicule 5.
Matheron, G. 1973, The intrinsic random functions and their applications, Advances in

Applied Probability 5, 439–468.
Matheron, G. 1978, Estimer et choisir, Technical report, Fascicules n7, Les cahiers du

Centre de Morphologie Mathématique de Fontainebleau, Ecole des Mines de Paris.
Myers, D. E. 1982, Matrix formulation of co-kriging, Mathematical Geology

14(3), 249–257.
Nowak, W., Tenkleve, S. and Cirpka, O. A. 2003, Efficient computation of linearized

cross-covariance and auto-covariance matrices of interdependent quantities,
Mathematical Geology 35, 53–66.

Olea, R. A. 1999, Geostatistics for Engineers and Earth Scientists, Kluwer Academic
Publishers.

Oliver, D. S. 1995, Moving averages for Gaussian simulation in two and three
dimensions, Mathematical Geology 27(8), 939–960.

258 Bibliography

Oz, B., Deutsch, C. V., Tran, T. T. and Xie, Y. L. 2003, DSSIM-HR: A FORTRAN 90
program for direct sequential simulation with histogram reproduction, Computers &
Geosciences 29(1), 39–51.

Polyakova, E. and Journel, A. G. in press, The nu expression for probabilistic data
integration, Mathematical Geology.

Rao, S. and Journel, A. G. 1996, Deriving conditional distributions from ordinary kriging,
in E. Baffi and N. Shofield (eds.), Fifth International Geostatistics Congress,
Wollongong, Kluwer Academic Publishers.

Remy, N. 2001, Post-processing a dirty image using a training image, Report 14 of
Stanford Center for Reservoir Forecasting, Stanford University, Stanford, CA.

Rendu, J.-M. M. 1979, Normal and lognormal estimation, Mathematical Geology
11(4), 407–422.

Rivoirard, J. 2004, On some simplifications of cokriging neighborhood, Mathematical
Geology 36(8), 899–915.

Rosenblatt, M. 1952, Remarks on a multivariate transformation, Annals of Mathematical
Statistics 23(3), 470–472.

Schneiderman, H. and Kanade, T. 2004, Object detection using the statistics of parts,
International Journal of Computer Vision 56(3), 151–177.

Schnetzler, E. 1994, Visualization and cleaning of pixel-based images, M.S. thesis,
Stanford University, Stanford, CA.

Soares, A. 2001, Direct sequential simulation and cosimulation, Mathematical Geology
33(8), 911–926.

Srivastava, R. M. 1987, Minimum variance or maximum profitability? CIM Bulletin
80(901), 63–68.

Srivastava, R. M. 1994, The visualization of spatial uncertainty, in J. Yarus and
R. Chambers (eds.), Stochastic Modeling and Geostatistics: Principles, Methods and
Case Studies, Vol. 3, AAPG, pp. 339–345.

Stoyan, D., Kendall, W. S. and Mecke, J. 1987, Stochastic Geometry and its Applications,
New York, John Wiley & Sons.

Strebelle, S. 2000, Sequential simulation drawing structures from training images, Ph.D.
thesis, Stanford University, Stanford, CA.

Strebelle, S. 2002, Conditional simulation of complex geological structures using
multiple-point statistics, Mathematical Geology 34(1), 1–21.

Tarantola, A. 2005, Inverse Problem Theory and Methods for Model Parameter
Estimation, Philadelphia, Society for Industrial and Applied Mathematics.

Tran, T. T. 1994, Improving variogram reproduction on dense simulation grids,
Computers & Geosciences 20(7), 1161–1168.

Vargas-Guzman, J. A. and Dimitrakopoulos, R. 2003, Computational properties of
min/max autocorrelation factors, Computers & Geosciences 29(6), 715–723.

Wackernagel, H. 1995, Multivariate Statistics, Berlin, Springer-Verlag.
Walker, R. 1984, General introduction: Facies, facies sequences, and facies models, in

R. Walker (ed.), Facies Models, 2nd edn, Geoscience Canada Reprint Series 1,
Toronto, Geological Association of Canada, pp. 1–9.

Wu, J., Boucher, A. and Zhang, T. in press, A sgems code for pattern simulation of
continuous and categorical variables: Filtersim, Computers & Geosciences.

Yao, T. T. and Journel, A. G. 1998, Automatic modeling of (cross) covariance tables using
fast Fourier transform, Mathematical Geology 30(6), 589–615.

Zhang, T. 2006, Filter-based Training Pattern Classification for Spatial Pattern
Simulation, Ph.D. thesis, Stanford University, Stanford, CA.

Bibliography 259

Zhang, T., Journel, A. G. and Switzer, P. 2006, Filter-based classification of training
image patterns for spatial simulation, Mathematical Geology 38(1), 63–80.

Zhu, H. and Journel, A. G. 1993, Formatting and interpreting soft data: stochastic imaging
via the Markov–Bayes algorithm, in A. Soares (ed.), Geostatistics-Troia, Vol. 1,
Dordrecht, Kluwer Academic Publishers, pp. 1–12.

Index

accuracy, 53, 61, 168
affinity, see scaling
algorithm, 65, 71

-driven RF, 36, 42
panel, 5, 101
run, 13

anisotropy, 26, 49, 59, 71, 172, 232
artifact, 41
automate task, 3, 21, 181, 245
average

block, 123
moving window, 234

azimuth, 11, 26, 28, 91, 178

back-transform, 57, 67, 136
bandwidth, 95
Bayes relation, 51, 65
BCOVAR, 229
BESIM, 163
bias, 52, 57
bivariate-Gaussian, 139, 216
BKRIG, 122
block

average, 125
variance, 125

block average, 67, 124, 132
block kriging, 110
BSSIM, 157

camera
perspective, 17

ccdf, 39, 136, 143, 182
cdf, 30, 31, 34

multivariate, 34, 43, 216
non-parametric, 147, 149
sampling from, 149

classification, 196
cross partition, 197
K-Means partition, 197

clustering, 45, 53
co-simulation

sequential Gaussian, 139
sequential indicator, 153

COKRIGING, 119
cokriging, 59

ordinary, 119
simple, 59
variance, 61

command
file, 248
history, 5, 245
line, 5, 21, 250
panel, 5

conditional cumulative distribution function,
see ccdf

conditional distributions, 29, 38, 57, 74
dependence, 75
estimation, 42

conditional expectation, 37, 66, 222, 224
consistency, 33
continuity, 52
coordinate system, 26
coregionalization, 99, 119

linear model, 60, 109, 119, 133
correlation, 42

coefficient, 61, 87, 143
range, 126

COSGSIM, 139
COSISIM, 153
covariance, 42, 47

auto-, 60
averaging, 58
block, 124, 162
cross-, 59
FFT, 124, 125, 162
function, 91
look-up table, 124
matrix, 53, 59, 123
matrix decomposition, 133
multiple-point, 64
reproduction, 67
residual, 61

cross-validation, 35
cumulative distribution function, see cdf
cutoff, 113

260

Index 261

data
block, 61, 124, 157
conditioning, 14, 34, 71, 109
event, 42, 169, 170, 192, 199
hard conditioning, 81
heterogeneity, 40
indicator, 62
integration, 76, 174
neighborhood, 42, 57
redundancy, 53, 74, 175
relocation, 170
seismic, 59, 174, 210
soft conditioning, 81
support, 122

data analysis, 10
data event, 65, 74

conditioning, 65, 72
replicates, 175

declustering, 53
decomposition, 41, 75
destructuration effect, 137
dimension reduction, 202
dip, 14, 27, 28, 91
direct error simulation, 68, 163
discrete variable, 30
distribution, 7, 29, 38

conditional, 39, 42
Gaussian, 32, 47, 54, 67, 136, 163
inference, 30, 44, 47
lognormal, 144
marginal, 144
multivariate, 39
non-parametric, 107, 216, 222
tail extrapolation, 57, 106, 139, 149
uniform, 144

divide and conquer, 40, 75
downscaling, 67, 131, 162, 168
DSSIM, 67, 143

E-type, 35
map, 37

EDA, see exploratory data analysis
elementary data analysis, 10
entropy

high, 43, 65, 132
maximum, 43, 66
spatial, 137

ergodicity, 136
erosion, 239
error variance, 35, 124
estimated map, 37
estimation

accuracy, 54
least square, 109

estimator, 58, 63, 68
extended IK, 64
index, 62

expected value, 31, 37, 54
exploratory data analysis, 80, 84, 234
extrapolation, 56, 106
extreme values, 106, 137, 149

file
data format, 8, 24
parameters, 14, 25

filter, 73, 193
default, 195
edge detection, 235
linear, 192
score, 194
user-defined, 195

FILTERSIM, 73, 192
fluctuation, 136, 143

geobody, 239
erosion, 239
overlap, 239

geostatistics, 5, 30, 33, 40, 50
grid

Cartesian, 12
coarse, 131
multiple, 171
object, 8
point-set, 9
subgrid, 175

GSLIB, 19, 23

hard data, 114, 170, 177, 201, 219
heteroscedasticity, 123
histogram, 10, 30, 38, 84
homoscedasticity, 54, 78, 123

IK
full, 148
median, 148

IMAGE PROCESSING, 233
independent, 32, 53, 69, 78
indicator

coding, 114
inequality data, 115
median, 70
probability estimation, 147

INDICATOR KRIGING, 113
inference, 29, 44, 50, 60
interpolation

inverse-distance, 53
spatial, 32

isotropy, 45, see anisotropy

joint
dependency, 37
distribution, 33, 37, 40, 74
simulation, 73

KRIGING, 109
kriging, 5, 42, 45, 51

block, 58, 110, 157
disjunctive, 56
full IK, 113
indicator, 57, 61, 113, 148
linear average variable, 57
local varying mean, 110
lognormal, 57

262 Index

non-linear, 56
ordinary, see ordinary kriging
paradigm, 50
simple, see simple kriging
trend, 110
variance, 53, 59, 111
weights, 51, 119
with a trend model, 56

KT, 54

lag, 10, 90
Lagrange parameter, 55
least square, 53
linear

combinations, 51, 62
coregionalization, 109
interpolators, 52
limitation, 61
regression, 51

LMC, see coregionalization
local conditioning, 41
local varying mean, 80
loss function, 35
LU decomposition, 66
LUSIM, 133

M-type, 38
Markov model, 60, 100, 119

MM1, 60, 119, 143
MM2, 60, 119

Markov–Bayes, 153, 251
calibration, 153

matrix
Cholesky decomposition, 133
LU decomposition, 133

mean, 7, 31
locally varying, 54, 56
sample, 14
stationary, 59

median, 32, 136
missing values, 115
model

Gaussian, 42
nu/tau, 62, 75, 175, 203
prior, 42, 43
structural, 29, 47

moments, 66
Monte Carlo, 31
MOVING WINDOW, 234
mp, see multiple-point
multiple grid, 171, 176, 201
multiple-point, 29, 57, 72, 75, 132, 168

model, 42
simulation, 43
statistics, 42, 50, 137

multivariate distribution, 34, 42

neighborhood, 52, 109
infinite, 133
search, 104, 109, 157

no-data-value, 20

non-conditional simulation, 69
non-stationarity, 179, 190, 204
non-stationary, 68, 178
normal equations, 50, 62
normal score transform, 67, 136
NU-TAU MODEL, 227
nu/tau weights, 77, 175, 204
nugget effect, 14, 62, 90

order relation correction, 70, 114, 150
ordinary kriging, 54, 55
orthogonal, 51
outcome, 30, 39, 63, 74
overlap, 239

pattern, 66, 132, 169
classification, 73, 192
distance, 200, 202
large-scale, 171
prototype, 192
simulation, 199

PCA, see principal component analysis
pdf, see probability
plug-in, 253
plunge, see rake
positive definiteness, 49
post-processing, 19, 67, 222
POSTKRIGING, 222
POSTSIM, 224
primary data, see hard data
principal component analysis

factorization, 119
filter definition, 196

probability
conditional, 66, 74
density function, 30
distribution, 30
estimation, 113
integration, 175
interval, 31, 33
plot, 84, 87
posterior, 227
prior, 62, 76, 79

probability map, 117
project, 8
property

multiple, 103
selection, 102

proportion curve, 174
Python script, 19, 181, 205

edit, 20, 250
execution, 250

Q-Q plot, 10
quantile, 31, 32

plot, 84, 87

rake, 14, 27, 28, 91
random error, 163
random field, 69

Index 263

random function, 29, 33
algorithm-driven, 36
Gaussian, 135
model, 35

random numbers, 31, 41
random path, 170, 180, 199

stratified, 157
random variable, 29, 34

algorithm-driven, 31
analytic, 36
independence, 36
orthogonal, 68

range, 14, 45, 47, 91
practical, 91
visualization, 18

realization, 35, 36
equiprobable, 36
post-processing, 144, 224
unconditional, 43

region concept, 179, 204
regression

least squares, 61
line, 89
linear, 61

regularization, 61
replicates, 42, 72, 170, 193
reproduction

block data, 126, 157
histogram, 144, 173
pattern, 196
proportions, 174
variogram, 136

residuals, 51
RF, see random function
rotation, 178, 233
RV, see random variable

sampling, 33
scaling, 178, 233
scatterplot, 84, 87
search ellipsoid, 14
search neighborhood, see neighborhood
search template, see template
search tree, 72, 169

memory cost, 170
secondary data, 119, see also soft data
semivariogram, see variogram
sequential simulation, 40, 41
SGSIM, 135
sill, 14, 91
simple kriging, 37, 51
simulation, 30

block-conditioning, 157, 163
Boolean, 71
direct sequential, 143
Gaussian, 66
hierarchical, 71, 73, 171
indicator, 42
multiple-point, 71, 168, 237
object-based, 168
path, 41, 66, 157

pattern, 199
pixel-based, 71, 168
sequential, 40, 67, 72, 132
sequential Gaussian, 5, 42, 66, 135
sequential indicator, 147
stochastic, 65, 133
variogram-based, 133

single normal equation, 64, 170
SISIM, 147
SNESIM, 65, 72, 169

servosystem, 174
soft data, 82, 133, 202
source code, 3
spatial

connectivity, 33
distribution, 33
interpolation, 35

stationarity, 10, 30, 44, 47, 65
statistics

2-point, 42, 49, 66
high-order, 43
multiple-point, 30, 42, 50, 132, 137

stratigraphic grid, 1
structural information, 43, 50, 233
support, 58

block, 58, 109
volume, 60, 71

template, 169, 193
anisotropic expansion, 173
dual, 202
expansion factor, 172
isotropic expansion, 172

threshold, 30
TIGENERATOR, 237
time series, 56
tomography, 131, 162
training image, 42, 43, 65, 71, 168,

193, 237
generator, 168, 237
histogram, 174
scanning, 47, 169

TRANS, 215
TRANSCAT, 218
transfer function, 36
transformation

back, 57, 67, 136
Gaussian, 136, 139, 143, 215
histogram, 215
indicator, 57
normal score, 56, 67, 133, 148
rank-preserving, 144
tie breaking, 107

transformation matrix, 27
trend, 54, 202

detection, 234

unbiasedness, 51, see bias
uncertainty, 29, 38

measure, 38, 39

264 Index

variable
binary, 62, 194
categorical, 69, 150
continuous, 30, 148, 192
primary, 60
secondary, 60

variance, 7, 32
block error, 125
conditional error, 53
estimation, 53
of realizations, 37

variogram, 10, 30, 42, 48
anisotropy, 91
auto-, 92
Cartesian grid, 97
computation, 92
cross-, 49, 60
direction, 93
distance, 53, 61
experimental, 90
exponential, 91, 98

Gaussian, 91, 104
head/tail variable, 92
indicator, 97, 148
lag, 92
limitations, 50, 64
linear combinations, 49, 61
modeling, 11, 49, 98
nested structures, 91
omni-direction, 96
point-set, 95
regularized, 110
reproduction, 71
spherical, 91, 98

visualization, 5, 9, 14

XML, 25
element, 25
tag, 25

zonal anisotropy, 112

	APPLIED GEOSTATISTICS WITH SGeMS
	Title
	Copyright
	Contents
	Foreword
	Preface
	List of Programs
	List of symbols
	1Introduction
	2General overview
	2.1 A quick tour of the graphical user interface
	2.2A typical geostatistical analysis using SGeMS
	2.2.1Loading data into an SGeMS project
	2.2.2Exploratory data analysis (EDA)
	2.2.3Variogram modeling
	2.2.4Creating a grid
	2.2.5Running a geostatistics algorithm
	2.2.6Displaying the results
	2.2.7Post-processing the results with Python
	2.2.8Saving the results
	2.2.9Automating tasks

	2.3Data file formats
	2.4Parameter files
	2.5Defining a 3D ellipsoid

	3Geostatistics: a recall of concepts
	3.1Random variable
	3.2Random function
	3.2.1Simulated realizations
	3.2.2Estimated maps

	3.3Conditional distributions and simulations
	3.3.1Sequential simulation
	3.3.2Estimating the local conditional distributions

	3.4Inference and stationarity
	3.5The variogram, a 2-point statistics
	3.6The kriging paradigm
	3.6.1Simple kriging
	3.6.2Ordinary kriging and other variants
	3.6.3Kriging with linear average variable
	3.6.4Cokriging
	3.6.5Indicator kriging

	3.7An introduction to mp statistics
	3.8Two-point simulation algorithms
	3.8.1Sequential Gaussian simulation
	3.8.2Direct sequential simulation
	3.8.3Direct error simulation
	3.8.4Indicator simulation

	3.9Multiple-point simulation algorithms
	3.9.1Single normal equation simulation (SNESIM)
	3.9.2Filter-based algorithm (FILTERSIM)

	3.10The nu/tau expression for combining conditional probabilities
	3.11Inverse problem

	4Data sets and SGeMS EDA tools
	4.1The data sets
	4.1.1The 2D data set
	4.1.2The 3D data set

	4.2The SGeMS EDA tools
	4.2.1Common parameters
	4.2.2Histogram
	4.2.3Q-Q plot and P-P plot
	4.2.4Scatter plot

	5Variogram computation and modeling
	5.1Variogram computation in SGeMS
	5.1.1Selecting the head and tail properties
	5.1.2 Computation parameters
	5.1.3Displaying the computed variograms

	5.2Variogram modeling in SGeMS

	6 Common parameter input interfaces
	6.1Algorithm panel
	6.2Selecting a grid and property
	6.3Selecting multiple properties
	6.4Search neighborhood
	6.5Variogram
	6.6Kriging
	6.7Line entry
	6.8Non-parametric distribution
	6.9Errors in parameters

	7Estimation algorithms
	7.1KRIGING: univariate kriging
	7.2INDICATOR KRIGING
	7.3COKRIGING: kriging with secondary data
	7.4BKRIG: block kriging estimation

	8Stochastic simulation algorithms
	8.1Variogram-based simulations
	8.1.1LUSIM: LU simulation
	8.1.2SGSIM: sequential Gaussian simulation
	8.1.3COSGSIM: sequential Gaussian co-simulation
	8.1.4DSSIM: direct sequential simulation
	8.1.5 SISIM: sequential indicator simulation
	8.1.6COSISIM: sequential indicator co-simulation
	8.1.7BSSIM: block sequential simulation
	8.1.8BESIM: block error simulation

	8.2Multiple-point simulation algorithms
	8.2.1SNESIM: single normal equation simulation
	8.2.2FILTERSIM: filter-based simulation

	9Utilities
	9.1TRANS: histogram transformation
	9.2TRANSCAT: categorical transformation
	9.3POSTKRIGING: post-processing of kriging estimates
	9.4POSTSIM: post-processing of realizations
	9.5NU-TAU MODEL: combining probability fields
	9.6BCOVAR: block covariance calculation
	9.7IMAGE PROCESSING
	9.8MOVING WINDOW: moving window statistics
	9.9TIGENERATOR: object-based image generator
	9.9.1Object interaction

	10Scripting, commands and plug-ins
	10.1Commands
	10.1.1 Command lists
	10.1.2 Execute command file

	10.2Python script
	10.2.1SGeMS Python modules
	10.2.2 Running Python scripts

	10.3Plug-ins

	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

