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Applied Mineral Inventory Estimation

Applied Mineral Inventory Estimation presents a
comprehensive applied approach to the estimation
of mineral resources/reserves with particular empha-
sis on

� The geological basis of such estimations
� The need for and maintenance of a high-quality
assay data base

� The practical use of a comprehensive exploratory
data evaluation

� The importance of a comprehensive geostatistical
approach to the estimation methodology.

The text emphasizes that geology and geostatistics
are fundamental to the process of mineral inventory.
Practical problems and real data are used throughout
as illustrations: each chapter ends with a summary
of practical concerns, a number of practical exer-
cises and a short list of references for supplementary
study. The topics emphasized include estimation con-
cepts, integration of geology into the estimation pro-
cedure, monitoring and maintaining the high quality
of the assay database, appreciation and application of
basic statistical procedures to the estimation process,
exploratory data analysis as a means of improving
confidence in the estimation process and applied geo-
statistical estimation methods. In addition, individual
chapters are devoted to other important topics includ-
ing grade–tonnage curves, bulk density, simulation,
dilution, resource/reserve classification, and metal
accounting reality checks of estimation procedures.

This textbook is suitable for any university or min-
ing school that offers senior undergraduate and grad-
uate student courses on mineral resource/reserve esti-
mation. It will also be valuable for professional mining
engineers, geological engineers, and geologists work-
ing with mineral exploration and mining companies.
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Preface

“. . . geostatistics is of real potential if it is reconciled with the geology of the deposit” (King et al., 1982).

Resource/reserve estimation is too often viewed as a
set of recipes when it is in reality an intellectual un-
dertaking that varies from one case to another. Even
the estimation of two different deposits of the same
type can involve significantly different procedures.
We undertake an estimation study with limited in-
formation that represents perhaps 1/100,000 of the
deposit in question. The information base, however,
is larger than we sometimes think, including not just
general geology and assay data, but information from
other sources such as sampling practice, applied min-
eralogical studies, geophysical and geochemical sur-
vey data, and a range of engineering information –
all of which contribute to the development and im-
plementation of an estimation procedure. The use of
such varied data demands that the opinions of a range
of experts be taken into account during estimation.
Increasingly, it is becoming more difficult for a single
person to conduct a comprehensive resource/reserve
estimation of a mineral deposit. Clearly, all sources
of informationmust be considered in reasonable fash-
ion if a mineral inventory study is to be professionally
acceptable; it is morally unacceptable to provide an
estimate that is seriously in conflict with pertinent
data. Of course, it must be recognized that even with
the best of intentions, procedures and abilities, er-
rors will be made. After all, 99,999/100,000 of the
deposit must be interpreted from widely spaced con-
trol sites. Moreover, continuing property exploration
and evaluation ensures that new information will be

added periodically to the database; an estimate, once
completed, might already be somewhat out of date!
The estimator must maintain an open mind to new
information. A sense of humor will contribute to the
success of a long resource/reserve team study.

This text was designed with a conscious consid-
eration of the needs of senior undergraduate students
who lack the advantage of years of experience in min-
eral inventory estimation. Those who are active in the
field will appreciate that a text cannot possibly cover
all possible nuances of the topic. In the end, experi-
ence is the best teacher. The authors both feel strongly
that the best way to learnmineral inventory estimation
is to become immersed in a real study where the prac-
tical situation requires solutions to problems so that a
product is obtained within a reasonable time frame. A
real life situation such as this is difficult to achieve in
a university environment, and we have not attempted
to do so. Instead, we have organized the text to sup-
plement such a comprehensive study and have paid
special attention to several aspects of estimation that
our experience indicates have been underappreciated
in recent decades.

Geology is widely recognized as the underpinning
of any mineral inventory estimation and an extensive
literature exists on the topic; nevertheless, modern
texts that emphasize the importance of geology are
lacking. Our experience suggests that all too often
either geology is minimized or excellent geological
work is not integrated adequately into the estimation

xiii
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procedure. The excellent text by McKinstry (1948)
remains as valid today as when it was published,
but geological understanding has advanced immea-
surably since that time, and the impact on estimation
procedures of new geological concepts can be mo-
mentous. A new look at the geological basis of esti-
mation is essential.

The understanding of sampling theory and control
of assay quality also has advanced substantially in
recent decades, leading to improved understanding of,
and confidence in, the underlying database. Much of
this theory and quality control information is scattered
widely through the technical literature and needs to
be gathered in a concise, practical way so students
can be introduced to both the need for high-quality
procedures in data gathering and efficient procedures
for ensuring high-quality data. “Garbage in, garbage
out” is a computer adage that applies equally well to
resource/reserve estimation.

The advent of cheap, efficient, multielement ana-
lytical techinques (chemical and instrumental) has led
to an abundance of data that could barely be imagined
as recently as 30 years ago. The availability of such
data demands thorough evaluation; exploratory data
analysis techniques are easily adapted to this aim and
invariably lead to useful information for improving
the quality of estimates. Both the quantity and variety
of available data require a computer base for min-
eral inventory studies. Many data analysis procedures
are impossible or difficult without access to comput-
ing facilities; fortunately, the revolution in personal
computers has provided a level of computer access
unimaginable a few decades ago.

Estimation procedures, too, have evolved substan-
tially in recent years, even to the point of revolution.
The advent of the computer age has resulted in au-
tomation of many traditional estimation procedures
and the development of new approaches that were im-
practical or impossible to implement manually. Per-
haps most significant has been the development and
widespread use of a great range of “geostatistical”
estimation procedures that provide a theoretical base
to what had previously been an empirical undertak-
ing. Over the past 30 years or so, geostatistics has
evolved and proved its worth many times over. Too

often, though, geostatistical applications have been
carried out without sufficient attention to the geology
of the deposit for which a resource/reserve estimate is
being prepared. Integration of geology and geostatis-
tics is essential.

Wehave tried to incorporatemuchof the foregoing
philosophy into this text. To summarize, some of our
specific aims are to

� Present a comprehensive understanding of the
geological base to mineral inventory estimation
(e.g., domains, boundaries, and continuity.)

� Emphasize exploratory data evaluation as an es-
sential component of a mineral inventory estima-
tion

� Provide a relevance to simple classical statistical
methods in mineral inventory estimation

� Integrate geology and geostatistical methodolo-
gies into mineral inventory estimation procedures
in a practical manner

� Use as examples real deposits forwhich a substan-
tial amount of information is publicly available

� Emphasize the importance of high-quality data by
demonstrating design methodology and elements
of monitoring data quality

� Document the practical approach to mineral in-
ventory estimation at the exploration phase, as
well as during feasibility and/or production stages.

Throughout, our emphasis has been on applied as-
pects of the estimation procedure, limited, of course,
by our personal experience. We consider this text to
be supplemental to a range of excellent texts of related
but different themes (e.g., Annels, 1991; David, 1977;
Deutsch & Journel, 1992; Isaaks & Srivastava, 1989;
Journel & Huijbregts, 1978; and Rendu, 1978). In
particular, with availability of such thorough and
timeless geostatistical texts by Journel & Huijbregts
(ibid), Deutsch & Journel (ibid), and Isaaks &
Srivastava (ibid) we have avoided geostatistical the-
ory entirely and restricted ourselves to reporting sig-
nificant geostatistical relations and their practical ap-
plications. Moreover, a variety of highly specialized,
complicated geostatistical techniques that find minor
use in practice are ignored, including such topics as
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nonparametric geostatistics, universal kriging, pro-
bability kriging, and cokriging, among others.

From a student’s perspective we have aimed for
several additional goals. First, we use the concept of
ideal models throughout the text, standards against
which reality can be compared or measured. In our
experience this has been a productive way to get ideas
across to the inexperienced. Secondly, at the end of
each chapter we provide a selection of exercises that
are meant to serve both as assignments and as a basis
for developing new questions/assignments related to
a particular data set that an instructor is using in a
formal course. Also, we provide a few selected ref-
erences at the close of each chapter as an aid to both
instructor and student in researching some of themain
themes of the chapter. The text assumes that appro-
priate software is available to the student. However,
several programs and data sets that relate to the text
are available through the publisher’s website.

The reader will quickly find that the use of units
is not standardized in this text. The real world is not

standardized! In the various examples that we quote,
we have used the units of the original authors. An
ability to move between British and metric systems
is essential in the global environment inwhich estima-
tions are conducted. A table of conversion factors is
included in an appendix to aid students in their ability
to “converse” between systems of units.

One of themore seriousmisgivings we have about
much of the published literature on mineral inventory
estimation relates to the all-too-common practice of
using artificial data or camouflaging real data, either
by not naming the mineral deposit represented or by
purposely omitting scales on diagrams and by multi-
plying data by an unknown factor to hide true values,
among other actions. Such procedures cloud the va-
lidity or interpretation of what is being presented, if
for no other reason than it is impossible to appreci-
ate the impact of geology on the interpretation of the
numeric data. We have avoided altering data in any
way in this text unless a specific transformation is an
inherent part of an estimation procedure.
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1
Mineral Inventory: An Overview

The life of a mine does not start the day that production begins, but many years before, when the company sets
out to explore for a mineral deposit. A good deal of time and money is spent simply looking for, locating and
quantifying a promising mineral occurrence. Not many will be found and not many of the ones found will have
the potential to become mines. It is not unusual to spend five to ten years searching for a mineable deposit.
(Anonymous, Groupe de Reflexion, cf. Champigny and Armstrong, 1994)

Chapter 1 introduces the setting within which
mineral inventories are estimated, explains con-
cepts and terminology important to the general
problem of resource/reserve estimation, and de-
scribes a range of empirical estimation methods
that are widely used in industry. Important con-
cepts include the systematic and sequential na-
ture of gathering data, three-dimensional block
models of a mineral deposit, errors of estima-
tion, cutoff grade, geologic and value continuity,
and the structured nature of a mineral inventory
estimation. Computers are an essential tool for
modern requirements of mineral inventory esti-
mation.

1.1: INTRODUCTION

The investment necessary to start a mine is on the
order of tens to hundreds of millions of dollars. In
order for the investment to be profitable, the poten-
tial product in the ground must be present in adequate
quantity and quality to justify a decision to invest.
Mining and processing systems used to extract the
products must then operate so as to produce revenue

to offset the planned investment and provide an ac-
ceptable profit. Clearly, all technologic and financial
decisions regarding planned production are built on an
understanding of the mineral assets available. Thus,
the estimation of grade and location of material in the
ground (in situ resources) must be known with an ac-
ceptable degree of confidence. This is especially true
of certain large, low-grade deposits for which grade
is only slightly above minimum profitable levels and
for some precious metal deposits where only a small
percentage of mineralized ground can be mined at a
profit.Miningprofits are strongly leveraged toproduct
price and realized grade of material mined. A small
difference between planned (estimated) and realized
production grade or a small change in metal price can
have a large impact on mine profitability.

To remain competitive, mining companies must
optimize productivity of eachminingoperation.There
are several ways to accomplish this goal. Moving and
processing more tons with the same or less equip-
ment is a common first goal, followed by inventory/
materials management and control, purchasing new
and better equipment, and so on. Each of these courses
of action has an associated cost and a potential return
on investment. Another method of increasing produc-
tivity is to increase the product content in the material

1
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being mined and processed (i.e., improved grade con-
trol during mining). This can be accomplished by
increasing the grade for the same tonnage, increas-
ing the tonnage while maintaining the same average
grade, or some combination that involves improved
selection of ore versus waste. Improved grade control
arguably offers the best return for the least invest-
ment because of the leverage that grade mined has on
revenue.

The three undertakings – ore estimation, mine
planning, and grade control – are complementary in
an efficient mining operation and are natural progres-
sions. The integration of these three endeavors is im-
portant because the grade control system must bal-
ance with the ore reserve as well as with the final
products of the operating plant, and both estimation
and grade control are influenced by planned opera-
tional procedures. If this balance is not achieved, the
original investment may be in jeopardy. Reappraisals
of mineral inventories may be necessary many times
prior to and during the life of a mine.

1.2: MINERAL INVENTORY ESTIMATES

Mineral inventories are a formal quantification of nat-
urally occurring materials, estimated by a variety of
empirically or theoretically based procedures. Inven-
tories that are based on an economic feasibility study
are commonly classed as reserves; inventories that
are less well established are considered resources.
These resource/reserve estimates, commonly deter-
mined from a two- or three-dimensional array of
assayed samples, are applied to mineralized rock vol-
umes that total many orders of magnitude larger than
the total sample volume (Fig. 1.1). Thus, errors of es-
timation can be viewed as errors of extension (i.e.,
errors made in extending the grades of samples to a
much larger volume [tonnage] of rock). For purposes
of establishing a mineral inventory, a mineral deposit
generally is discretized into an array of blocks, and
the average value of each block is estimated in some
manner from the nearby data. Thus, a mineral inven-
tory can be viewed as a detailed breakdown of blocks
whose individual sizes, locations, and grades are well
established.

Limit of
mineralization

Sample
site

Discretization
of deposit
as an array
of blocks

R

Figure 1.1: A two-dimensional representation of the gen-
eral situation in mineral inventory estimation. A mineralized
zone/deposit defined by geology is discretized by a number
of blocks (commonly of uniform size, but not necessarily
so). Each block is to be estimated using nearby data within
a search area (volume), in this case defined by a circle
centered on the block to be estimated. Small black dots
are sample sites (for which there would be grade values)
within the deposit; small open circles are samples outside
the limits of the deposit.

Quantification of a resource/reserve is to a level
of confidence (subjective or statistical) appropriate to
the available data and the stated needs of the estimate.
Volumes, tonnages, grades, and quantities of metals
or minerals are the common attributes that are quan-
tified. Their estimation must be optimal in the sense
that they must be unbiased and the random error must
not exceed an acceptable quality criterion. Mineral
inventory estimates are used to determine economic
viability that is relatively assured in the case of re-
serves. Volume (or tonnage) of ground classed as re-
sources generally has not been evaluated rigorously
for economic viability or has been found to lack im-
mediate economic potential. Estimation procedures
can differ substantially for deposits to be mined un-
derground comparedwith deposits to bemined by sur-
face pits. Similarly, methodology can vary depending
on whether the mineral inventory in question is for
short-term or long-term production planning.

Mineral inventories are determined at various
times in the exploration, evaluation, and production of
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Table 1.1 Staged sequence of data gathering in mineral exploration and evaluation

Phase of exploration General description of work

Discovery May result from a staged exploration program, prospecting wildcat invesigation, or by accident.
This stage includes initial ground control by staking, options, etc.

Preliminary surface evaluation Limited surface examination, including conceptual geologic appraisal, limited geochemical or
geophysical responses are measured, sampling for assay and mineralogic studies, limited test
pits, and stripping. This is the rapid property appraisal, or “scouting,” stage of many major
companies.

Detailed surface evaluation Generally begins with the laying out of a regular grid on areas of interest to serve as a base
for detailed geochemical and geophysical surveys and geologic mapping. Limited stripping,
trenching, drilling, and systematic sampling are common at this stage as a guide to development
of geologic concepts.

Subsurface evaluation Involves various types of drilling, generally in a more or less systematic manner and initially with a
relatively wide spacing of holes. Other methods, such as sinking exploratory shafts or declines
and driving adits and other workings are useful for many deposit types.

Feasibility Begins when a conscious decision is made to mount a detailed program to examine the
possibility of economically viable production. It includes reserve estimates, mine planning, mill
design, and costing of necessary infrastructure and environmental considerations, including
mine reclamation. Several stages of prefeasibility work can be involved, i.e., studies that are
close approaches to a true feasibility study, but with uncertainties that are unacceptable in a
final feasibility study.

Development Normally represents a halt in exploration efforts while deposit is prepared for production.
Production An ongoing exploration program is common during the productive life of a mineral property. Both

surface and underground techniques are used as needs arise. Work can be focused on extending
the limits of known mineral zones or searching for new and discrete zones.

Reclamation Exploration has normally been completed when reclamation begins.

Source: Modified from Champigny et al. (1980).

amineral deposit (Table 1.1). At the exploration stage,
a mineral inventory is useful in providing information
concerning a target whose quantities are imprecisely
known. The geologic setting of the mineralization
may define features that provide limits to such targets,
indicate possible directions of continuity, or help in
constraining the extent of a target – that is, localiz-
ing the target for more detailed evaluation. Estimation
errors, available quantitatively from some estimation
methods, can be used to develop an appreciation of the
effects of additional information (e.g., drill-hole den-
sity) on the quality of mineral inventory estimation.

Global estimates concerned with the average
grade and tonnage of very large volumes of a deposit
can be used to quantify a reserve or resource that
will form the basis of continuing production. Thus,
global resources/reserves represent a justification
for long-term production planning. Global resources

commonly are referred to as in situ or geologic be-
cause normally only very general economic factors
have been taken into account. Increasingly, efforts are
being made early in the exploration of a deposit to es-
timate the proportion of in situ resources/reserves that
are recoverable under certain mining conditions.

Local estimation, both at the feasibility stage and
in operating mines, commonly is used for short-
and medium-range production planning. In particu-
lar, local block estimates generally serve as the basis
for classifying blocks as ore or waste (see Fig. 1.1).
Recoverable reserves are determined from a subset of
local estimates (reserves actually recoverable by the
planned mining procedures) and serve as a basis for
financial planning.

In some cases, mineral inventories are approxi-
mated by numeric simulations. Conditional simula-
tions (i.e., simulations that honor the available data)
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can be used to provide insight regarding grade con-
tinuity, mine planning, mill planning, and overall
financial planning. Simulations are not used as widely
as warranted.

Many governmental jurisdictions require that
resource/reserve estimates be classified according to
an accepted legal or professionally recognized system
for purposes of formal publication, use byfinancial in-
stitutions, use in public fund-raising, and so on. In this
respect, the resources/reserves represent an asset with
an attendant level of risk related to the specifications
(commonly poorly documented) for the correspond-
ing classes of the classification system. In Canada,
for example, reserves were classed historically in the
following categories of decreasing reliability: proven,
probable, or possible.

The process of mineral inventory estimation can
be seen above to be an ongoing endeavor subject
to continual refinement. King et al. (1982) note
that “an Arizona porphyry copper mine achieved
satisfactory ore reserve prediction only after 20 years
of study and trial” (p. 18) and “it took a large
Australian nickel mine six years to develop their com-
puterized polygonal procedures to the point of yield-
ing a ‘planned mining reserve’ ” (p. 18). Optimal pro-
cedures for resource/reserve estimation are not cut and
dried; rather, they contain an element of “art” based
on experience that supplements technical routine and
scientific theory.

In addition to preparing comprehensive mineral
inventory estimations, geologic and mining profes-
sionals commonly are required to conduct a “reserve
audit” or evaluation of a mineral inventory estima-
tion done previously by others (cf. Parrish, 1990). A
reserve audit is a comprehensive evaluation based on
access to all geologic data, assays, and other per-
tinent information. An auditor does not repeat the
entire study, but normally might take about one-
tenth the time of the original study. The purpose is
to provide confidence as to the quality of data and
methodologies used and the general reliability of the
reported estimates. An auditor’s aim is to provide as-
surance that high professional standards have been
maintained in decision making and that acceptable
industrial practice has been followed in arriving at a
resource/reserve estimate. Parrish (1990) provides a

concise summaryof the structure of a resource/reserve
audit.

Exploration geologists are called on routinely to
provide rough estimates of tonnages and grades of
large volumes of rock based on a very limited amount
of exploration data. Such “guesstimates” are not com-
parable to a mineral inventory study; rather, they
are rough professional estimates as to the size of a
likely target, based on limited geologic and assay in-
formation and/or a nonrigorous approach to estima-
tion. These guesstimates should be viewed as attempts
to define exploration targets that require verification.
Such crude attempts should not be confusedwithmore
rigorous estimates of resources or reserves, unless the
information is sufficient to satisfy the criteria of a for-
mal classification (see Section 1.3.4).

1.3: SOME ESSENTIAL CONCEPTS
IN MINERAL INVENTORY

As with so many professional undertakings, mineral
inventory reports are filled with professional jargon
and a range of usage not standardized everywhere. In
some cases, the common use of terminology is lax rel-
ative towidely accepted technical definitions. In other
cases, certain technical terms have specific meanings
that are not widely appreciated either within or out-
side the industry because they have entered the min-
eral inventory literature from elsewhere; such is the
case, for example, with a number of terms originat-
ing from the field of geostatistics. For the forgoing
reasons, it is useful to define a number of terms and
concepts that are now widely integrated into mineral
inventory work.

1.3.1: Ore

The wide range of published definitions of the term
ore has prompted Taylor (1986, p. 33) to propose the
following definition: “the valuable solid mineral that
is sought and later extracted from the workings of a
mine; for the hoped or expected (though not always
achieved) advantage of the mine operator or for the
greater good of the community.” The generality of
this definition obscures the range of common usage.
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The term ore is applied to mineralized rock in three
senses: (1) a geologic and scientific sense; (2) quality
control in ore reserves; and (3) for broken, mineral-
ized ground in a mine, regardless of grade. In min-
eral inventory work, the second definition is of im-
portance and implies the distinction of ore (mined
at a profit) and waste (containing insufficient value to
earn a profit). The recognition of such ore involves the
consideration of three different categories of profit:
(1) that relating to small increments of ore; (2) that
referring to annual or other periodic outputs of ore;
and (3) that expected from entire ore bodies. Note that
for each of these types of profit, there is a different
corresponding threshold (cutoff grade) that separates
ore from waste. As indicated by Wober and Morgan
(1993), the definition of the ore component of a par-
ticular mineral deposit is a function of time factors
(metal price, technology, tax regime, etc.), place fac-
tors (relation to infrastructure), legal factors (safety,
environmental, labor, etc.), profit, and discount rates.

In general, mines are put into production with the
understanding that there will be an acceptable return
on the necessary investment. Circumstances may dic-
tate significant changes to the foregoing philosophy,
or the concept of profit might change over time. A
mine might operate at a loss for reasons of tax advan-
tage, long-term planning, anticipation of short-term
changes in metal prices or product sales, and so on.
Moreover, government may impose regulations or in-
centives that affect operations normally expected to
create losses. For example, historically, in the case of
South African gold mines and the Alberta tar sands,
some material was mined at a loss because it would
otherwise not be recoverable and perhaps would be
lost forever.

1.3.2: Cutoff Grade

The concept of cutoff grade and its practical appli-
cations have invoked wide discussion in the technical
literature (e.g., Lane, 1988; Taylor, 1972, 1985). For
practical purposes, a cutoff grade is a grade below
which the value of contained metal/mineral in a vol-
ume of rock does not meet certain specified economic
requirements. The term has been qualified in many
ways, particularly by accountants, and some ambi-
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Figure 1.2: A plot of estimated grades versus true grades
for many blocks (selective mining units) of mineralized
ground (ore). A cutoff grade (xc) applied to both axes divides
the individual estimates into four quadrants that classify
the estimates as follows: quadrant I = ore blocks correctly
classed as ore; quadrant II= ore blocks incorrectly classed
as waste; quadrant III = waste blocks correctly classed as
waste; and quadrant IV = waste blocks incorrectly classed
as ore. The fundamental concept inherent in this diagram
is that random estimation errors necessarily require that
an estimate can never be met by production (unless addi-
tional ore is encountered) because some ore is lost (i.e.,
incorrectly recognized as waste), and the remaining ore
that is recognized is diluted by waste incorrectly classed
as ore. A regression line (R) through the data indicates
the common result for polygonal estimates (i.e., on aver-
age, estimates of high values overestimate the true grade,
whereas estimates of low values underestimate the true
grade). The alternate situation, in which high grades are un-
derestimated and low grades overestimated, is common in
situations in which groups of data are averaged to produce
estimates.

guity in its use has resulted (Pasieka and Sotirow,
1985). Cutoff grades are used to distinguish (select)
blocks of ore from waste (Fig. 1.2) at various stages
in the evolution of mineral inventory estimates for
a deposit (i.e., during exploration, development, and
production stages). Ore/waste selection is based on
estimates (containing some error) rather than on true
grades (which are unknown). Hence, in the case of
block estimation it is evident that some ore blocks



6 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

will be inadvertently classed as waste (quadrant II in
Fig. 1.2) and that some waste blocks will be classed
erroneously as ore (quadrant IV in Fig. 1.2). The vol-
ume of a predefined mining unit, on which mining
selectivity is based and to which a cutoff grade is ap-
plied, can change during this evolution, as can the
cutoff grade itself. As the cutoff grade increases, the
tonnage of ore decreases and the average grade of that
tonnage increases. As a rule, strip ratio (the units of
waste that must be removed for each unit of ore) also
increases with increasing cutoff grade. Generally, a
fairly narrow range of cutoff grades must be consid-
ered in the process of optimizing the selection of a
cutoff grade for a particular mining scenario.

The concept of cutoff grade is closely linked to
the practical connectivity of blocks of ore at the
production stage (Allard et al., 1993; Journel and
Alabert, 1988). As the cutoff grade rises, the volume
of ore decreases and becomes compartmentalized into
increasing numbers of smaller, separated volumes
(i.e., decreased “connectivity” with increasing cutoff
grade) as illustrated in Fig. 1.3. Cutoff grades rep-
resent economic thresholds used to delineate zones
of mineral/metal concentration for potential mining.
This delimitation of ore/waste can be a cutoff grade
contour or a series of straight line segments (steplike)
separating blocks estimated to be above cutoff
grade from those below cutoff grade. Consequently,
the quality of block estimates to be contoured or
otherwise groupedmust be understood vis-á-vis grade
continuity (Section 1.3.3) in order to appreciate the
possible magnitude of errors in cutoff-grade contours
or block estimates.

Estimation of cutoff grade, although a complex
economic problem beyond the scope of this book,
is tied to the concept of operating costs (per ton)
and can be viewed simplistically as outlined by John
(1985). Operating cost per ton milled, OC, is given
by

OC = FC + (SR + 1) × MC

where

FC = fixed costs/ton milled

SR = strip ratio

MC = mining costs/ton mined.

Au>=1 Au>=10 Au>=20 Au>=40

Au>=60 Au>=80 Au>=100 Au>=200

Au>=300 Au>=500 Au>=700 Au>=1000

Figure 1.3: The concept of connectivity of ore as a func-
tion of cutoff grade. Data are 1,033 rock samples from
the Mitchell–Sulphurets mineral district (Cheng, 1995),
northern British Columbia, for which Au analyses (g/mt)
have been contoured using different threshold values (cut-
off grades). As the cutoff value increases, the high connec-
tivity of Au deteriorates to increasing numbers of uncon-
nected, isolated highs. Of course, where the cutoff value
approaches the tail of the distribution, the number of high-
grade patches decreases.

Cutoff grade, useful at the operational level in dis-
tinguishing ore from waste, is expressed in terms of
metal grade; for a single metal, cutoff grade can be
determined from operating cost as follows:

gc = OC/p

where gc is the operational cutoff grade (e.g., per-
cent metal) and p is the realized metal price per unit
of grade (e.g., the realized value from the smelter
of 10 kg of metal in dollars, where metal grade
is in percent). More exhaustive treatments of cutoff
grade are provided by Taylor (1972, 1985) and Lane
(1988).

Optimizing cutoff grade (selecting the cutoff
grade that maximizes cash flow) is based on a confi-
dent mineral inventory estimate (e.g., as summarized
in Table 1.2), where cash flow (CF) is given by

CF = Revenue − Operating Costs

= (g × F × P − OC)T
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Table 1.2 Grade–tonnage relations that simulate a
typical porphyry copper deposit

Tons of ore Average
Cutoff grade (millions) grade ore Strip ratio

0.18 50.0 0.370 1.00:1
0.20 47.4 0.381 1.11:1
0.22 44.6 0.391 1.24:1
0.24 41.8 0.403 1.39:1
0.26 38.9 0.414 1.57:1
0.28 35.9 0.427 1.78:1
0.30 33.0 0.439 2.03:1
0.32 30.0 0.453 2.33:1
0.34 27.2 0.466 2.68:1

Source: After John (1985).

where

g = average grade of ore mined

F = recovery proportion per ton milled

P = realizable value of metal per ton milled

T = tons milled.

The hypothetical mineral inventory data of Table 1.2
(John, 1985) simulate a porphyry copper deposit and
are used to make the cash flow estimates shown in
Table 1.3 for various potential cutoff grades. Clearly,
for the situation assumed, cash flow is maximized for
a cutoff grade of 0.28 percent metal. Changes in strip
ratio, metal prices, percent recovery, and so on change
the optimal cutoff grade. One useful concept empha-
sized by John (1985) is that the formulas presented
here can be used to evaluate the effect that various al-
ternatives (e.g., changingmetal prices, different metal
recovery) have on the selection of a cutoff grade; that
is, a “sensitivity analysis” can be conducted for vari-
ous parameters in which each parameter is varied in-
dependently in order to evaluate its impact on cutoff
grade estimation. One such analysis (Fig. 1.4) shows
variations in optimum cutoff grade with variation in
metal price for the example used in Tables 1.2 and 1.3.

Parrish (1995) introduces the concept of incre-
mental ore as

that material that in the course of mining “bona
fide ore” must be drilled, blasted and moved but
contains sufficient value to pay the incremental
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Figure 1.4: Optimum cutoff grade as a function of changing
metal price for an information base used by John (1985)
to illustrate the concept of cutoff grades. This diagram is
based on the data presented in Tables 1.2 and 1.3.

costs of realizing that value and provide some
profit as well. Incremental costs include the dif-
ference between delivery to the waste area and
delivery to the feed bin, stockpile pad or crusher
and the costs of crushing, processing, royalties,
etc. (p. 986)

It is evident from this definition that mining costs
are not included in incremental ore; hence, the cutoff
grade used for its definition is less than the cutoff
grade based on all costs and is consistent with the
term internal cutoff grade (e.g., Marek andWelhener,
1985). The paradox of incremental ore is that in the-
ory it cannot be classed as reserves (because all costs
are not recovered), but in practice it makes sense to
mine and process it. Owens and Armstrong (1994,
p. 53) also recognize the paradox when they state,
“The grade cut-off concept has a role for selection
of stope or ore zone size units, but not for isolated
blocks of low grade within ore zones intended for
underground mining.”

1.3.3: Continuity

Continuity is “the state of being connected” or “un-
broken in space.” (Oxford English Dictionary, 1985,
p.186). In mineral deposit appraisals, this spatial def-
inition commonly is used in an ambiguous way to
describe both the physical occurrence of geologic
features that control mineralization and grade val-
ues. Such dual use of the term continuity leads to
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Table 1.3 Calculation of cash flow (dollars per ton milled) for example in Table 1.1a

Cutoff grade Average ore grade Strip ratio Operating cost ($/t) Total revenue Operating cash flow

0.18 0.370 1.00:1 3.50 5.24 1.74
0.20 0.381 1.11:1 3.58 5.38 1.80
0.22 0.391 1.24:1 3.68 5.54 1.86
0.24 0.403 1.39:1 3.80 5.70 1.90
0.26 0.414 1.57:1 3.93 5.86 1.93
0.28 0.427 1.78:1 4.09 6.04 1.95
0.30 0.439 2.03:1 4.28 6.22 1.94
0.32 0.453 2.33:1 4.50 6.40 1.90
0.34 0.466 2.68:1 4.76 6.59 1.83

a Results in Table 1.3 can be obtained from information in Table 1.2 with MC = 0.76, FC = 1.98, recovery = 0.83, and a
metal price of $0.85/lb in formulas 1.1 and 1.3.
Source: After John (1985).

ambiguity. To clarify this ambiguity, Sinclair and
Vallée (1993) define two types of continuity that bear
on the estimation of mineral inventories as defined in
Table 1.4.

Distinction between the two types of continuity
can be appreciated by the particularly simple exam-
ple of a vein (a continuous geologic feature), only part
ofwhich (ore shoot) ismineralizedwith economically
important minerals. Value continuity can be defined
within the ore shoot. These two types of continuity are
partly coincident in space, perhaps accounting for the
ambiguity in past use of the unqualified term continu-
ity. Understanding both types of continuity is essential
in appreciating the implications of each to the estima-
tion process. An example of the impact that an error in
interpreting geologic continuity can have on mineral
inventory estimation is shown in Fig. 1.5. Chapter 3
contains a detailed discussion of geologic continuity;
Chapter 8 is concerned with a quantitative description
of value continuity.

1.3.4: Reserves and Resources

Mineral inventory is commonly considered in terms
of resources and reserves. Definitions currently vary
fromone jurisdiction to another, although there are in-
creasing efforts being directed toward internationally
acceptable definitions. In the absence of such inter-
national agreement, there is an increasing tendency

in both industry and technical literature for an ad
hoc agreement centering on definitions incorporated
in the “Australasian Code for Reporting of Identified
Mineral Resources and Ore Reserves” (Anonymous,
1989, 1999). Thus, the Australasian terminology is
summarized in Fig. 1.6.

A resource is an in situ (i.e., on surface or under-
ground) mineral occurrence quantified on the basis of
geologic data and a geologic cutoff grade only. The
term ore reserve is used only if a study of technical

Indicated Vein Without Geology

Figure 1.5: A simplistic illustration of the importance of ge-
ologic continuity (modified from Rostad, 1986). Interpreta-
tions concerning continuity clearly control the volume of ore
(and therefore the tonnage) as well as the way in which sam-
ple grades will be extended. Detailed study of the geologic
form and controls of mineralization constrain the geometric
model of a deposit, which in turn has an impact on mine
planning. In this case, vein intersections in a shear zone
are shown misinterpreted as a simple vein rather than cor-
rectly as a series of sygmoidal veins.
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Table 1.4 Two categories of continuity in mineral
inventory estimation

Geologic continuity Spatial form of a geometric (physical)
feature such as a mineral deposit or
mineral domain.
Primary: veins, mineralized shear,
mineralized stratum

Secondary: postmineral faults,
metamorphism, folding or
shearing of deposits

Value continuity Spatial distribution features of a quality
measure such as grade or thickness
within a zone of geologic continuity.
Nugget effect and range of influence
are quantified. Examine on-grade
profiles (e.g., along drill holes)
qualitatively in various directions.
Quantify for each geologic domain
using an autocorrelation function
(e.g., semivariogram)

Source: After Sinclair and Vallée (1994).

and economic criteria and data relating to the resource
has been carried out, and is stated in terms of mine-
able tons or volume and grade. The public release of
information concerning mineral resources and ore re-
serves and related estimates must derive from reports
prepared by appropriately qualified persons (i.e., a
“competent person”).

Prior to mineral inventory estimation, a variety of
exploration information is available. As exploration
continues, the information base increases and the level
of detailed knowledge of a deposit improves. The
estimation of reserves or resources depends on this
constantly changing data and the continually improv-
ing geologic interpretations that derive from the data.
Thus, the continuous progression of exploration infor-
mation first permits the estimation of resources and,
eventually, the estimation of reserves of different cat-
egories. Reserve estimation is thus seen as continu-
ally changing in response to a continually improv-
ing database. An indication of the wide range of data
affecting mineral inventory estimation and classifica-
tion is presented in Table 1.5.

On the international scene, it is becoming increas-
ingly common to progress from resources to reserves

by conducting a feasibility study. A feasibility study
of a mineral deposit is “an evaluation to determine
if the profitable mining of a mineral deposit is . . .

plausible” (Kennedy and Wade, 1972, p. 70).
The term covers a broad range of project evalua-

tion procedures yielding detailed insight into the geo-
logic and quantitative database, resource/reserve esti-
mation procedures, production planning, mining and
milling technology, operations management, financ-
ing, and environmental and legal concerns. An ex-
haustive discussion of the classification of resources
and reserves is provided in Chapter 18.

1.3.5: Dilution

Dilution is the result ofmixing non-ore-gradematerial
with ore-grade material during production, generally
leading to an increase in tonnage and a decrease in
mean grade relative to original expectations. A con-
ceptual discussion of dilution during various min-
ing operations is provided in Fig. 1.7 after Elbrond
(1994). It is convenient to consider dilution in two cat-
egories: internal (low-grade material surrounded by
high-gradematerial) and external (low-gradematerial
marginal to high-gradematerial). Internal dilution can
be subdivided into (1) sharply defined geometric bod-
ies and (2) inherent dilution.Geometric internal dilu-
tion results from the presence of well-defined waste
bodies within an ore zone (e.g., barren dykes cutting
an ore zone, “horses”). Inherent internal dilution re-
sults from the decrease in selectivity that accompanies
an increase in the block size (e.g., resulting from loss
of equipment digging selectivity) used as the basis for
discriminating ore fromwaste, evenwhere no entirely
barren material is present.

External dilution is the result of sloughing of
walls, difficulty of sorting in open pits, or the inad-
vertent or purposeful mining of barren or low-grade
material at the margin of an ore zone. Such dilution is
generally significant in cases in which stope walls are
physically difficult to maintain because of rock prop-
erties or where ore widths are less than the minimum
mining width. External dilution can be of somewhat
less significance in large deposits with gradational
boundaries in comparisonwith small deposits because



10 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

Increasing level of
geological knowledge

and confidence
therein

Reporting Terminology

Exploration Information

Resources Reserves

Inferred

ProbableIndicated

Measured Proven

Economic, mining, metallurgical, marketing,
environmental, social, and governmental

factors may cause material to move between
resources and reserves

Inferred

ProbableIndicated

Measured Proved

Increasing level of
geologic knowledge
and confidence

Consideration of economic,
mining, metallurgical, marketing,

environmental, social,
and governmental factors

Identified mineral
resources (in situ) 

Ore reserves
(mineable)

(b)

(a)

Figure 1.6: Examples of two published classification schemes for resources/reserves. (a) A proposed classification of the
Society of Mining Engineers (U.S.). (b) Classification of the Australasian Institute of Mining and Metallurgy, in use in Australia
since about 1980.

the diluting material (1) can be a small proportion
of the mined tonnage and (2) contains some metal,
possibly near the cutoff grade. In general, some un-
certain proportion of waste must be taken along with
ore during the mining operation. This form of dilu-
tion can be impossible to estimate with confidence in
advance of mining; experience is probably the best
judge. Accepted procedures for estimating dilution in

underground mining operations are summarized by
Pakalnis et al. (1995).

1.3.6: Regionalized Variable

A regionalized variable is a variable distributed in
space in a partly structuredmanner such that some de-
gree of spatial autocorrelation exists. The structured
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Table 1.5 Examples of the information base required for a mineral inventory study

Location Surveyed maps: cross sections showing locations of geologic control, mineral showings, sample locations,
drill-hole locations/orientations, exploration pits, and underground workings; an indication of the quality of
location data of various types.

Geologic Detailed geologic maps and sections showing rock types, structural data, alteration, mineralization types,
etc.; reliability of geologic information; description of supporting geochemical and geophysical survey
data/intepretations; factual data distinguished from interpretation; documentation of drill-hole logging pro-
cedures (including scales and codes used); detailed drill logs; textural and mineralogic features of
importance to mill design; spatial variability of geologic features that have an impact on mill and mine
design, including effects on metal/mineral recovery and determination of cutoff grade; ore deposit model
with supporting data; geologic influence on external and contact dilution; justification for separate domains
to be estimated independently.

Sampling/assaying Descriptions of all sampling methods, including quantification of sampling variability; sample descriptions;
sample reduction procedures and their adequacy; bulk sampling design/results; duplicate sampling/
assaying program.

character is called a regionalization and is character-
ized by the fact that nearby samples are, on average,
more similar in value than are more widely spaced
samples. A regionalization of grades is consistent
with the occurrence of high-grade zones in a lower
grade field, as is common in mineralized ground. In
Fig. 1.8a, two samples with a spacing smaller than the
dimensions of the “high-grade” mineralized zones
will be more similar, on average, than two samples
spaced more widely than the dimensions of the
high-grade zones. Many mining-related variables
are regionalized, including vein thickness, grades,
fracture density, and metal accumulations (grade ×
length). In general, regionalized variables consist
of at least two components: a random component
and a structured component. The random component
commonly masks the structured component to some
extent (e.g., in contoured maps of the regionalized
variable). Various autocorrelation (mathematical/
statistical) functions can be used to characterize a re-
gionalized variable and permit the autocorrelation to
be incorporated into the mineral inventory estimation
procedure. Statistics of independent (random) vari-
ables ignore the effects of spatial correlation, and thus
might not take full advantage of the data in estimating
average grades for parts or all of a mineral deposit.

Regionalized variables such as grades are de-
fined on a particular support within a defined field or

domain (e.g., Cu grades of 2-m drill-core lengths
within amineralized zone surrounded by barren rock).
Support refers to the mass, shape, and orientation of
the sample volume that is subsampled for assaying.
One-m lengths of split core from vertical drill holes
represent a regionalized variable with uniform sup-
port. If the length of split core in a sample is increased
to, for example, 2 m, a new regionalized variable of
different support is defined. A smoothing of values
(decrease in variability) – that is, a regularization –
accompanies the increase of support of a regionalized
variable. The concept is illustrated numerically and
graphically in Figs. 1.8b and 1.8c. It is evident from
the foregoing discussion that the common procedure
of constructing composite grades (uniform support)
from grades of smaller supports leads to smoothing
of the original data values.

1.3.7: Point and Block Estimates

It is essential to distinguish between the concept of
estimating grade at a point (or a very small volume
such as a sample) and estimating the average grade of
a large volume such as a production unit or block
(a volume that may be many orders of magnitude
greater than the size of a sample). Point or punc-
tual estimates are used in mining applications mainly
as a means of validating or comparing estimation
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1 The real but unknown deposit

2

3

4

5

6

7

The estimated "deposit"
Ore lost
Dilution

The estimated "deposit" after

Ore lost
Dilution

the decision of cutoff grade

The "deposit" after the design
of the mining method

Ore lost in pillars
Dilution from mining method design

The mined "deposit"
Ore drilled, blasted but lost
Dilution drilled, blasted, loaded
and transported to the concentrator

Feed to the concentrator
Dilution from overbreak loaded
and transported to the concentrator

Ore which becomes concentrate
Ore lost in tailings
Dilution treated by the concentrator

Figure 1.7: A conceptual representation of dilution of ore at
various stages of mining and milling (after Elbrond, 1994).
Note that at each of the stages represented, some ore is
lost and some waste is included with ore.

techniques and to estimate regular grid intersections
as a basis for contouring (e.g., contouring the cutoff
grade to define the ore/waste margin). The sample
base (very small volumes) is the point base used to
make point estimates. Block estimates are also made
from the sample (point) database but are large vol-
umes relative to sample volumes; generally, samples
are measured in kilograms (a few hundreds of cubic
centimeters), whereas blocks commonly are mea-

d3

d2

d1

1 4 2 7 4 5 8 2 1 4

2.5 4.5 4.5 5 2.5

3.6 4

(a)

1 m

2 m

5 m

Length of
sample/

composite

(b)

Value

(c)

Fr
e

q
u

e
n

cy

Large sample

Small sample

x

Figure 1.8: Regionalized variables and the concept of sam-
ple support. (a) The concept of a spatial dependency of
a regionalized variable such as grade. Sample pairs sepa-
rated by less than the dimensions of small high-grade (con-
toured) zones (d1 and d2) are more similar, on average,
than are more widely spaced sample pairs (d3). (b) Numeric
demonstration of the smoothing effect of combining grades
with small support into weighted grades of larger support.
(c) General relation of grade dispersions illustrated by his-
tograms of grades for relatively small volumes and relatively
large volumes.

sured in hundreds or thousands of tons (hundreds to
thousands of cubic meters).

Consider the example illustrated in Fig. 1.9 (data
are listed in Table 1.6), in which the center of a large
block is to be estimated from the available data shown.
Estimation of the value at the block center is equiva-
lent to determining the contour that passes through the
center. Clearly, there are several ways to contour the



M INERA L I N V EN TORY : AN OV ERV I EW 13

Easting (m)

N
o

rth
in

g
 (m

)

1

2

3

4

5

0.3

0.8

0.5

0.2

0.6

100

80

60

40

20

0

0 20 40 60 80 100 120

0.
4

0.4

0.6

Figure 1.9: Five data points used to interpolate contours
from which an estimated, average panel grade is obtained
(see text). One possible estimate is the interpolated value
at the panel center. A second estimate can be obtained
by dividing the panel into four equal blocks by two dashed
lines, interpolating the value at the center of each block,
and averaging the four values. Data are summarized in
Table 1.6.

data, each of which will provide a different estimate
for the central point; for the contours shown, an inter-
polation provides a point estimate of about 0.59. The
average grade of the block can be estimated from the
available data; for example, a block grade can be esti-
mated as the weighted average using areas of various
contour intervals within the block as weights and the
mean grades of the contour intervals selected. In the
case presented, a weighted average of about 0.54 is
obtained (compared with 0.59 for the block center).
The two estimates differ by about 9 percent and, in
general, there is no reason to expect a point estimate
to be equivalent to a block estimate, even though the
block contains the point in question.

1.3.8: Selective Mining Unit

A selective mining unit (SMU) is the smallest block
on which selection as ore or waste is commonly
made. The size of an SMU generally is determined
from constraints associated with the mining method
to be used and the scale of operations. For design

Table 1.6 Coordinates and data values for
estimation of the panel in Fig. 1.9

Sample no. x Coordinatesa y Coordinatesa Grade (% Cu)

1 15 75 0.3
2 90 90 0.8
3 90 50 0.5
4 65 15 0.2
5 60 45 0.6

a Distances in meters.

purposes, a mineral deposit (and perhaps much of
the surrounding waste) can be considered a three-
dimensional array of SMUs (e.g., Fig. 1.10), each
of which has assigned metal grades and other pa-
rameters. This three-dimensional array of SMUs is
commonly the fundamental basis for feasibility
studies; hence, SMUs are normally the minimum vol-
ume for which estimates are required. In a particular
situation, an SMU could be the volume of broken ma-
terial in a single truck that is directed to either the mill
or the waste dump, depending on the assigned grade.

Selection of an SMU is also critical to mineral
inventory estimation because it can be the basic unit
classified, first as a resource (measured, indicated, or
inferred) and second possibly as a reserve (proved or

Figure 1.10: A three-dimensional array of blocks designed
to approximate the geometry of an ore deposit. The block
size is commonly taken as the selective mining unit (SMU),
the smallest volume for which selection as ore or waste is
possible and thus the smallest volume for which an average
grade must be estimated.
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probable). Consequently, the dimensions of an SMU
must be determined carefully. Those dimensions de-
pend on such interrelated factors as probable blasthole
spacing during production, specifications of mining
equipment, bench height, and blasting characteristics
of the ground.

1.3.9: Accuracy and Precision

Accuracy is nearness to the truth, and significant inac-
curacies can produce identifiable bias (departure from
true value). Precision is a measure of reproducibility
of a result by repeated attempts. It is possible to have
good reproducibility and poor accuracy, so both must
be considered in detail.

There are many potential sources of significant
errors in the estimation of mineral inventory, in-
cluding

1. Sampling error
2. Analytical error (including subsampling error)
3. Estimation (extension) error, that is, the error

made in extending the grade of samples to a par-
ticular volume of mineralized rock

4. Bulk density (the all-too-common assumption
that bulk density of mineralization remains con-
stant throughout a deposit)

5. Geologic error, that is, errors in the assumptions
of ore continuity and the geometry of a deposit

6. Miningmethod not adapted to the geometry of the
deposit, that is, selectivity of ore and waste that is
not optimal

7. Variable dilution from surrounding wall rock
8. Human error (misplotting of data, misplaced dec-

imals, etc.)
9. Fraud (salting, substitution of samples, nonrepre-

sentative data, etc.).

These factors can lead to both inaccurate estimates
and imprecise estimates. Inaccurate results can be
obtained very precisely, for example, if a bias (sys-
tematic error) is inherent in any one of the sampling
procedures, the analytical method, or the data selec-
tion procedure. Regardless of how accurate assays or
ore resource/reserve estimation procedures are, there
is some level of random error in the data or estimates.

Concepts of accuracy and uncertainty are widely
misused in the reporting of metal reserves and re-
sources. King et al. (1982, p. 5) quote the follow-
ing reported reserves for three mines of an unnamed
mining company:

Mine A: 8,192,000 tons at 0.174 oz Au/t
Mine B: 27,251,000 tons at 1.87% Cu
Mine C: 152,533,400 tons at 7.11% Zn.

These examples are all given to more significant fig-
ures than are warranted and emphasize the impor-
tance of honoring the number of significant figures in
presenting mineral inventory estimates. Mining com-
panies traditionally report mineral inventory to more
figures than are justified. A number with three signifi-
cant figures (i.e., reproducible by test to better than the
first two figures) indicates an uncertainty of between
1:100 and 1:1,000. Additional figuresmay be not only
a waste of time but may be misleading, particularly to
the uninitiated. Certainly, experience has shown that
reserve estimation does not achieve an accuracy in
excess of 1:1,000!

Errors in mineral inventory estimates are not en-
tirely quantifiable. There are the obvious estimation
errors that arise because a small sample is used to es-
timate a large volume. In addition, however, there is
potential for very large error arising from the uncer-
tainty of geologic interpretation of the geometry and
internal continuity of ore. For a particular period of
mining development in Australia, King et al. (1982,
p. 3) state, “In Australia . . . some 50 new mining
ventures . . . reached the production stage. Of these,
fifteen were based on large, good grade deposits, rel-
atively easily assessed. Of the remainder, ten suffered
ore reserve disappointments more or less serious and
some mortal.” As examples of the level of error in-
volved, they cite the following ratios of expectations
(by estimation) to realizations (production) for a num-
ber of deposits:

100:75 major uranium mine (i.e., a 33% overesti-
mate)

100:55 sizable copper mine (i.e., an 82% overes-
timate)
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100:75 large gold mine (i.e., a 33% overestimate)
100:80 small nickel mine (i.e., a 25% overesti-

mate).

These dramatic shortfalls of expectations “happened
to some of the most experienced companies in the
industry” (King et al., 1982; p. 3). Similar mishaps
in estimation have occurred internationally; for ex-
ample, Knoll (1989) describes comparable cases of
initial estimates for some Canadian gold deposits not
being met as further evaluation or production ensued.
Champigny and Armstrong (1994, p. 23) summarize
several statistics relating to reserve estimation as fol-
lows: “In 1990 Graham Clow . . . presented an exam-
ination of 25 Canadian gold projects, at an advanced
stage . . .. Only three have lived up to expectations . . ..
He concluded the main reason for failure was
poor reserve estimation practice” “In 1991 . . .

Harquail . . . analyzed 39 recent North American gold
mining failures . . .. From the 39 failures, Harquail
attributed 20 failures to reserve issues: (1) basic
mistakes, (2) improper or insufficient sampling, and
(3) a lack of mining knowledge” “In early 1992 a
South African . . . provided a less than rosy picture
for small gold mines started in his country during the
1980s. For 13 mines which started out only 3 are still
working and all three have a marginal performance.
He correlated this lack of success to an overestimation
of reserves” It is one of the important aims of this text
to provide insight into how to minimize the effects
of the many sources of error that can lead to serious
mistakes in mineral inventory estimation.

1.4: A SYSTEMATIC APPROACH
TO MINERAL INVENTORY ESTIMATION

Mineral inventory estimation is a complex undertak-
ing that requires a range of professional expertise. In
cases in which reserves (as opposed to resources) are
being estimated, a large team of professionals might
be required (cf. Champigny, 1989). Geologic, mining,
and milling engineers normally are involved, as well
as experts in mineral economics, financing, and any
number of specialized fields that might be pertinent
to a particular deposit or the local infrastructure re-

quired to mine a deposit. Fundamental to the mineral
inventory, however, is a knowledge of the spatial dis-
tribution of grade and the particular locations of vol-
umes of mineralized rock that are above cutoff grade.
Whatever the purpose of a mineral inventory, the es-
timation should be done in an orderly or structured
manner. Weaknesses, especially important assump-
tions, should be flagged so that they can be improved
as new information permits. The eventual mineral in-
ventory should not be seen as a fixture; rather, they
should be viewed as an evolving product, periodically
subject to improvement with the continuing flow of
new information. The more important topics relating
to mineral inventory estimation (see also Table 1.1),
roughly in their sequence of occurrence, include:

1. Geologic modeling
2. Continuity documentation, both geologic and

value
3. Evaluation of quality of data and quality control
4. General data evaluation, i.e., implications of quan-

titative data (histograms, trends, correlations, etc.)
5. Global resources estimation
6. Local resources
7. Recoverable reserves
8. Simulation.

Of course, these undertakings are to somedegreeover-
lapping and should not be seen as mutually exclusive
or as all inclusive. Furthermore, although the order
listed is a relatively commonorder in practice, the spe-
cific aimsof amineral inventory studymaynecessitate
significant changes. Commonly, for example, geo-
logic modeling, continuity, and data evaluation are
done partly contemporaneously. In some cases, sim-
ulation may be done early as an aid to understanding
continuity rather than later as a basis for optimizing
mining and/or milling procedures; only one of local
or global reserves might be required; and so on.

The early stage of geologic modeling should not
be confusedwith themore engineering-oriented terms
of deposit modeling, reservemodeling, and so on. Ge-
ologic modeling is concerned with the recognition,
spatial disposition, and interpretation of a wide range
of geologic features and how these are represented vi-
sually (perhaps simplistically). Terms such as reserve
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modeling relate to howadeposit is compartmentalized
geometrically for estimation purposes. Sides (1992b)
summarizes a variety of geometric approaches to sub-
dividing a mineral deposit for reserve estimation,
methods that are not mutually exclusive, as follows:

1. Gridded seam – a “two-dimensional” or tabular
body in which the planar surface is subdivided
polygonally

2. Serial slices – commonly equispaced plans and/or
sections showing polygonal outlines of “ore”

3. Block modeling – mineralized volume divided
into a three-dimensional array of blocks that
generally coincide in size with the SMU. This
modeling procedure iswidely used, particularly in
computer-based approaches to reserve estimation.

4. Solid modeling – use of “geometric primitives
defining volumes of common properties” adapted
from CAD/CAM applications and being used
increasingly

5. Boundary representations – modeling disconti-
nuity surfaces within a large volume of ground.
This procedure enables the distinction (and in-
dependent evaluation) of various ore types based
on various criteria of a lithologic, structural,
mineralogic, grade, or other nature.

D

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.11: Examples of some common methods of grade estimation (after Patterson, 1959). (a) Polygonal: uniform rectan-
gular blocks centered on uniformly spaced data. (b) Polygonal: nonuniform rectangular blocks centered on irregularly spaced
data. (c) Polygonal: polygons defined by perpendiculars at midpoints between data points. (d) Polygonal: polygons about data
points defined by bisectors of angles in a mesh of contiguous triangles. (e) Triangular: each polygon is assigned an average
of grades at three vertices. (f) Method of sections: ore outlined on drill sections and weighted average grade determined on
individual sections. Ore between sections is interpolated, commonly by a simple linear interpolation between neighboring
sections.

1.5: TRADITIONAL METHODS OF MINERAL
INVENTORY ESTIMATION

Several traditional and widely used mineral inven-
tory estimation methods described, for example, by
Patterson (1959), King et al. (1982), Annels (1991),
and Stone and Dunn (1994), are illustrated in
Fig. 1.11. These procedures include

1. Method of sections (plans); longitudinal, trans-
verse

2. Polygonal methods
3. Triangular method
4. Regular grid, random stratified grid
5. Inverse distance weighting (1/d , 1/d2, 1/d2.7,

1/d3, etc.)
6. Contouring methods.

Methods 1 through 3 involve estimation of vol-
umes; methods 4 through 6 concern point samples on
which properties (e.g., grades) have been estimated
and that are commonly used to estimate points on a
regular grid. Each of these methods has found appli-
cations in industry for resource/reserve estimation; all
are empirical and their use has depended largely on
the experience of the user. When applied with close
geologic control and adequate sample control, they
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Figure 1.12: Depictions of an irregular ore–waste contact approximated by smooth dashed lines that are interpreted using
information from drill holes (on sections), but that are interpolated between drill holes. With such irregular contacts, the
method of sections must necessarily be incorrect (i.e., it can only coincidently result in the correct grade estimate for the
interpolated zone because some waste is included within the interpreted zone of mineralization). Modified from Stone and
Dunn (1994).

have commonly proved useful and reliable. However,
there are characteristics inherent in their individual
methodologies that can lead to drastic errors if the
methods are applied inappropriately.

1.5.1: Method of Sections

The method of (cross) sections (cf. Fig. 1.11) is ap-
plied most successfully in the case of a deposit that
has sharp, relatively smooth contacts, as with many
tabular (vein and bedded) deposits. Assay informa-
tion (e.g., from drill holes) commonly is concentrated
along equispaced cross sections to produce a fairly
systematic data array; in some underground situa-
tions, more irregular data arrays can result, for ex-
ample, from fans of drill holes. A geologic or grade
interpolation is made for each cross section (or plan),
and the interpretation on each section is projected
in smooth or steplike fashion to adjoining sections.
Note that this two-stage interpolation (on and between
sections) represents the principal underlying assump-
tions of the method of sections (or of plans) – that is, a
smooth (or, alternatively, a one-step) interpolation be-
tween sections, as shown schematically in Fig. 1.11.
A weighted-average grade on a section is normally

projected to a volume extending halfway to adjoining
sections. Figure 1.12 clearly demonstrates how the
irregularity of the ore–waste contact can influence
mineral inventory; as a rule, grade is overestimated
because an unknown quantity of waste is included in
the interpreted ore. Moreover, an unknown amount
of ore is lost to waste (i.e., some ore-grade mate-
rial is outside the designed mining limits). The great
strengths of the method of sections are the strong ge-
ologic control that can be imposed and the fact that
it is a natural evolution from the plans and sections
that are a standard industry approach to viewing and
interpreting detailed mineral deposit data.

1.5.2: Polygonal Methods

Polygonal methods include a number of different ap-
proaches to the use of limited amounts of data to esti-
mate individual polygonal volumes that have been de-
fined geometrically in one of several ways. In the case
of polygonal methods in which there is no smoothing
of the raw data, a single sample grade is assigned as
the mean grade of a large block (polygonal prism) of
ore or waste (Figs. 1.11 and 1.13). Procedures are de-
scribed byAnnels (1991) and Stone andDunn (1994),
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Figure 1.13: Details of the construction of a polygonal area
to which a single contained grade is applied (i.e., the con-
tained sample grade is extended to the polygon). Circles
are data points; dashed lines join adjacent data points
and form Delaunay triangles; thick lines defining a poly-
gon (Voronoi tesselations) are perpendicular to the dashed
lines and divide the dashed lines into two equal segments.

among others. On a two-dimensional projection of a
deposit or a bench showing sample locations, poly-
gons are defined in several ways, one of the more
common being by a series of perpendicular bisectors
of lines joining sample locations (see Fig. 1.13). This
procedure is equivalent to a process known asVoronoi
tesselation. Each polygon contains a single sample
location and every other point in the polygon is nearer
to the contained datum than to any external datum.
There are arbitrary decisions that must be made as to
how marginal prisms are bounded at their outer edge.
The third dimension, the “height” of the polygonal
prism, represents the thickness of the deposit or bench
and is perpendicular to the projection plane. This pro-
cess leads to a pattern of polygonal prisms that are as-
signed the grade of the contained datum. The method
is simple, rapid, and declusters the data automatically.
Other methods of determining individual polygonal
prisms can result in data not being located optimally
within prisms. For example, if a square grid is su-
perimposed on a two-dimensional data field for one
bench, each “square” might be estimated by the grade

of the nearest data value; this variation of the polygo-
nal method is termed the nearest neighbor estimation
procedure.

Previous reference has been made to the regular-
ization of grades (decrease in variability) as the sup-
port (volume) increases (see Fig. 1.8). A corollary of
this is that on average, the use of raw sample grades
for mean grades of large volumes overestimates the
grade of high-grade blocks (see Fig. 1.2) and, cor-
respondingly, underestimates the grade of low-grade
blocks (e.g., a conditional bias, in which the bias is
dependent on the grade estimated). Royle (1979) dis-
cusses the factors that affect the magnitude of such
bias in polygonal estimates, including variance of the
data, the nugget effect, and the range of influence of
samples. This bias is a particularly serious problem in
cases in which cutoff grades are above the mean value
of the grade distribution because strong biases toward
overestimation of both “high”-grade tonnage and, par-
ticularly, average grade above cutoff, can arise, as il-
lustrated in the grade-tonnage curve of Fig. 1.14. A
further problemwith polygonalmethods is that spatial
anisotropies in the grade distribution generally are not
taken into account. In addition, margins of deposits
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Figure 1.14: The magnitude of errors possible in applying
a polygonal method to resource/reserve estimation (after
Royle, 1979). Polygonal estimates (dashed lines) presented
as “grade tonnage” (number of blocks replaces tonnage) for
comparison with actual data (solid lines). Tonnage curves
slope downward to the right; average grade curves slope
downward to the left.
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are generally knownby relativelywidely spaced assay
information; hence, individual assays might be as-
signed to extremely large volumes of mineralized
rock. Clearly, such a block array can be far from
regular.

1.5.3: Method of Triangles

A triangular variation of the polygonal approach
(Fig. 1.11) is more conservative than the assignment
of single values to large blocks; triangular prisms are
defined on a two-dimensional projection (e.g., bench
plan) by joining three sample sites such that the result-
ing triangle contains no internal sample sites. The con-
struction of the triangles may use “Delaunay trianglu-
lation,” the precursor to Voronoi tesselation (Section
1.2.11). The average of the three values at the apices of
a triangle is assigned to the triangular prism (block).
The principal advantage is that some smoothing is in-
corporated in the estimates of individual prisms; thus,
estimation of the tail of the grade density distribution
is more conservative than is the case with the tradi-
tional polygonal approach. Problemswith the triangu-
lar method are (1) the smoothing is entirely empirical,
(2) theweighting (equalweightingof three samples) is
arbitrary and thus is not optimal other than coinciden-
tally, (3) anisotropies are not considered, and (4) the
units estimated do not form a regular block array.

1.5.4: Inverse Distance Weighting Methods

Inverse distance weighting methods generally are ap-
plied to a regular three-dimensional block array su-
perimposed on a deposit; each block is estimated in-
dependently from a group of nearby data selected on
the basis of distance criteria relative to the point or
block being estimated and the amount of data desired
for an individual estimate. Inverse distance methods
must be done such that weights sum to one or the
method is biased and therefore unacceptable. Thus,
weights are defined as follows:

wi = (
1/dx

i

)/ [∑ (
1/dx

i

)]
(1.4)

where x is an arbitrary power. In the coincidental sit-

uation that di = 0 the inverse weighting method the-
oretically (but not necessarily in practice) defaults to
a polygonal estimate, i.e., wi = 1 for di = 0. In fact,
where data are roughly centrally located in individual
blocks to be estimated, the inverse distance estima-
tor more closely approaches a polygonal estimate as
the power x (of 1/dx ) increases. The choice of x is
subjective and is commonly 1, 2, or 3 but can also be
an intermediate value. In practice, anisotropies are not
necessarily taken into account, although it is relatively
easy to do so by coordinate transforms and greatly
improves confidence in the quality of estimates. Such
techniques as quadrant (or octant) search can also op-
timize the spatial distribution of data used to make a
block or point estimate. Inverse distance weighting
estimation procedures, although subjective, remain
popular; they have been found in many cases to pro-
duce results that are relatively close to geostatistical
estimates obtained by ordinary kriging. IDW meth-
ods tailored to deposits give estimates that compare
wellwith production for very large blocks or volumes,
a not surprising result where an abundance of evenly
distributed data is available.An example of the inverse
distance weighting procedure based on hypothetical
data is given in Figure 1.15 and data are summarized
in Table 1.7. In this example, a search radius is shown
centered on a blockB, to be estimated.Weights for the
sampleswithin the search radius for 1/d, 1/d2, and 1/d3

are listed in Table 1.7 along with the corresponding
estimates. Note that all the estimates assume isotropy
(uniform weighting in all directions for a particular
distance); this assumption is a potential weakness to
the method as is the uncertainty as to which power
of d to select. Note that the block estimate for a par-
ticular power of d will be the same regardless of the
block size (e.g., B and B′ in Figure 1.17). This is
equivalent to the fact that exactly the same procedure
is used in practice to make point estimates (e.g., the
block centre) as block estimates. A nearest neighbour
estimate (equivalent to a polygonal estimate) for the
block gives 0.90 percent grade, about a 17 percent in-
crease relative to the ISD estimate. As an indication
of the arbitrariness of the procedure, one might well
ask, “Which is correct?” or even, “Why not select 1/d
or 1/d3 as the weighting procedure?”
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Figure 1.15: Illustration of block estimation using the method of inverse distance weighting (IDW) with hypothetical data
(after O’Brian and Weiss, 1968). This is a common method of point interpolation (i.e., the central point of the blocks) but
is used routinely for block estimation (e.g., B or B′). (Refer to Table 1.7.) Note that a given data array produces the same
block estimate regardless of block shape and/or size.

In some definitions of inverse distance weighting
(IDW) methods, in which a data value happens to co-
incide with the center of the block being estimated,
that data value is assigned to the block (Fig. 1.15). This
procedure avoids a zero divisor, but is a default to the
polygonal method and does not take into account the
presence of additional data or the magnitude of error
inherent in a single value. Moreover, with highly reg-
ular grids of data, it is possible to contrive data geome-
tries that give inconsistent results depending on how
block estimation is conducted, as shown in Fig. 1.16.
Estimation of the large square block by any isotropic
distance weighting procedure gives equal weight to
all samples and produces an estimated value of 63 per-
cent. If the block is split into two rectangles along yy′;
each rectangle is estimated at 60 percent by the value
at the center, and the two blocks combine to provide
a 60 percent estimate for the large block (clearly, this
is wrong). Similarly, if the large block is divided into
two rectangles along xx′, each rectangle is estimated

at 66 percent, giving a large block estimate of 66 per-
cent (also clearly wrong). This example demonstrates
the inconsistency inherent in IDWmethods. These er-
rors emerge in cases in which a point or block center
being estimated coincides with a data point, probably
a fairly rare situation in which grids are not regu-
lar, but they can arise commonly in cases in which
regular grids exist or data coordinates are rounded
to very few significant figures. This problem can be
avoided by assigning a nonzero, arbitrary distance
to all samples that are very close (e.g., within one-
quarter to one-half the block dimension) to the block
center.

1.5.5: Contouring Methods

Contouring methods of reserve/resource estimation
generally depend on estimation of a regular grid of
points by some type of interpolation procedure (e.g.,
one of the traditional estimation methods described



M INERA L I N V EN TORY : AN OV ERV I EW 21

Table 1.7 Grades, distance, and weights used for the inverse squared distance block estimate of Fig. 1.15a

Sample Cooper (%) db 1/d 1/d2 1/d3

G1 0.4 360
G2 0.5 200 0.005 0.000025 0.125 × 10-6
G3 0.6 290
G4 0.9 100 0.01 0.0001 1.0 × 10-6
G5 1.0 275
G6 0.5 200 0.005 0.000025 0.125 × 10-6
G7 1.0 250 0.004 0.000016 0.064 × 10-6
G8 0.8 320
G9 0.7 150 0.0067 0.000044 0.195 × 10-6

Sum 0.0307 0.00021 1.609 ××××××××× 10-6
bEstimated block grade 0.74 0.77 0.81

a Nearest-neighbor grade estimate = 0.9; local average (five nearest grades) = 0.72.
b Distance to block center.

previously) followed by contouring of the data. Con-
touring is normally invoked to avoid the jagged and
commonly artificial ore/waste boundary that arises in
estimating blocks. In addition, contouring is concep-
tually simple, at least superficially. In cases in which

y

xx'

y'

A1

A4

A3

A2

Figure 1.16: Example from David and Blais (1968) indicat-
ing inconsistent grade estimates of a large panel depend-
ing on the way in which an inverse distance weighting es-
timate is obtained. A1 =A3 =66% Fe; A2 =A4 = 60% Fe.
Values are equidistant from the panel center. If the large
square panel is estimated directly, all values have equal
weight because all data are equidistant from the block cen-
ter (mean = 63% Fe). If the square block is divided horizon-
tally into smaller rectangular blocks, each rectangular block
is estimated at 66 percent Fe, as is the larger square panel.
If the panel is divided vertically into rectangular blocks,
each rectangular block is estimated at 60 percent Fe, as is
the large square panel. Arbitrary decisions regarding block
geometry control the panel estimate with no change in avail-
able data.

data are abundant (e.g., in the case of closely spaced
blastholes in open-pit mining), they commonly are
contoured directly without the intermediate stage of
grid interpolation (e.g., manual contouring). In gen-
eral, users should understand the rules that are the
basis of an automatic contouring procedure to be used
for estimation purposes. How are outliers treated?
How are contours controlled at the margin of the
field? What are the minimum and maximum data
used for grid interpolation, and how are they selected?
Automatic contouring procedures do not necessarily
honor the data in detail because they commonly con-
tain routines to produce “aesthetic” smoothed con-
tours. An example of blasthole contouring is illus-
trated in Fig. 1.17. Grade and tonnage estimates by
this method require that average grades (gi ) and vol-
umes (vi ) between specifiedgrade intervals (contours)
be determined. Then, the average grade (gp) of a large
panel (panel volume = ∑

vi ) can be estimated as
follows:

gp =
∑

(givi )
/ ∑

vI .

As an estimation procedure, contouring of grades
commonly is applied to control of grades in open
pit mines (e.g., Fig. 1.17) where the controlling data
are blasthole assays. Even in this situation involv-
ing a relatively high density of data, the method can
lead to errors because the procedure corresponds to
a variable, local smoothing of polygonal estimates.
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Figure 1.17: Contoured diagram of a subset of Cu grades from 30-ft blastholes for one level, Similkameen porphyry copper
deposit, Princeton, B.C., illustrating the use of a contoured cutoff grade to define an ore/waste surface for mine planning
purposes. Black dots are blasthole locations, mine coordinates are in feet (original mine units), contours are weight percent
Cu. Cutoff grade (minimum contour) is 0.2 percent Cu; other contours are 0.3 percent Cu and 0.4 percent Cu. Contouring
is based on a regular, interpolated grid with unit cell 29 × 29 ft2; grid values were interpolated using 1/d2 and the nearest
16 data values.

Moreover, the method is commonly applied in two
dimensions (i.e., using data from a single bench of
an open pit operation), and thus, does not take advan-
tage of data from the overlying bench. In addition,
grid interpolation methods are commonly isotropic;
hence, anisotropic (directional) geologic controls on
mineralization might not be taken into account.

1.5.6: Commentary

Many variations on these traditional methods have
been developed; in fact, most applications involve
modifications to deal with peculiarities of a specific
deposit, or that reflect an estimator’s background. For
example, Raymond (1979) found that an IDW of the
form 1/(d3 + k) and judicious choice of the constant
k closely approximate kriged block estimates. The ore
zoningmethod (Ranta et al., 1984) used by the Climax
Molybdenum staff for many prophyry-type molybde-

num deposits is a particular variation of the method of
sections (plans) adapted to large deposits with grada-
tional margins. Various mineral inventory estimation
procedures have been attempted but are not widely
accepted, including a variety of multiple regres-
sion or trend analysis methods (cf. Agterberg, 1974;
Fustos, 1982; Phillips, 1968); suchmethods have been
ignored here.

The emphasis used has not been to describe in de-
tail the detailed methodologies of the traditional ap-
proaches to mineral inventory estimation, but rather
has been to document their general characteristics and
some of their weaknesses. This should be construed
as a demonstration of the need for a more theoret-
ically based procedure for mineral inventory deter-
mination rather than an implication that the empir-
ical methods are entirely unsatisfactory. Moreover,
it has been the authors’ experience that mineral in-
ventory is done most usefully by more than a single
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method, and that a reconciliation of results by two or
more methods is an important contributor to obtain-
ing greater confidence in the results that are adopted.
Detailed discussions of established traditional ap-
proaches tomineral inventory estimation are provided
by Annels (1991) and Stone and Dunn (1994), among
others.

Careful application of geostatistical procedures
can minimize many or all of the problems inherent
in subjective approaches to mineral inventory esti-
mation because geostatistics has a rational theoret-
ical basis for mine valuation. The recognition that
data variations are due partly to a structured compo-
nent (autocorrelation) and partly to a random com-
ponent (nugget effect) is fundamental to the theory
and implicit in the methodologies of geostatistics.
The autocorrelation characteristics for various value
measures (regionalized variables) can be determined
specifically for a particular deposit or part of a deposit
rather than depending on qualitative and subjective
guesses. This autocorrelation can be expressed by an
average mathematical function (model) that quanti-
fies value continuity and the “average structure” of a
deposit. This quantification of value continuity is the
basis of geostatistical methods discussed in subse-
quent chapters.

Geostatistical applications in the English-
speaking world are now well entrenched but were
slow to develop through a general avoidance because
of mathematical complexity, a limited literature in
English, and the fact that geostatistics was viewed
as a research tool rather than an applied tool. Now,
however, the theory is well disseminated, a variety of
texts are readily available, and many mining practi-
tioners have been educated in both specific practical
implementations and the broad potential applications
of geostatistical methodologies; in particular, there
are increasing numbers of case histories being
reported in the scientific and technical literature.
Specific features inherent in geostatistical methods
are quantification of the area of influence of samples,
consideration of the clustered nature of data used in an
estimation, and variable support of samples relative
to the size of blocks to be estimated (cf. Matheron,
1967).

1.6: MINE REVENUES

Superficially, mine revenues might not be viewed
as directly influencing mineral inventory estimation.
However, the selling arrangements for metal concen-
trates to smelters include important specifications that
can determine what is or is not ore. The presence of
deleterious minerals, for example, might override a
grade that otherwise would be classed as ore, and
thus has an impact on grade, tonnage, and various
aspects of mine planning (cf. Goldie and Tredger,
1991).

Ore is defined in terms of expected profit based
on mine revenues less expected costs (see Section
1.3.2). Operating costs are subject to a wide range
of technical controls that are not necessarily well es-
tablished at the time resources/reserves are being es-
timated, but such costs can be defined in cases in
which operations are in progress under similar con-
ditions and with similar equipment. Expected rev-
enues, however, are a function of grade estimates and
metal prices, and the implications of these two pa-
rameters warrant consideration. Some indication of
the importance of metal prices in the optimizing of
cutoff grade has been indicated (see Section 1.3.2 and
Fig. 1.4).

Mine revenues generally depend on the sale of
metal concentrates through a smelter contract, which
is a short-term, binding, legal agreement between
mine and smelter, commonly lasting one to five years.
As in most legal agreements, all items of importance
are defined and an effort is made to have every likely
circumstance considered. The major points covered
by smelter contracts are listed in Table 1.8.

Detailed specifications for concentrates can result
in the imposition of operational constraints to mining
that affect operating profit (e.g., the need for blend-
ing of high-Fe and low-Fe sphalerite to maintain an
acceptably low Fe content to a Zn concentrate). In
some parts of a mineral deposit, deleterious minerals
(defined in a smelter contract) may be so abundant
as to classify some blocks as waste, even though the
average metal content is above cutoff grade.

In estimating costs for a shipment of concen-
trates, the items listed in Table 1.9 must be quantified,
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Table 1.8 Principal topics dealt with in a smelter
contract for the purchase of metal concentrates

Commodity market or publication that determines prices to
be used

Date and time for period for fixing the price
Currency used for price determination and payment
Method and time of payment
Weights and measures used and any abbreviations
Approximate contents of the concentrates
Estimated production and amount of notice for increase/
decrease

Regularity of shipments and identification by lot/car
Types of rail car/vessel acceptable for shipment
Title, risk, and insurance in transit
Weighting and sampling procedures
Limits of error and umpire laboratories
Metals paid for and deductions
Smelting charges for wet concentrates
Metal price escalation/deescalation clause
Penalties for impurities
Added costs for smelter environmental controls
Added costs for labor, fuel, and electricity
Force majeure for both mine and smelter
Means and requirements for communications between parties
Assignment of contract to successive owners of mine and
smelter

Country/province where disputes will be settled

and distinction between wet and dry concentrates is
essential. In estimating revenues, a reasonable price
for all the payable metals must be assumed. Adjust-
ments are made to later revenue estimates to account
for differences in assumed and received prices. De-
ductions from the payable metals must be included,
followed by any penalties for impurities.

To estimate the revenue for a given grade of ma-
terial in situ, mill recoveries must also be estimated
for a given head grade. At least two types of model
are available for this study. If the mine is in operation,
recovery, head grade, and tail grade can be plotted
together and any relation shown. Commonly, in prac-
tice, a constant tailing grade is assumed, giving an
apparent increased recovery when head grades im-
prove; such assumptions are dangerous and can lead
to milling losses going unrecognized. Alternatively,
tailing grademay be a function of head grade, perhaps

Table 1.9 Factors to be quantified in estimating
costs related to shipment of concentrates

Road freight
Rail freight
Ocean freight
Loading and wharfage
Shipping representative
Insurance
Treatment
Refining
Marketing
Duty
Sales commission
Other items

with a complicated relation that must be validated by
the graphing of daily grades and recoveries.

Using such information, the net smelter return
for rock in the ground can be estimated with sim-
ple formulae (Table 1.10) that give revenue per ton of
rock after smelting and distribution costs have been
accounted for, but prior to deduction of mining and
milling costs. Hence, operating profit can be obtained
by subtracting operating costs. Commonly, the loca-
tion and grade of impurities must be known so that
blending systems can be designed to keep an impurity
level below the penalty level. If this is not possible,
the penaltymust be included in the formula. Formulae
can be applied to a range of metal prices, or the metal
price can be included in a more complex relation. An
example for a copper–molybdenumoperation is given
in Table 1.10.

Recent arguments have been presented (Goldie
and Tredger, 1991; Goldie, 1996) for the use of net
smelter returns (NSR) as a variable of merit in the
early evaluation stages of a mineral deposit, partic-
ularly in cases in which more than one commodity
contributes to the value. Such a procedure is useful
because it requires early consideration of many tech-
nical matters related to mining and metal recovery,
although general assumptions in this regard might
be necessary. Clearly, the use of NSR as a value
measure for estimation purposes should not preclude
detailed consideration of the more fundamental un-
derlying grade values. Nevertheless, NSR has merit
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Table 1.10 Sample calculations of recovered grade and dollar value formulae for ore milled for a producing
mine (in Canadian dollars)a

Costs ($C 1,000) of operation for the time period and cost per ton

Item Total cost Cost/ton

Milling $11,741 $2.156

Plant and administration 3,764 0.691

Ore mining 4,780 0.878

Waste mining 3,485 0.640

Nonoperating 1,967 0.361

Interest on long-term debt 3,325 0.610

Total $29,062 $5.336

Grade mined and smelter and distribution (S&D) costsb

Metal Copper Molybdenum

Head grade 0.143 0.031

Tail grade 0.023 0.004

(Head–tail) 0.11987 0.02634

Tons milled 5,446,596 —

Tons metal 6,528.98 1,434.87

S&D cost (C$1,000) 5,095,504 161,337

S&D/ton metal $780.44 $112.44

Revenue formulae after S&D costs and tailing lossesc

Copper

Gold addition @ C$500/troy oz, 0.01234 g/ton milled

= 500 × 0.03215 × 0.01234 × 5,446,596
6,528.98

= C$165.48/ton Cu metal

Silver addition @ C$14/troy oz, 0.6911 g/ton milled

= 14 × 0.03215 × 0.6911 × 5,446,596
6,528.98

= C$4,259.49/ton Cu metal

Total Cu revenue = 1.00 × 2,204.62 + 165.48 + 259.49

= C$2,629.59/ton Cu metal

Revenue formulae = net copper revenue − net tailing loss

= % Cu × (2,659.59−780.44)
100 − 0.023 × (2,629.49−780.44)

100

= $C (% Cu) × 18.49 − 0.425/ton milled

Molybdenum

Total Mo revenue = 5.00 2,204.62

= C$11,023.10/ton Mo metal

Revenue formulae = net molybdenum revenue – net tailing loss

= % Mo × (11,023.10−168.66)
100 − 0.004 × (11,023.10−168.66)

100

= C$ (% Mo) × 108.54 − 0.434/ton milled

Total revenue for both metals = C$ (% Cu) × 18.49 + (% Mo) × 108.54 − 0.859

(continued)
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Table 1.10 (continued)

Grades required to cover costsd

Unit Cumulativee

Item % Cu % Mo % Cu % Mo

Milling 0.071 0.016 0.071 0.016

Plant and administration 0.016 0.003 0.087 0.019

Ore mining 0.020 0.006 0.107 0.025 Range of possible cutoff grades

Waste mining 0.015 0.002 0.122 0.027

Nonoperating 0.009 0.002 0.131 0.029

Interest on long-term debt 0.014 0.003 0.145 0.032

Total 0.145 0.032 — —

Trial of the revenue formulas using actual grades and tons milled f

Head grade, 0.143% Cu and 0.031% Mo; 5,446,596 tons milled

Revenue with C$1 Cu and C$5 Mo per pound

Revenue per ton (C$) = 0.143 × 18.49 + 0.031 × 108.54 − 0.859

= 2.644 + 3.365 − 0.859

= 5.150

Total revenue (C$) = 5,446,596 × 5.150

= 28,050,000

a Necessary information is taken from the mine operating accounts for a specific period of time, such as the previous
six months, and is continually updated to ensure the formulae and results developed are current. Assumptions such as
the ratio of metals in the ore and the stripping ratio are made based on the best information available at the time. Tons
milled for the time period: 5,446,596.

b Note that there is always a very small amount of one metal in the other concentrate. If this small amount is not payable,
then it must be included on a weighted average basis in the tailing grade. There are also other payable metals such as
gold or silver that may be too small to detect or too costly to assay in the ore sampling procedure. The recovered
precious metals per ton of ore are then assumed to be constant values for a production period, but can change
depending on depth and location of mining.

c Assume the expected metal price, here copper and molybdenum, are estimated at C$1.00 and C$5.00 per pound,
respectively.

d The ratio of copper to molybdenum in the ore mined is assumed to be 4.5:1 Cu:Mo, and changes with mining location
and relative metal prices. The stripping ratio is assumed to be 0.73:1 waste:ore, and also changes with mining location,
costs, and metal prices.

e Working down the column, the cutoff grade could be as low as 0.107 percent Cu and 0.025 percent Mo if it is assumed
that the material would be drilled, blasted, and loaded into the truck regardless. The cutoff could also be as high as
0.145 percent Cu and 0.032 percent Mo if all costs to the mine are included.

f The formula must balance with the mine operating accounts, and is most sensitive to metal prices and head grades.

because of the inherent economic implications and is
particularly useful in cases in which the less desir-
able method of “equivalent” grades has been used for
estimation purposes.

1.7: MINING SOFTWARE – APPLICATIONS

Computers are an essential tool in conductingmineral
inventory studies (e.g., Blackwell and Sinclair, 1993;

Champigny and Grimley, 1990; Gibbs, 1990) and a
substantial amount of software exists that has been
designed particularly for use in the mining industry.
Applying this mining software requires that data be
organized appropriately for efficient creation of com-
puter files, preferably as early as possible in the long,
ongoing saga of generating information for explo-
ration and evaluation purposes. Such organization and
input is extremely labor intensive, time that is more
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Table 1.11 Listing of some of the principal
applications of computers in relation to mineral
inventory estimation

A wide range of data evaluation procedures
Determining data quality and sampling protocols
Three-dimensional visualization of complex geologic features
and data distribution

Three-dimensional solid modeling of mineral deposits
Preparation of plans and vertical sections
Contoured plots of grade and other variables
Variography (quantifying grade continuity)
Block modeling of a deposit
Rapid calculation of reserves
Evaluating effects of various mining methods
The ready determination of economic feasibility

than made up by the relative speed with which nu-
merous applications can be implemented and updates
obtained, and the ability to evaluate different deci-
sion scenarios rapidly. Applications include a wide
range of topics such as those listed in Table 1.11.
To attempt mineral inventory studies without the ad-
vantage of computing facilities is to promote grave
inefficiencies and, more importantly, to be unable to
undertake some procedures that are a routine part of
modern mineral inventory practice but that are too
complicated to be done manually.

Available software can be classed as public
domain and commercial. In general, public domain
software is free or extremely inexpensive and includes
full source code; of course, it generally comes with
no guarantees or technical support. Such software is
generally available from universities, government or-
ganizations, textbooks, the scientific and technical lit-
erature, and various user groups accessible through
the Internet. Commercial software, although more
costly, generally comeswith anup-to-date user’sman-
ual and a technical support system from the vendor,
and source code is generally proprietary. The software
packages are commonly “integrated” in the sense that
they are available in modules that offer a wide range
of capabilities such as those listed in Table 1.11.

The greatest weakness of much of the available
software is that methodologies are not described in
sufficient detail to allow a user to understand how

decisions and estimates are made by the software.
Some questions include the following: How are data
selected for contouring or block estimation? What
interpolation procedure is used for contouring? Are
contour intervals selected arbitrarily, or can they be
designated? What mathematical models are “hidden”
in software? Users must become more aware that an
understanding of the procedures and decision-making
rules implemented in software is essential for its cor-
rect and effective use.

As Champigny and Grimley (1990) conclude

Orebodies are dynamic entities prone to signifi-
cant changes through time asmetal prices fluctu-
ate and mining technology evolves. The magni-
tude of these changes canbe efficiently examined
through the use of computer-based ore reserve
approaches. The application of computers for
grade control typically improves the accuracy
of estimates of mining units, which ultimately
results in higher quantities and/or quality of ore
recovered.These benefits . . . arefinally being ac-
knowledged. (p. 77)

1.8: PRACTICAL CONSIDERATIONS

1. Each specific mineral inventory estimation is a
problem that must be cast in its true mining con-
text. Possible (even alternative) operating scenar-
ios must be designed as a basis for a quantita-
tive evaluation. There is no point to considering a
totally unrealistic scenario.

2. It is essential to understand thoroughly the ter-
minology in use in the mineral industry. Conse-
quently, the ramifications and ambiguities of def-
initions are a necessary basis for embarking on
a mineral inventory estimation. A range of tra-
ditional use exists for such terms as ore, cutoff
grade, continuity, reserves/resources, and others,
and the implications of using these terms must
be appreciated. In particular cases, it is wise to
provide specific definitions of terms so that no
ambiguities arise.

3. Samples for assay generally constitute about
0.000001 of the volume of a mineral deposit for
which a mineral inventory is being estimated.



28 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

Consequently, errors are to be expected and
should beminimized asmuch as is feasible.Main-
taining high-quality data and estimates requires
close attention to sampling and analytical and es-
timation procedures as well as appropriate inte-
gration of a confident geologic model into the es-
timation process.

4. The sequential nature of resource/reserve estima-
tion must be appreciated. Information is obtained
in a stagedmanner, and new information becomes
available intermittently. Plans should be made in
advance as to how this sequential gain in infor-
mation is taken into account and at what intervals
entirely new estimates of mineral inventory are
made.

5. Mineral inventory estimation is a highly struc-
tured undertaking. Reference to the various com-
ponents of this structure – for example, geologic
modeling, documentation of data quality, and data
evaluation – imposes a high level of rigor into the
exercise of estimation.

6. Strengths and weaknesses of individual proce-
dures for mineral inventory estimation must be
understood thoroughly as a basis for determin-
ing appropriate methods for each particular esti-
mation project. Choice of an appropriate method
of obtaining resource/reserve estimates is closely
linked to the geologic characteristics of a deposit,
as will become apparent, and the decision to use
a particular method must be justified in terms of
geology.

7. The procedure used in a mineral inventory esti-
mation must be documented. It is not sufficient
to use such terms as polygonal, method of sec-
tions, inverse distance weighting, and so on with-
out providing more detailed information on pro-
cedures used in implementing a general method.
Each method involves some arbitrary or subjec-
tive decisions that should be summarized.

8. Computers are an essential component of mod-
ern mineral inventory estimation. There is a need
to understand the advantages and limitations of
available software and a need for facility in us-
ing the software to provide the necessary infor-
mation at various stages in estimating a mineral
inventory. It is not sufficient simply to provide

listings of mineral inventory estimates; it is essen-
tial to verify results with various graphic outputs
(sections, plans) for comparisons with geologic
information and as a means of contrasting various
types of estimates.

9. The technical complexity and financial enormity
of many active and proposed mining ventures and
related mineral inventory estimates cannot be ap-
preciated fully without the detailed understanding
that comes from visits to the site.
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1.10: EXERCISES

1. In mine development and in producing mines, it
is common practice to stockpile material that is
below cutoff grade but above some other arbi-
trary lower threshold. For example, in a porphyry
copper deposit with a cutoff grade of 0.35% Cu,
material in the range 0.25–0.35% Cu might be
stored for subsequent easy retrieval. Explain why
this “low-grade stockpile”materialmight, at some
future date, be fed through the mill.
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2. (a) Estimate an optimal cutoff grade for the
grade–tonnage scenario summarized in Table
1.2 using 90percent recovery and ametal price
of $1.00 per unit. Note that the tabulation is
based on short tons of 2,000 lbs. The calcula-
tions should be tabulated as in Table 1.3.

(b) Estimate an optimal cutoff grade for the
grade–tonnage scenario summarized in Table
1.2 using mining costs of $0.84/ton and other
parameters as in question 2(a). The results
should be tabulated as in Table 1.3.

(c) Compare the results of question 2(a) with the
results of question 2(b). The combined sce-
nario of questions 2(a) and 2(b) can be com-
pared by estimating a cash flow using the
revenue data determined in question 2(a) and
the operating costs calculated in question 2(b).
Suggestion: These questions are dealt with
conveniently using a spreadsheet.

3. Construct a close-spaced regular grid (e.g., 1 ×
1 mm2 cell) on transparent paper (e.g., photocopy
appropriate graph paper onto a transparency). Use
the grid to estimate in two dimensions the effect
that dilution will have in reducing the grade of
mined material relative to the expected grade in
the hypothetical example of Fig. 1.12. Confine
your estimate to the area between the two drill
holes. Assume average grades of 1.0%Ni for drill
hole No. 1, 1.5% Ni for drill hole No. 2, and
0.2% Ni for the diluting material. Assume further
that mining will be constrained exactly between
the dashed lines of Fig. 1.12. Estimate relative
areas by counting squares with the transparent
grid and use relative areas as weights. Using a
similar counting technique, estimate the relative
amount of ore left unmined between the two drill
holes. In place of gridded paper, this problem
could be solved using a planimeter or a digitizer
and appropriate software.

4. A stope with rectangular outline on a vertical sec-
tion has been defined on the longitudinal sec-
tion of a near-vertical gold–quartz vein cutting
basaltic rocks. Stope definition is based on 25 vein
intersections by exploratory diamond-drill holes.

The stope has a horizontal length of 24 m, a ver-
tical height of 15 m, an average thickness and
standard deviation of 2.7 ± 0.4 m, and an aver-
age grade of 19.5 g Au/t. Estimate the effect of
dilution on grade and tonnage of mined material
if the mining method overbreaks the ground by
an average of 0.4 m on both sides of the vein
and the wallrock averages (a) 0.05 g Au/t, and
(b) 5.3 g Au/t. Ignore any complications that arise
because of a minimummining width, and assume
that bulk densities of ore and wallrock are the
same.

5. Use of the polygonal approach to block estima-
tion (cf. Figs. 1.11 and 1.13) is in conflict with the
recognition that the dispersion of average grades
decreases as the volume being considered in-
creases (the support effect, see Fig. 1.8). With this
difficulty in mind, comment on the two following
situations:
(a) Continuous samples from vertical drill holes

on a square 50-m grid are used to estimate an
array of blocks, each 500 m3 (i.e., 10 × 10 ×
5 m3).

(b) Blocks to be estimated (500 m3) each con-
tain a roughly regular array of four blasthole
samples.

Constructingplans of the twoestimation scenarios
is useful.

6. Use the data of Table 1.6 and Fig. 1.9 to esti-
mate the mean grade of the large block of Fig. 1.9
and each of the “quadrant blocks” using 1/d and
1/d2 weighting schemes.Compare resultswith the
estimate interpolated from contours and comment
on the similarities or differences.

7. The data of Table 1.7 and Fig. 1.15 have been
used to determine a block estimate using 1/d2 as
the weighting procedure.
(a) Calculate the estimated block grade using

a weighting factor of 1/d and again with a
weighting factor 1/d3.

(b) Compare results with those given in Table 1.5
and the nearest neighbor estimate. Comment
on any systematic pattern to the variation in
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estimated grades as a function of change in
the power, x, of the weighting factor (1/dx ).

8. Construct graphs of distance, d (abscissa), versus
1/d, 1/d2, 1/d3, and 1/d4 for 0< d < 200. Assum-
ing a case of three samples with distances from a
point (block) to be estimated of 10, 50, and 150
units, comment on the relative importance of the
data with d = 10.

9. A press release by a mineral exploration com-
pany contained the following statement regard-
ing a mineral occurrence in a remote part of
South America: “An immediate drilling pro-
gram is planned to expand the existing re-
serves of 5,132,306 tons of ore grading .07 oz/t
gold 6.9 oz/t silver, which is open in all direc-
tions.” Discuss the content of this statement in
detail.



2
Geologic Control of Mineral

Inventory Estimation

. . . computation formed only part, and perhaps not the most important part, of ore reserve estimation; . . . the
estimate in situ should be seen primarily as a facet of ore geology. (King et al., 1985, p. 1)

Chapter 2 is concerned with the impact of geo-
logy on mineral inventory estimation. For the
purposes of this book, geology is considered un-
der an arbitrary classification of topics: geologic
mapping in and near a mineral deposit, three-
dimensional geometry of mineralized zones, ore
deposit models, and continuity and mineralogy
of ore and waste. These divisions are arbitrary
and the topics overlap considerably. Continuity
is a term of sufficient import to warrant a sep-
arate chapter (Chapter 3). Emphasis throughout
this discussion is on the need to document as-
pects of geology that are important in making
decisions related to resource/reserve estimation.

2.1: INTRODUCTION

Understanding the geologic character of amineral de-
posit as thoroughly as possible is an essential base
on which to build an estimate of mineral inven-
tory. Several recent reports on the classification of
resources/reserves contain reference to “exploration
information” (e.g., Anonymous, 1994), that is, the
source information that contributes to an understand-
ing of the geology in and around a mineral deposit.
That information normally is obtained in a structured
and sequential fashion, beginning with several work-

ing hypotheses about the true geology (Chamberlain,
1965) that become fewer and more refined as the in-
formation base increases. A general idea of the nature
of exploration information and the systematic manner
in which it is obtained during detailed property explo-
ration and evaluation is given in Table 1.1.

The term geology encompasses much of what is
generally envisaged by the term earth sciences, in-
cluding such traditional specialties as mineralogy,
petrology, structural geology, stratigraphy, geochem-
istry, hydrogeology, economic geology, and so on.
Geology affects the estimation procedure in a variety
of ways that can be considered under several general
and overlapping topics, as follows:

(i) Geologic mapping and general geologic history
(ii) Three-dimensional (geometric) modeling
(iii) Ore deposit (genetic) models
(iv) Mineralogic attributes
(v) Continuity.

The first four topics all contribute to the fifth –
continuity. The concept of geologic continuity is com-
monly confused with an understanding of the conti-
nuity of grade; both warrant special attention. The
impact of all five categories of geologic information
on mineral inventory estimation is summarized here
and in Chapter 3.

In general, geologic interpretations are contin-
ually evolving components of mineral inventory

31



32 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

studies (e.g., Sinclair and Vallée, 1993; Vallée and
Cote, 1992). Any arbitrary procedure by the estima-
tor that minimizes or neglects systematic upgrading
of geologic concepts as new information is gained
should be avoided or viewed with reasonable scep-
ticism. In particular, “hidden assumptions” incorpo-
rated in geologic modeling, including automated pro-
cedures of geologic interpolation, should be reviewed
periodically.

2.2: GEOLOGIC MAPPING

“Geologicalmaps are used in planning future ex-
ploration, directing development work and coor-
dinating stoping” (Faddies et al., 1982, p. 43).

Factual geologic information is the base from which
a three-dimensional image of a mineral deposit is de-
veloped. As a rule, this information is obtained from
surface rock exposures, trenches, drill core or cut-
tings, and underground workings. These sources pro-
vide direct observations of rocks and minerals, but
represent a very limited proportion of the total vol-
ume of a mineral deposit and its surroundings. Even
for a well-sampled mineral deposit, the total volume
of all samples could be about one one-millionth of
the deposit volume. Hence, a substantial interpretive
component is required in order to develop a three-
dimensional model of a mineral deposit and adjacent
rocks. This interpretive component involves the in-
terpolation of geologic features between control sites
(i.e., extensions of features between known data) and
may include some extrapolation (extension outward
fromknowndata). The interpretive process is aided by
a variety of surveys, particularly geophysical and geo-
chemical surveys that can help localize specific geo-
logic features such as faults or particular rock types,
improve confidence in the continuity of “ore,” and,
in some cases, provide improved grade estimates
relative to traditional assaying of samples (e.g.,
Calvert and Livelybrooks, 1997; Cochrane et al.,
1998; Killeen, 1997; McGaughey and Vallée, 1997;
Mwenifumbo, 1997; Wong, 1997).

Geologic information is normally recorded on
maps and cross sections at a scale appropriate to the

aims. Property geology might be mapped at a scale
of 1:5,000, whereas mineral-deposit geology might
be mapped to a scale of 1:1,000 or even more de-
tailed. The types of information that are recorded and
displayed on maps include:

(i) Rock types: Rock composition influences reac-
tivity to mineralizing solutions and controls re-
sponse to deformation. Rock types (including
mineralized ground) are one of the most fun-
damental pieces of geologic information; their
chemical and physical attributes and age rela-
tions provide the basic framework for under-
standing the geologic history of an area (e.g.,
pre-ore and post-ore dykes in Fig. 2.1).

(ii) Faulting: Faults disrupt and complicate the litho-
logic record (Figs. 2.1 and 2.2). The ages of faults
are important: premineralization faults might be
mineralized; postmineralization faultsmight dis-
rupt a primary deposit and form a boundary
across which it is inappropriate to extend grades
for block estimation purposes (Fig. 2.3).

(iii) Folding: Folding can provide ground preparation
for some types of deposits (e.g., saddle veins)
and can disrupt a preexisting mineralized zone
extensively to produce a complex geometry. In
the case of shear folding of a tabular deposit,
mineralization in the fold limbs can be greatly at-
tenuated, whereas a substantial and perhaps aug-
mented thickness can be present in the crests of
folds.

(iv) Fracture/vein density and orientation: Sites
where fractures have controlled mineralization
spatial density and evidence of preferred orien-
tation provide insight into localization of ore and
preferred directional controls (Figs. 2.1 and 2.4).

(v) Evidence of primary porosity/permeability:
Permeability for mineralizing fluids can be con-
trolled by structure [cf. (iv)] or by lithologic char-
acter (e.g., reactive carbonate beds or breccias
with substantial interconnected porosity).

(vi) Successive phases of mineralization: Many de-
posits are clearly the product of more than one
phase of mineralization. Sorting out the charac-
teristics of each phase (i.e., understanding the
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Figure 2.1: Detailed geologic plan of the open pit at Endako porphyry-type molybdenum mine, central British Columbia. Note
the different trends of principal veins from place to place in the deposit (i.e., different structural domains with gradational
boundaries) and premineral and postmineral dykes. Mineral zoning (not evident on this diagram) is emphasized by a pyrite
zone along the south margin of the pit. After Kimura et al. (1976).

paragenesis of the mineralization) and determin-
ing the extent to which various phases are super-
imposed spatially (i.e., through detailed geologic
mapping) have important implications tomineral
inventory estimation.

For most mineral deposits, much of the detailed
geologic information is obtained from logging (i.e.,
“mapping”) the drill core. Consequently, it is wise to
record such data in a systematic fashion that is easily
adapted to a computer so that the information can be
output in a variety of forms (sections, maps, correla-
tion matrices, etc.) to assist in a mineral inventory
estimation. Several systems are available commer-
cially and have the advantage of providing sensible
codes (e.g., Blanchet and Godwin, 1972) for efficient
recording of many geologic attributes, such as miner-

alogy, alteration, lithology, vein density, and so on.
In general, a clear, accurate, standardized logging
procedure is essential (cf. Atkinson and Erickson,
1984) to promote uniformity of data through what is
commonly a long data-gathering period. The general
methodology should be adapted easily for rapid entry
into computer files and should combine graphic out-
put with descriptive notes; drill-hole graphs (profiles)
should allow multiple variables to be displayed and
take advantage of such techniques as color coding of
different categories of a variable. As geologic infor-
mation and concepts evolve, circumstances are likely
to require the core be relogged. In an evaluation of
the Crandon volcanogenic massive sulphide deposit,
Rowe and Hite (1984) note that “By the time ap-
proximately 150 holes had been completed it was
determined that core relogging was necessary . . . ”
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Figure 2.2: Detailed geologic map of underground workings forming part of the Copper Queen Mine, Montana (after Ahrens,
1983). Note the complexity of the vein system and the uncertainty of interpolating the physical form of the vein between any
imagined, drill-section spacing.

(p. 14). Drilling generally produces core or rock chips
that provide direct observation of material at various
depths along the drill hole. A drill hole is a “line” in
space, the locus of which can be highly complicated
due to deflections of the drilling bit in response to
the character of the rocks intersected. Each drill hole
should be surveyed to ensure correct positioning of
samples and geologic features in space. Lahee (1952)
documents “crooked” drill holes for which the end

of hole is removed horizontally from the planned po-
sition by up to 20 percent of the hole depth. A variety
of methods are used for surveying drill-hole orienta-
tions at various depths and translating that information
into locations in three-dimensional space. Killeen and
Elliott (1997) report than modern commercial meth-
ods report errors of about 0.1 degree of dip and 1.0 de-
gree of azimuth, but oldermagnetic compass and gim-
bal measuring techniques have substantially greater
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Figure 2.3: Geology as a control on data selection for block
estimation. Black dots are sample sites, associated values
are hypothetical grades, and the dashed–diagonal line is a
fault with major strike–slip offset. Estimates of the block
grade made prior to knowledge of the fault might include a
value of 15 percent and result in a serious overestimation
of the block grade. With knowledge of the fault, the 15 per-
cent sample value can be omitted on geologic grounds (i.e.,
the fault separates two domains with very different grade
characteristics). Modified from Srivastava (1987).

errors. Clearly, a high degree of confidence in locat-
ing samples in space contributes to the quality of es-
timates of mineral inventory.

Geologic information that contributes to mine
planning (e.g., Grace, 1986) includes the following:

(i) Depth and character of overburden
(ii) Extent (thickness, strike length, depth) of min-

eralization
(iii) Nature of deposit margins (gradational, sharp,

sinuous, straight, jagged)
(iv) Character of ore continuity within separate ge-

ologic domains
(v) Drillability of rocks (strength)
(vi) Blasting characteristics
(vii) Pit-slope stability
(viii) Distribution of rock types (especially with re-

gard to internal and external dilution)
(ix) Water inflow.

Important geologic factors affecting the selection
of an underground mining method and its most

Figure 2.4: Systematic variations in the nature of struc-
tural control in “stockwork” mineralization. Two mineralized
structural directions are shown: black and shaded. From
left to right there is a decrease in the density of structures;
from top to bottom there is a gradual change as to which
of the two structural directions predominates. Both density
of structure and direction of predominant structure are ma-
pable features that can strongly affect grade continuity and
geologic interpretation. After Sinclair and Postolski (1999).

economical execution include the following:

(i) Deposit geometry
(ii) Rock types
(iii) Bedding—thickness, strike, and dip
(iv) Folding and faulting
(v) Geologic contacts
(vi) Fracture, cleavage, and hardness
(vii) Wall characteristics
(viii) Hydrology, aquifers, water quantity, tempera-

ture, pH, etc.

Geologic characteristics have an impact on mining
dilution and mining recovery. Recovery refers to the
proportion of the existing resource that is identifiable
as being available for extraction. Dilution affects both
the grade of material extracted and the amount of ma-
terial extracted.

It is clear from the foregoing that sound geology is
essential to the entire process of exploring, evaluating,



36 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

developing, and mining a mineral deposit. At any one
time, the geologic information available from direct
observations represents only a very small proportion
of the total rock volume under study, and substantial
interpretation is necessary. As increasing amounts of
geologic information are obtained, some aspects of
an earlier interpretation can change. Hence, factual
information should always be distinguished from in-
terpretations, and interpretations should be reviewed
periodically in the light of new information and
ideas.

2.3: GENERAL GEOLOGY

The geologic framework of amineral deposit is essen-
tial to both mineral exploration and mineral inventory
estimation in providing (i) an integration of mineral-
ization into the general geologic evolution of the area
and (ii) a three-dimensional (geometric) framework
for the mineral deposit. Geologic history is impor-
tant because it is essential to distinguish pre-, syn-,
and post-ore processes and to understand all geo-
logic features that might affect ore continuity – in
particular, to appreciate primary aspects of geologic
continuity (e.g., veins, strata, shear zone) in contrast
with superimposed features (folding, faulting, meta-
morphism) that commonly disrupt primary mineral-
ized zones. Geologic controls of mineralization can
be established as a product of routine and detailed
geologic mapping, as can the general character and
spatial extent of these controls. A few examples illus-
trate some simple ways in which geologic knowledge
affects mineral inventory estimation.

Consider the simple but realistic example of
Fig. 2.3, in which the average grade of a block is
to be estimated from local data at two stages of geo-
logic awareness. At an early stage of evaluation, the
presence of a fault is unknown and all surrounding
data might be incorporated into the block estimate,
resulting in a serious estimation error. Later, when
the presence of the fault is recognized, the sample
contributing excessively to estimation error (the sam-
ple located nearest the block but on the opposite side
of the fault from the block) can be ignored on geo-
logic grounds in obtaining the block estimate. In the

idealized situation pictured, the difference in the two
estimates approaches an order of magnitude.

Structural information about veins canbeobtained
from routine geologic mapping of a deposit and can
be integrated into the structural evolution of the sur-
rounding region. Figure 2.1 is a more complicated
example illustrating systematic variations in the ori-
entation of the dominant, molybdenum-bearing veins
in the Endako prophyry molybdenum deposit. The
directions of physical continuity of ore differ from
one part of the deposit to another; in particular, the
preferred strike direction is northeasterly in the east-
ern extremity, whereas in the extreme western end
the strike is roughly easterly. Projections of grades
for estimation purposes generally can be performed
over greater distances along preferred geologic direc-
tions versus across such directions. Consequently, the
recognition of preferred structural directions is useful
geologic information at an early stage of exploration
in the design of drilling (especially orientation of drill
holes) and sampling programs and can contribute to
a high-quality information base on which to build a
mineral inventory. The Endako deposit is also charac-
terized by mineralized premineral dykes and barren
postmineral dykes.

The geometry of ore and associated structures and
rock units has direct implications to mine planning,
and thus dramatically affects the problemof ore/waste
selection and its impact on mine design. Geologic in-
terpretation based on a thorough understanding of the
geologic history of an area is used to provide spa-
tial interpretations of the distribution of various rock
units. One “rock unit” is mineralized ground, which,
in general, only partly coincides with “ore,” as illus-
trated in Fig. 1.17, where a cutoff grade contour sep-
arates ore-grade material from mineralized waste.

Another very different example indicates the prac-
tical importance of recognizing whether a deposit has
been modified by metamorphism. An originally fine-
grained massive sulphide deposit might be modestly
affected by regional metamorphism, or extensively
recrystallized in a contact metamorphic aureole as-
sociated with a later intrusive body, with attendant
grain-size increase, such that mineral separation can
be done efficiently. Mineralogic mapping that defines



GEO LOG I C CON TRO L O F M I N ERA L I NV EN TOR Y E S T IMA T I ON 37

metamorphic aureoles, including textural information
of the deposit itself, is a sensible approach to this prob-
lem. An example is the Faro Camp, Yukon, where
several deformed and metamorphosed, shale-hosted
Pb–Zn deposits occur in different positions relative
to metamorphic grades such that some deposits are
more coarsly recrystallized than others.

A thorough understanding of the regional and lo-
cal geology, including details of structural, metamor-
phic, igneous, and sedimentologic history, provide the
basis for confidence in making the many geologic de-
cisions required in the more detailed physical model-
ing of a mineral deposit, which are known only from
isolated sampling points.Mineral deposits commonly
are localized in highly altered areas that have under-
gone extensive deformation or metamorphism; con-
sequently, recognition of important pre-, syn-, and
post-ore features can be complicated and difficult
to interpret without the guidance of more widely
based geologic information. Moreover, geologic in-
formation is fundamental in defining distinctive zones
within a larger mineralized volume, each zone be-
ing characterized by its own geologic features and
perhaps by its own ore continuity. There are many
examples in which the presence of several geologic
domains has been important to methodology in min-
eral inventory estimation. The BossMountain molyb-
denum deposit (Fig. 2.5) illustrates three fundamen-
tally different styles of mineralization (i.e., breccia,
stringer zone, and high-grade vein), each with differ-
ent characteristics of ore continuity. Hence, each of
the three domains should be estimated independently
of the others.

2.4: GENERAL GEOMETRY OF A
MINERALIZED/ORE ZONE

For practical purposes, the geometry of a mineralized
zone and associated rock units generally is illustrated
on a series of cross sections or plans in a systematic
fashion. Cross sections generally coincide with drill
sections (dense planes of information), but in some
cases, cross sections might be interpolated between
drill sections. Plans are constructed routinely at vari-
ous elevations by transferring interpreted information
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Figure 2.5: Cross sections of the Boss Mountain molyb-
denite mine, central British Columbia, showing three geo-
logically distinctive domains of mineralization (i.e., breccia,
stringer zone, and high-grade vein). (A) A north–south ver-
tical projection. (B) A composite of two east–west vertical
projections at 4900 N and 5300 N. Note that two brec-
cia styles are mapped, and that ore-grade mineralization
encompasses parts of both breccias. Each domain has dif-
ferent continuity characteristics and must be estimated in-
dependently of the others. Redrawn from Soregaroli and
Nelson (1976).

from sections to plans at desired elevations and then
interpolating between sections. This approach is the
norm by which data are collected and displayed, both
in routine geologic mapping and for the evaluation of
a mineral deposit. Generally, data are more concen-
trated along sections arranged perpendicular to the
principal direction of geologic continuity of the de-
posit under investigation (for example, an arrayof drill
holes along a section); such sections are commonly
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relatively widely spaced compared to data spacing
within a section. The accessibility of many computer-
based graphic display systems also provides the ready
availability of three-dimensional views, in some cases
from any desired direction. Some caution is urged in
using such graphic displays, principally because the
highly regular interpolation routines that are a part of
the software may lead to smooth interpolations that
depart substantially from reality. These highly sophis-
ticated software packages (now available for three-
dimensional modeling) are an important component
of modern capabilities in data handling and appreci-
ation. However, insight into their built-in interpola-
tion routines is important for the user because they
can oversimplify geologic contacts or domain bound-
aries. Nevertheless, such three-dimensional views are
a powerful aid to conceptualizing a mineral deposit
for purposes ofmineral inventory estimation andmine
design.

Of course, even inmanually prepared sections and
plans it is common practice for the purpose of a min-
eral inventory estimate to provide a single, very spe-
cific interpretation as if it were fact. It is important
to remember that interpretations can change signifi-
cantly even in cases in which relatively short-range
interpolations have been made in developing a three-
dimensional image of a deposit or mineral zone. Con-
sequently, on plans and sections that depict an inter-
pretation it is useful,wherever possible, to indicate the
locations of data on which the interpretation is based.
For example, to know the locations of underground
workings and drill holes that provide the data used
for interpretations provides a factual basis for evalu-
ating one aspect of the “quality” of an interpretation,
and indicates where the interpretation is most suspect.
An example, the Neves–Corvo copper–tin mine in
Portugal (Fig. 2.6; Richards and Sides, 1991) il-
lustrates the evolution in conceptual geometry as
additional geologic information is obtained during
exploration and development. In this case, as initial
underground information (Fig. 2.6b)was added to ear-
lier exploration drill information (Fig. 2.6a), a greater
structural complexity to the geometric continuity of
the upper part of the Neves–Corvo ore became ev-
ident. Along with this better local understanding of
geometric form came an improved appreciation of the
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Figure 2.6: Geologic interpretations in 1983 (a) based on
surface exploration data, and in 1986 (b) with added
underground information, compared with 1989 (c) detailed
mapping results based on extensive underground devel-
opment, Neves–Corvo copper–tin mine, Portugal. Redrawn
from Richards and Sides (1991). The conceptual model of
a mineral deposit changes in response to additions to the
geologic information obtained during exploration and devel-
opment.

nature of possible complexities in geometry at depths
where only widely spaced exploration drill data ex-
isted as a basis for interpolation. Subsequently, with
abundant underground information (Fig. 2.6c), the ore
zones are seen to be highly complex geometrically
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compared with the initial highly continuous and
simple interpretation.

Geometric definition of a mineralized volume is
controlled by knowledge of the internal character of
themineralization, a principal goal of detailed deposit
evaluation commonly referred to as delineation. Ex-
tensive sampling is required during delineation, and
geologic characteristics provide the principal control
in sampling design, including support, number, and
disposition of samples. Samples are examined for
geologic information, assayed, and perhaps subjected
to various kinds of physical measurements or tests.
Sampling provides insight into rock character that is
important in resource/reserve estimation. Bulk den-
sity, for example, is an essential variable for convert-
ing volume to tonnes and can vary extensively within
and between ore types. Physical characteristics (schis-
tosity, fracture density, etc.) of ore and wallrocks can
have a dramatic impact on dilution. Indirect indica-
tors include water loss during drilling (indicating the
presence of major structural weaknesses) and rate of
penetration of drills (related to physical strength of
rock).Geology and detailed sampling thus can be seen
as a classic “feedback” situation (cf. Grace, 1986).

2.5: GEOMETRIC ERRORS IN
GEOLOGIC MODELING

In mineral inventory estimation, the need for a high
level of accuracy in the position of the outer limits
of a mineral deposit, and more specifically of the ore
margins, is evident because of the control that volume
definition exerts on mine planning. Any deficiencies
in locations of deposit and ore margins lead to un-
certainties in deposit evaluation and the possibility of
problems in production planning – problems that may
not be recognized until after major commitments and
expenditures have been made.

The types of errors incorporated in the process
of geologic modeling have been categorized by Sides
(1994) as follows:

(i) Inaccuracies associated with original data (e.g.,
gross errors, such as incorrect drill-hole loca-
tions, errors in assumed continuity)

(ii) Sampling and analytical errors (e.g., uncertain-

ties of ore margin locations associated with im-
precise grade estimates)

(iii) Errors due to natural variations (e.g., roughness
or sinuosity of ore/waste margins)

(iv) Errors in data capture (e.g., mistakes made dur-
ing input of information to databases)

(v) Computer-derived errors (e.g., uncertainties re-
lated to software packages that are not com-
pletely debugged or are not ideally adapted to
the problem in question).

Gross errors are difficult to analyze systematically,
but should be minimized progressively as the geology
of the deposit becomes better known. Of course, the
potential for surprises in geometric modeling is al-
ways present where the object of study is being inves-
tigated by widely spaced control points, and substan-
tial interpolation is required. Sampling and analytical
errors should be minimized by a well-defined qual-
ity control program and the assurance that sampling
techniques are appropriate for thematerial being sam-
pled (cf. Chapter 5). A duplicate sampling program
should be designed to quantify the nature of sampling
and analytical error. A consideration of “geometric”
error in placement of ore/waste margins can begin
once the sampling and analytical error is quantified.
Errors due to data capture should be recognized and
corrected through an independent editing of the data
(cf. Chapters 5 and 7). Computer-derived errors are
most often the result of interpolated margins being
relatively smooth surfaces, as discussed later.

Virtually all geologic models assume smooth in-
terpolation between control points (cf. Houlding,
1991b), particularly when it is early in the exploration
history of a deposit and information is in short sup-
ply. From a practical point of view vis-à-vis geometric
modeling, the reliance on smooth interpolation may
be essential, despite the fact that it necessarily leads
to errors. Consider again the Neves–Corvo massive
sulphide example (Richards and Sides, 1991) illus-
trated in Fig. 2.6. The differences between the 1983
interpretation and the approximation of reality shown
in the 1989 cross section is large. Ore gains roughly
offset ore losses on this particular cross section, so
the “global” error is not large. However, local errors
are large, and their potential is clearly foreseen by
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the cross section interpreted in 1986, which had the
advantage of some underground information in the
upper reaches. If anything, a slight increase in global
reserves as the information base increases is indicated
for the cross section illustrated. The effect of prevalent
faulting complexity at upper and lower extremities, of
course, can affect recoverable reserves. This example
illustrates forcefully that smooth ore/waste contacts,
interpolated early in the data accumulation phase of
deposit delineation, are unlikely to hold up in real-
ity. Hence, an estimation project of several months
duration could be significantly out of date on com-
pletion, if substantial changes to the geologic model
have emerged from the continuing accumulation of
exploration information.

Another case in point is the north limb of the
Woodlawn massive sulphide deposit in Australia,
where smooth geometric outlines from an early in-
terpretation were proved to be substantially in error
during production (King et al., 1985). Figure 2.7 com-
pares the interpreted Woodlawn ore outline (in cross

2750

2700

9310 N

Actual ore body

Inferred ore body

Mapped intersection

meters

0 25 50

Fault

DDH

DDH

Figure 2.7: Section through the north orebody, Woodlawn
massive sulphide deposit, Australia, showing ore inferred
from exploration drilling (gray tone plus heavy dots) com-
pared with results from underground mapping during pro-
duction (heavy dots). Note the remarkable difference in
cross-sectional area of ore actually present compared with
the much larger, exploration-based estimate. Redrawn from
King et al. (1985).

section) based on limited exploration data with the
true ore outline mapped after production. Clearly, the
early interpretation greatly overestimated the volume
of ore by more than 50 percent of the ore actually
found and mapped between the two diamond-drill
holes.

The two foregoing examples illustrate the un-
certain nature of geologic interpolation. Remember
that ore resources/reserves normally are determined
within a geologically controlled (interpreted) volume.
These examples show clearly that smooth interpola-
tion is not necessarily reality, and large local errors
are possible. Global estimates of these errors may be
possible at an early stage of resource/reserve defini-
tion. However, it must be realized that the errors may
not be compensating. If a relatively inflexible min-
ing plan is designed to follow a smooth and interpo-
lated ore/waste contact, as occurs commonly in under-
groundmine design, then short-range errors can result
in ore being left as waste and waste being included
in ore. There are a variety of approaches suggested to
deal with this problem (e.g., Sides, 1994; Stone and
Dunn, 1994; see also Chapter 16 on dilution). Most
important for purposes here is to recognize how geo-
logic information can be gathered and directed toward
dealing effectively with the problem (i.e., recognizing
the existence of the problem and gaining some insight
into the magnitude of errors possible).

Case histories are useful in understanding the na-
ture of errors inherent in interpolation. For individual
deposits, an analysis to indicate the cause of discrep-
ancies between estimates and reality is useful and even
essential. TheNeves–Corvo andWoodlawn examples
are sufficient to illustrate the error inherent in standard
interpolation practice during geologic modeling of a
mineral deposit; the problem is one of understand-
ing ore/waste contacts, their detailed nature, and their
short-range variability. Sides (1994) describes a case
history for the Graca orebody in which he demon-
strates quantitatively the smaller errors in locating
ore/waste contacts near control points, in contrast
to interpolations that are far removed from control
points.

Geologic information about ore/waste margins
can provide insight about the magnitude of errors
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Figure 2.8: Graphic modeling of systematic variations in character of an ore/waste boundary. The boundary changes from
sharp (far left) to gradational over increasing distances (middle to far right). The boundary changes from simple (planar) to
increasing sinuosity/irregularity from top to bottom. Both boundary characteristics, sharp/gradational and regular/irregular,
are functions of scale. Highly complex boundaries can be characterized as having a measurable width, d, that represents a
zone of interdigitation of mineralized rock and country rock. After Sinclair and Postolski (1999).

inherent in the construction of simple geometric in-
terpolations. Clearly, during exploration, effort must
be directed toward thorough geologic documentation
of the nature of ore/waste margins from both sur-
face and underground exposures. Figure 2.8 is an
idealized representation of two boundary charac-
teristics, sharp/gradational and regular/sinuous, that
are mappable geologic features. Ore/waste contacts
should be accessed at several localities in a deposit as
early in the data-gathering program as possible; one

locality is unlikely to be representative for an entire
deposit. At each locality, the ore/waste contact should
be studied and mapped in great detail over a dis-
tance greater than the common interpolation distance
(e.g., average spacing between drill sections), and the
real pattern compared with a smooth interpolation.
Figure 2.9 is an idealized ore/waste margin on which
several smooth interpolations have been superim-
posed. In particular, three straight-line interpretations
of an ore/waste margin have been drawn, assuming
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Figure 2.9: Errors of location of irregular boundaries result-
ing from smooth interpolations between widely spaced con-
trol points. In this hypothetical example, drill sections are
assumed to be separated by 50 m. Where a boundary can
be mapped in detail, a pair of hypothetical intersections
50 m apart can be superimposed on the boundary trace
at any location. For example, by starting at one end of the
mapped contact, a new and smooth interpolation could be
generated at every 5-m separation of a pair of intersec-
tions. For each interpolation position, a quantitative, two-
dimensional estimate of both “dilution” and “ore lost to
waste” can be made. The average of a set of such mea-
surements provides insight into the level of error that arises
through relying on smooth interpolations. After Sinclair and
Postolski (1999).

the interpolation distance to be the same as the in-
dicated spacing of drill holes. Each of these interpo-
lations provides an opportunity to estimate both the
amount of ore lost and the amount of dilution. Such
geologically based studies provide an indication of the
possible magnitude of error in ore volume (and grade)
that can result from the necessarily simplistic, smooth
interpolations imposed on early geometric interpreta-
tions of mineral deposits. This detailed information
can also be used to evaluate the impact of complex
ore/waste margins on dilution and loss of ore (see
Chapter 16).

The preceding ore loss/dilution calculation con-
tains an implicit assumption that ore/waste boundaries
are hard (i.e., sharp and easily recognized). For many
deposit types, gradational (soft) ore/waste bound-
aries are the rule. Where deposit margins are gra-
dational, the data generally contain a significant ran-
dom component and the best location of the ore/waste

boundary is not obvious. It is common practice to es-
timate the boundaries by use of a cutoff-grade con-
tour (e.g., Fig. 1.17). Various contouring procedures
can place the ore/waste boundary at different posi-
tions, and generally it is not clear which method is
best. One method developed for porphyry molybde-
num deposits (Ranta et al., 1984) is described by Sin-
clair and Postolski (1998) in the context of porphyry-
type deposits but has more general application
(Fig. 2.10).

The ore/waste boundary, generally based on a cut-
off grade, is first defined where hard information is
available and then is extended by interpolation be-
tween control points. It may be that geologic char-
acter changes smoothly across the gradational zone
that marks the ore/waste margin. More commonly,
however, the zone is more or less uniform geologi-
cally, and is characterized by erratic grade variations
from a higher-grade zone (ore) to a lower-grade zone
(waste). A common situation for porphyry-type de-
posits is that samples exist from inclineddiamonddrill
holes (or sampled trenches or underground workings)
that pass from ore to waste. An empirical approach
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Figure 2.10: Three partial drill-hole sections showing MoS2
values for contiguous 3-m composites. The example illus-
trates application of the “9-m rule” (three contiguous com-
posites) to determine the position of a 0.2% MoS2 grade
boundary. Starting in high grade, a lower-grade boundary is
fixed at the start of three successive samples (i.e., totaling
a length of 9 m) that are below the stipulated grade of
0.2% MoS2. After Sinclair and Postolski (1999); adapted
from Ranta et al. (1984).
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to definition of a grade boundary that benefits from
success in practice is that described by Ranta et al.
(1984) for porphyry molybdenum deposits. Suppose
a 0.2 percent MoS2 contour is desired and samples
are for 3-m lengths of drill core. An arbitrary core
distance is selected as the basis for decision mak-
ing (ca. 9 m has proved useful in many porphyry Mo
deposits). Then: “a grade boundary is selected at that
point where assay values in a drill hole decrease be-
low theminimumgrade (0.2%) . . . and remain contin-
uously below for at least 10 m” (Ranta et al., 1984).
The rule can be applied successfully in most cases;
some complications occur (e.g., ambiguities, small
high-grade pods in low grade, and vice versa) that
lead to arbitrary decisions; details of the method with
illustrations are provided by Ranta et al. (1999, p. 37).

Exact ore/waste boundaries determined as dis-
cussed previously for drill holes and other types of
linear samples are the information base from which
a continuous boundary is interpolated, normally
smoothly, as illustrated in Fig. 2.9.

With the position of a boundary now fixed along
a drill hole or other set of linear samples, it is impor-
tant to characterize the boundary quantitatively and,
if possible, define the distance over which the bound-
ary is gradational. There are several methods for ap-
proaching this problem. One is to examine the (auto-)
correlation of samples on one side of the boundary
versus the samples from other side. This can be done
by pairing samples that are a uniform distance from
the ore/waste boundary, with one pair from one side
of the boundary and one pair from the other side. Each
drill hole that intersects the boundary provides data
for comparing one side of the boundarywith the other,
a comparison that can be effected on an x–y plot. An
example for a large epithermal gold deposit is illus-
trated in Fig. 2.11, which shows the plotted positions
of pairs of 2-m samples taken various distances from
the ore/waste boundary. With little difference from
one side to the other, the data should scatter about
the y = x line and have a relatively high correlation
coefficient. A marked difference in average grades on
the two sides is evident by values on the x–y plot being
substantially removed from the y = x line. It can be
useful to monitor variations by a quantitative parame-

Table 2.1 Geochemical contrast for sample pairs
various distances from a gradational ore/waste
boundary selected at the margin of a large
epithermal gold deposit

Distance from Mean Geochemical

boundary (m) n x y contrasta r

0–2 109 1.12 0.46 2.43 0.043
2–4 107 1.38 0.34 4.06 0.003
4–6 101 1.36 0.33 4.12 0.033
6–8 96 2.10 0.33 6.36 −0.044
8–10 93 1.34 0.34 3.94 −0.029

a Data from Fig. 2.11.

ter, such as the correlation coefficient determined for
each scatter plot (r in Table 2.1).

A relatedmethod (e.g., Sinclair 1991; Sinclair and
Postolski, 1999) involves the use of geochemical con-
trast of grades, Cg, determined for various sample
support (length) or various distances from the contact.
For purposes here, geochemical contrast is defined
as

Cg = mo(h)/mw (h).

where mo(h) is the mean of no data (e.g., from no
drill holes) centered distance h into the ore side of
the boundary, and mw (h) is the mean of nw data cen-
tered distance h into the waste side of the boundary
(Fig. 2.10). This procedure can be repeated for sam-
ple pairs of increasing distances from the boundary.
The procedure normally should be conducted with
either raw data (of uniform length) or the compos-
ite length used for estimation purposes. For example,
consider 4-m composites along drill holes (Fig. 2.10)
that cross the ore/waste boundary (0.2% MoS2) lo-
cated as described previously. Geochemical contrast
is determined for all pairs of 4-m composites that de-
fine the boundary; in this case, three pairs have

Cg = {(0.24 + 0.25 + 0.26)/3}
{(0.16 + 0.19 + 0.16)/3} = 1.47.

A second geochemical contrast is calculated com-
paring 4-m composites centered 6 m into ore with
4-m composites centered 6 m into waste; a third
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Figure 2.11: Scatter plots of ore grade versus waste grade for sample pairs equidistant from an ore/waste boundary of
a large epithermal gold deposit with gradational margins. Each plot is for 2-m samples. For example, plot (c) shows 2-m
samples from 4- to 6-m into ore (x), plotted versus 2-m samples from 4- to 6-m into waste (y). Statistics for each diagram
are summarized in Table 2.1. Four- to 6-m grades are g Au/t.

geochemical contrast is calculated for all 4-m com-
posites centered 10 m into ore with those centered
10 m into waste; and so on (Table 2.2). In this way,
it is possible to track the geochemical contrast as a
function of distance of samples from the ore/waste
boundary or, for that matter, across any domain boun-
dary. In cases of relatively narrow zones of grada-
tion between domains of high and low grades, respec-
tively, the value of geochemical contrast levels off at
a particular distance of boundary to sample. This dis-
tance represents half thewidth of the domainmarginal
zone (DMZ), over which the boundary is gradational
and provides quantitative insight into distances be-

yond which it would be unwise to use data from one
side to estimate blocks on the other side. Geochemi-
cal contrast for the ore/waste boundary of the epither-
mal gold deposit (Fig. 2.11) is summarized in Table
2.1.The contrast rises to a rough level of 4 for paired
data more than 2 m from the interpreted boundary,
indicating a gradational range of 4 m (2 m into ore
plus 2 m into waste); consequently, data from one
side of this 4-m boundary zone should not be used to
estimate blocks on the other side of the zone.

A simple useful approach to examining boundary
zones of domains is to examine all available grade
profiles that cross the boundary as well as the average
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Table 2.2 Sample calculations of geochemical
contrast across a gradational boundary

DDH #1 DDH #2 DDH #3 Avg. C g (contrast)

0.27 0.38 0.42 0.357
0.22 0.32 0.19 0.243
0.24 0.25 0.26 0.250

0.16 0.19 0.16 0.170 1.47
0.18 0.16 0.08 0.140 1.74
0.18 0.17 0.10 0.150 2.38

Data from Fig. 2.10.

of all these grade profiles. The average profile is es-
pecially useful because it helps develop a general ap-
proach to block estimation in the immediate vicin-
ity of the boundary. In particular, the character of
the average profile helps answer questions such as
the following: To what extent, if any, will data from
one side of the boundary be used to estimate blocks
on the other side? Does the width of a gradational
boundary zone between two domains require spe-
cial limits to the search radius for blocks within the
gradational zone? Is a gradational contact zone suffi-
cientlywide relative to block dimensions that the zone
should be considered a separate domain for estimation
purposes?

Another equally serious problem is that of de-
termining or assuring the physical internal continu-
ity of mineralized ground and ore between control
points, which commonly are widely spaced. Errors in
assumptions regarding continuity can have an enor-
mous impact on both grade and tonnage estimates,
particularly if based on widely spaced data, each of
which is assumed to be continuous over half the dis-
tance to adjacent data. This essential topic is consid-
ered in greater detail in Chapter 3, concerned with
continuity.

2.6: ORE DEPOSIT MODELS

2.6.1: General Concepts

Ore deposit models are conceptual views of how ore
deposits form combined with an idealized representa-

tion of the geometric configuration of various features
(alteration, vein type, mineral zoning, etc.) in and
around a mineral deposit. Such models are not to be
confusedwith terms such as blockmodel, which refers
to an arbitrary three-dimensional array of blocks that
defines a deposit and to which various attributes or
estimates have been assigned (e.g., grade estimates).
As Sangster (1995, p. 4) suggests, ore deposit models
are “a combination of ‘descriptive model’ and ‘ge-
netic model’ . . . inclusion of the latter ensures a finite
‘half life’ for every deposit model.”

Models are useful in organizing ideas and infor-
mation about a deposit because they represent a stan-
dard of comparison for a particular class of deposit.
Depositmodels generally are developed froman espe-
cially important deposit or from the combined infor-
mation of numerous similar deposits. Consequently,
models contain an element of prediction, particularly
when certain physical attributes are characteristic of
ores of a well-defined deposit type. In some cases,
important practical attributes of various deposit types
(models) – for example, grade and tonnage – are pre-
sented in diagrams such as Fig. 2.12 and provide a
rough idea of expectations as to tonnage and grade
once a deposit has been recognized as belonging to
a particular model or class. Such preconceived ideas
about deposit size can lead to overoptimism in both
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classified into an ore deposit model. Redrawn from Babcock
(1984).
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interpolation and extrapolation of data. They should
be avoided in favor of a more deposit-specific ap-
proach to decisions related to mineral inventory.

In mineral inventory estimation, models should
be considered to be idealized expressions of the gen-
eralized nature and spatial distribution of the char-
acteristics of a particular deposit class. In this way,
models are used as a means of focussing attention
on particular characteristics; the aim should be to de-
termine to what degree a “deposit-to-be-estimated”
fits a model, and not to force the particular charac-
teristics of a model to the deposit in question. Note
that this is a different philosophy than that of the ex-
plorationist, who uses characteristics of generalized
models to guide exploration strategy. Once a new de-
posit has been located, however, the thinking process
must change toward the development of a deposit-
specificmodel that forms a guide for interpolation and
mineral inventory estimation. In general, it is common
for deposits of a particular type to have general char-
acteristics in common, but with detailed differences
to be expected among deposits. For this reason, the
detailed knowledge of a deposit changes with time as
new information is obtained. The concept of multiple
working hypotheses (Chamberlain, 1965), so neces-
sary in the exploration phase, is a useful philosophical
approach to the many assumptions that are necessary
in mineral inventory estimation, and in particular to
the development of a deposit-specific model.

Ore deposit models incorporate specific informa-
tion and concepts that are of direct importance to re-
source/reserve estimation, including the following:

(i) The external form and extent of a mineralized
field (e.g., tabular, lenticular, simple vein, grada-
tional alteration halo)

(ii) The nature of ore/waste contacts (e.g., sharp, gra-
dational, sinuous)

(iii) The internal form and local physical continuity
of mineralization (e.g., massive, disseminated,
stockwork)

(iv) Large-scale continuity of mineralized ground or
a mineralized structure (e.g., the use of structure
contours to map variability and disruptions in a
tabular surface)

(v) Mineral zoning (potentially available early in an
exploration program; more likely a mineralogic
study will be done during advanced exploration)

(vi) Relation of various deposit attributes to control-
ling structures or lithologies (which requires de-
tailed geologic mapping, understanding of geo-
logic evolution of the area, and integration of a
knowledge of the spatial distribution of geologic
features with grade distribution patterns).

The significance of these aspects of ore deposit
models to resource/reserve estimation requires that
all be documented either as a prelude to or accom-
panying a report on mineral inventory estimation. It
is by such detailed study and consideration that geol-
ogy is truly integrated confidently into the estimation
process. Unfortunately, these topics are rarely well
documented in reports relating to mineral inventory
estimation, and too commonly are not evaluated suffi-
ciently critically. Thus, evenwhere a substantial effort
has gone into the geology, the accumulated informa-
tionmight not be incorporatedwell into the estimation
process.

In general, for mineral inventory purposes, is it
essential to appreciate in detail the present status of
the ore deposit models that relate most closely to the
deposit whose inventory is being estimated.Many de-
posit models have been developed, and it is impracti-
cal to attempt to consider themall in a text such as this;
a fewmodels are discussed in the following sections to
illustrate their importance to mineral inventory work.

2.6.2: Volcanogenic Massive
Sulphide Deposits

Globally, volcanogenic massive sulphide (VMS) de-
posits are one of the most important sources of
precious and base metals. A conceptual model for
Kuroko-type VMS deposits is illustrated in Fig. 2.13.
Deposits are generally massive, polymetallic, and
range in size from less than 1 million to many tens of
millions of tons. Those close to the underlying hy-
drothermal conduit or feeder (i.e., proximal deposits)
are commonly lenticular in cross sections parallel to
the originally vertical direction of the feeder zone;
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Sp±Gn±Py±Po
Py±Sp±Gn

Cpy±Py±Po

Cpy±Py±Po sulphide mineralization
with chloritic hydrothermal alteration

Py+Sp±Gn sulphide mineralization with
sericitic–chloritic hydrothermal alteration

Stockwork zone

Gradational footwall contact

Bedded or layered structure
(chemically heterogeneous)

Massive, rubbly, or brecciated structure
(strong chemical zonation pattern)

Hydrothermal
alteration pipe

"Exhalite" or
"tuffite" horizon
SiO  ±Py±Hem2

Sharp hanging
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Figure 2.13: A general conceptual model (ore deposit model) for volcanogenic massive sulphide deposits of the Kuroko
type (redrawn from Lydon, 1984). The model incorporates significant spatial variations in the character of mineralization
(vein, stockwork, massive, bedded), mineral zoning (both vertical and lateral), and the geometric form and spatial position
of mineralization types (domains).

perpendicular to this lenticular form, the mass com-
monly has a preferred elongation. Zones near the vent
may be partly to entirely recrystallized, resulting in
substantial variation in textures, including grain size,
of the sulphides. These lenses are roughly parallel
to bedding in the enclosing volcanic pile. The lateral
edges of these lenses can be well layered and inter-
nally conformable with surrounding stratigraphy. Top
layers and lateral margins can be relatively rich in Pb
and Zn, and commonly contain significant amounts
of barite. The underlying feeder zone is represented
by a network of fracture-controlled mineralization,
generally rich in Cu, that can vary from an isotropic
stockwork to a complex fracture zone with a pre-
ferred structural orientation, possibly indicative of an
anisotropic character to grade continuity. Later, cross
faults are common because of the tectonic setting
within which such deposits form. It is not uncommon
that shearing is concentrated within these sulphide-
rich rocks.

Distal VMS deposits (i.e., deposits that are more
remote from the underlying conduit) are generally
more tabular in form than proximal deposits, and may
be extremely extensive, well-stratified, tabular sheets
with a high degree of primary geologic continuity par-
allel to bedding in the mineralized sheet.

2.6.3: Besshi-Type Cu–Zn Deposits

The Besshi-type model is named for the 33-million-
ton deposit of the same name in Late Paleozoic, ter-
rigenous, clastic–carbonate–volcanic sequence in the
SanBagawametamorphic belt of southwestern Japan.
Deposits belonging to this model are believed to have
formed exhalatively in a submarine basin by chemical
precipitation of sulphides from fluids expelled at the
sea floor. The Goldstream deposit (Hoy et al., 1984)
in southeastern British Columbia illustrates many of
the features important in Besshi-type deposits from
the perspective of mineral inventory estimation.
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Figure 2.14: Cross section of the Goldstream Besshi-type deposit (adapted from Hoy, 1984) illustrating the regular, physical
continuity of massive sulphides, parallelism of the sulphide layer to stratigraphy, and relative uniformity of thickness of the
sulphide-rich layer. The section extends south from the portal shown on Fig. 2.15. Coordinates are in meters; elevations are
meters above sea level.

A cross section of the Goldstream deposit
(Fig. 2.14) emphasizes

(i) The sheetlike form
(ii) The parallelism to surrounding stratigraphy
(iii) The continuous nature of the sulphide-rich zone.

Goldstream and other Besshi-type deposits generally
occur in metamorphic terrains that have been de-
formed extensively with the common result that sul-
phides have been variably mylonitized, granulated,
mobilized, and recrystallized. Hence, the internal
character of the sulphide sheet can differ significantly
from one place to another. Commonly, tectonism has
been localized in the sulphide zone, with the result
being brittle interlayers among the sulphides that are
broken and milled, and fragments of wallrock are in-
cluded in varying amounts in the sulphides. Metal

recovery from sheared sulphides can be very differ-
ent relative to coarse-grained ore.

Sulphides are characteristically massive, but dis-
seminated sulphides are not uncommon; either form
can be ore grade. Deposit margins are locally sharp
and, in some places, shear surfaces, but margins of
sulphide with wallrock can be highly interdigitated
as a result of mobilization of sulphides during meta-
morphism and deformation. Metal zoning, particu-
larly vertical zoning, is uncommon. The Goldstream
deposit appears to have well-defined zoning, from
Cu-rich deposits on the west to Zn-rich deposits in the
east (Fig. 2.15), although this must be substantiated
because of the relatively sparse and widely spaced
data used as a basis for the contouring. Because of the
fairly regular sheet-like form, these deposits can be
examined usefully with isopach maps (see Fig. 2.15).
It is common for metamorphism to obscure evidence
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Figure 2.15: Planar projection of a tabular, massive sul-
phide zone contoured for (A) Cu/(Cu + Zn) ratio, and (B)
thickness in meters. These contoured plots are based on
exploration data and are smoothed relative to reality. Never-
theless, general trends are apparent that can be important
in developing procedures for resource/reserve estimation.
Adapted from Hoy (1984). A north–south line through the
portal is the line of section for Fig. 2.14. Coordinates are
in meters.

of primary alteration assemblages associated with
these deposits.

2.6.4: Porphyry-Type Deposits (see also
Sinclair and Postolski, 1999)

Porphyry copper and related systems are so variable
in character that a variety of models have been for-
mulated to describe the spatial patterns of their vari-
ous geologic features. For example, the class includes
porphyry copper–gold deposits (Sillitoe, 1993), por-
phyry molybdenum deposits (White et al., 1981), and
porphyry copper–molybdenum deposits (Drummond
and Godwin, 1976). Numerous other model types
are described in the geologic literature. Here, the
Lowell–Guilbert (1970) model for porphyry copper–
molybdenum deposits is used to illustrate the impor-
tance of models to grade estimation in porphyry-type
mineralized systems.

The Lowell–Guilbert model pertains to copper
and copper–molybdenum porphyry deposits zoned
concentrically about a core of igneous rock that is
part of an igneous system, including at least some por-
phyritic units. These mineralizing systems are from
several kilometers to hundreds of meters in diameter,
and generally are of economic importance for their
contents of copper, gold, or molybdenum. Ore miner-
als are commonly controlled in a stockwork of vein-
lets, in disseminations, or a combination of the two
(Fig. 2.16), and less commonly in breccia pipes. These
styles of mineralization may be the basis for defining
separate domains for resource estimation purposes.
Mineralization may be predominantly in the core in-
trusion, in adjoining wallrock, or may straddle the
contact zone; hence, rock characteristics can varywith
the geology. Hydrothermal alteration can be exten-
sive, to the point that original rock material is totally
replaced, or relatively much less intense. Many al-
teration minerals (quartz, sericite, pyrophylite, clay
minerals) can have important effects on milling pro-
cedures and thus affect metal recoveries or cost of
milling.

Both ore minerals and alteration minerals are
zoned concentrically about the core intrusion (cf. Fig.
2.16), and overlap of variousmetals can result in large
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Figure 2.16: An idealized cross section illustrating part
of the Lowell–Guilbert (1970) porphyry deposit model.
The general disposition of mineralization styles (veins/
stockwork and disseminations) are shown relative to the
positions of pyrite-rich (gray stippled) and Cu-rich (dotted)
zones. The diameter of the system can range from a few
hundred to a few thousand meters.

volumes of high grade that change gradationally to
low grade in a systematic manner (e.g., Fig. 2.19).
Vein paragenesis can also be important in controlling
high- and low-grade volumes; several stages of veins
may contain ore minerals, and the superposition of
two or more such stages can lead to high-grade zones
that are a function of vein paragenesis. Style of min-
eralization, paragenesis, and mineral assemblages all
contribute to the possibility of several geologically
distinctive domains as the product of primary miner-
alization in a porphyry-type environment, as is well
illustrated by the Boss Mountain molybdenum de-
posit in central British Columbia (e.g., Soregaroli and
Nelson, 1976, and Fig. 2.5).

The central intrusion is generally complex, of in-
termediate composition (granodioritic to quartz mon-
zonitic), and includes related pre-, syn-, and postmin-
eralization dykes. Consequently, dykes can be either
mineralized and potentially contribute to ore, or they
can be barren and contribute to dilution.

A substantial weathering profile has developed
over many porphyry deposits (Fig. 2.17) in which Cu
is leached from near-surface rocks and deposited at

Volcanic Country
Rock 

Intermediate Intrusion

Hypogene Sulphide

Supergene
Sulphide

Leached

Leached

Oxide

Oxide
Water table

Figure 2.17: Idealized cross section illustrating leached, ox-
ide, and supergene zones derived from weathering of hypo-
gene, porphyry-type mineralization. Because of the down-
ward movement of copper to form the supergene zone,
grade continuity in all superimposed zones need bear no
similarity to grade continuity in hypogene zones. Similarly,
grade continuity in lithologic domains (volcanic versus in-
trusive rocks) can vary. After Sinclair and Postolski (1998).

greater depths, at and below the water table (Chavez,
2000). The result is a sequence of subhorizontal do-
mains (leached, oxide, supergene) inwhichgrade con-
tinuity might have been changed drastically relative
to the original continuity of hypogene mineralization.
Boundaries to these domains can be both gradational
and variably irregular. Superimposed faulting can also
lead to the necessity of defining separate domains
for resource estimation purposes as demonstrated by
Krige andDunn (1995) for the Chuquicamata deposit.
Domain boundaries can be sharp or gradational (cf.
Fig. 2.8), and there can be a transitional zone many
meters thick between completely weathered material
and underlying hypogene mineralization.

2.6.5: General Summary

It is not possible to discuss all the ways in which the
conceptual model of ore genesis affects mineral in-
ventory. The examples cited in this chapter, however,
clearly indicate the importance of models as they af-
fect interpreted geometry, domains of mineralizations
with differing characteristic value continuity, and the
nature of data available for mineral inventory estima-
tion. Perhaps the most important aspect of a model is
that it requires an internal integration of all types of
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information. In addition, the development of a model
meshes observations with science; consequently, con-
fidence in an interpretation increases asmore informa-
tion is brought to bear on the development of a model.
This translates into improved confidence in interpreta-
tions involving interpolation, extrapolation, physical
continuity of domains, nature of domain margins, and
so on. Increasingly, geochemical and geophysical sur-
vey information is being brought to bear on questions
of physical continuity of ore between drill holes (e.g.,
Cochrane et al., 1998). In addition, downhole ana-
lytical methods are under development, and have the
advantage that they producemetal estimates represen-
tative of a much larger volume than do assayed core
(normally half the core) or cuttingmethods (drill-hole
volume).Multielement geochemical analyses supple-
ment assay information and help define a variety of el-
emental distribution patterns that assist in developing
an ore deposit model. Detailed discussions of these
methods are beyond the purpose of this text, but an
awareness of their relevance is important.

2.7: MINERALOGY

“Assay values alone can never represent the com-
positional, structural and textural nature of the
valuable minerals in a deposit” (Kingston, 1992,
p. 49).

A detailed mineralogic study of a mineral deposit
provides insight into mineral assemblages; relative
abundances of minerals; and spatial variations in the
formofmineralization, grain size distributions, nature
of mineral intergrowths, host rock variability, and so
on. These products of mineralogic examination have
important implications to metal and mineral zonal
patterns of both ore and gangue, metal recovery, the
presence of deleterious minerals, oxide–sulphide dis-
tribution, possible by-products/co-products, system-
atic grain-size variations of ore minerals, and so on
(Petruk, 1987). All of these can have significant bear-
ing on mineral inventory estimation because they af-
fectmetal recovery and operating profits. Such studies
contribute to an understanding of short-range conti-
nuity of various types of mineralization.

Routine mineral examination (cf. Sinclair, 1978)
should include identification of both gangue and ore
minerals, the occurrence and associations of which
should be described in a thorough and systematic
manner. An example of a fact sheet for recordingmin-
eralogic information is shown in Fig. 2.18. Samples
and specimens should be from locations more or less
evenly distributed throughout a deposit. Proportions
of all mineral species should be reported either semi-
quantitatively or quantitatively. Textural data should
include routine information about average grain size,
grain size distribution, grain shape, nature of gangue–
grain boundaries, and types of intergrowths.

In some cases the quantitative distribution of min-
erals is best studied using assay data. For example,
in many ores lead occurs only in galena, zinc is en-
tirely in sphalerite, and chalcopyrite is the only cop-
per mineral. However, some caution is warranted, as
such contours can mask dramatically different forms
or modes of occurrence. Examples include chalcopy-
rite, which may be divided between free grains and
minute inclusions in sphalerite; sphalerite, which can
range from 1 percent to 18 percent Fe, even in a
single deposit; and gold, which may be partly free
milling (present as grains that are easily liberated)
and partly present in sulphides as microscopic or sub-
microscopic inclusions. Nevertheless, selected con-
tour plots are useful in defining zonal distributions
of metals (and minerals) or, in other cases, in demon-
strating spatial correlations amongmetals (andminer-
als), as illustrated in Fig. 2.19. The impact of zoning
on viability for production can be dramatic. Goldie
(1996, p. 40) states, “a very strongly zoned VMS de-
posit could be worth more than an unzoned deposit,
because it might make sense to mine and mill one end
of the orebody first, then re-tune the mill and mine the
other end.”

Significant variations in mineralogy must be con-
sidered in developing an estimate of mineral inven-
tory. King et al. (1985) describe a case concerning
the Woodlawn massive sulphide deposit, New South
Wales,Australia, forwhich production could notmeet
estimates becausemineralogic featureswere not taken
into account adequately during the feasibility stage.
Figure 2.20 shows the general disposition of different
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Figure 2.19: Metal distribution patterns in the Dizon de-
posit, Phillipines. Solid contours are for Au (g/t); dotted
contours are for Cu (%). The 1.2 g/t Au contour delineates
a zone characterized by both high-gold and high-copper
grades. After Sillitoe (1993).

mineralogic domains as they were mapped eventu-
ally, and in particular, emphasizes the areas of com-
plex (e.g., talc bearing) and copper-rich ores. Notably,
several of these mineralogic types of ore were identi-
fied early in the evaluation of the deposit, each with
its own suite of grades, gangue minerals, and metal-
lurgic response. Ore types range from high talc (with
attendant milling problems) to low talc, from high
pyrite to moderate pyrite, and having wide variabil-
ity in metal (Cu and Zn) grades. A detailed map of
the 2760 bench indicates the relative positions of var-
ious ore types that, although recognized in a general
way when the mineral inventory was being prepared,
had not been built into the predictive ore-reserve esti-
mate.This omission contributed to subsequentmilling
problems, including lower metal recovery than ex-
pected and higher than expected contamination levels
in both lead and zinc concentrates. These problems
could have been reduced had more effort been di-
rected to the engineering aspects of geology, partic-
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Figure 2.20: WoodlawnMine, Australia, 2760 bench, show-
ing distribution of variousmineral assemblages asmapped
during and after production. Labeled domains are different
ore types, based on mineralogic character, and include var-
ious combinations of high- to low-talc content, high- to low-
pyrite content, coarse- to fine-grained pyrite, and moderate
to very high Zn grades. Redrawn from King et al. (1985).

ularly toward definition of the spatial distribution of
ore types. Day-to-day production is not the mine av-
erage, but varies with the local mineralogic variations
that characterize a deposit.

There are numerous other examples in the liter-
ature of the importance of mineralogy in relation to
ore reserves. Ahrens (1984) reports that hydrother-
mal alteration is mapped as a guide to blending ore at
Cananea, Mexico. Silicified limestone at an open-pit
operation in New Mexico is a concern because in-
clusion with ore leads to grinding problems. Peterson
and McMillan (1992) provide an interesting descrip-
tion of the use of spatial variations in compositions
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Table 2.3 Metal recovery versus mineral zone, zinc mine, Broken Hill District

Metal recovery (%)

Ore type Characteristicsa Pb Ag Zn

Siliceous (fringe) 20–50% SiO2, very fine-grained, 70 40–45 75–80
py-gn-sp (Fe poor), complex
textures

Pyritic (intermediate) 70–95% sulphides, py-gn-sp 60–65 40–45 70
(Fe poor), homogeneous
texture/mineralogy with local
silica; less complex textures
than siliceous ore

Pyrrhotitic 70–80% sulphides, po-py-gn-sp 75 55 85
(Fe rich), relatively coarse
grained

a gn = galena, po = phyrrhotite, py = pyrite, sp = sphalerite.
Source: McMahon et al. (1990).

of members of the tetrahedrite–tennantite solid solu-
tion series to define fundamental zoning patterns in
both sediment-hosted and vein deposits. Whiting and
Sinclair (1990) provide a cautionary note on the inter-
play of structural domains, mineralogy, and dilution
in producing an apparent decrease in native gold abun-
dance with depth at the San AntonioMine, Manitoba.
Kingston (1992) discusses several examples ofminer-
alogic studies of platinum-group minerals as an aid to
the evaluation of Pt-bearing deposits. Metal recovery
is a function ofmetal zoning in the ZincMine, Broken
Hill District, Australia (McMahon et al., 1990), as
summarized in Table 2.3. To appreciate the impact of
these recovery figures on ore value, consider a rep-
resentative grade of 3 percent Pb, 6 percent Zn, and
30 g Ag/ton and corresponding metal prices (US$)
of 0.25/lb., 0.45/lb., and $5.00/oz. The recovered
metal value per ton for each ore type is presented
in Table 2.4. The maximum difference in value of
recovered metals is more than US$10.00 for pyritic
versus pyrrhotitic ores, a difference of more than
15 percent.

Gold ores represent a case of special mineralogic
interest for evaluation purposes (e.g., Gasparinni,
1983; Kingston, 1992). Two principal types are read-
ily identifiable through mineralogic investigation –
free-milling and refractory, both of which can be rep-
resented in a single deposit. Refractory ores, which

contain much of the gold as small grains encased
in minerals such as pyrite and arsenopyrite, are of
particular concern because the small grains are diffi-
cult to expose to chemicals (e.g., Na or K cyanide)
for dissolution. Hence, high metal recovery can be
difficult or impossible. Liberation of gold (Kingston,
1992) can be by grinding (for coarse gold), roasting of
the sulphide host, aqueous pressure oxidation (which
solubilizes sulphides), and biological leaching (us-
ing thiobacillus ferro-oxidans). Additional benefits of
mineralogic studies (e.g., Kingston, 1992;Gasparrini,
1983) of gold deposits include the following:

(i) Recognition of cyanicide minerals, such as
pyrrhotite, which react with cyanide solution and
thus increase the use of chemicals in the concen-
tration process

(ii) Recognition of oxygen-consuming minerals
(e.g., orpiment, realgar, stibnite) that leave the
pregnant solution deficient in oxygen, thus in-
hibiting Au dissolution by cyanides

(iii) Identification ofAuminerals that areweakly sol-
uble or insoluble in cyanide solution (e.g., Au
tellurides, Ag-rich electrum) and hence are not
recovered by cyanide treatment

(iv) Recognition of carbonaceous material (e.g.,
graphite) that absorbs cyanide solution in im-
portant quantities.
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Table 2.4 Value of recovered metal for various ore types, zinc mine, Broken Hill District, Australla

Ore type Metal Recovery (%) Metal recovery (kg/ton) Value recovered (US$/ton) Metal total

Siliceous Pb 70 21.0 11.59
Zn 77 46.2 45.90
Ag 43 0.0129 2.07 59.56

Pyritic Pb 63 18.9 10.43
Zn 70 42.0 41.73
Ag 43 0.0129 2.07 54.23

Pyrrhotitic Pb 75 22.5 12.42
Zn 85 51.0 50.67
Ag 55 0.0165 2.65 65.74

All of these problems lead to higher than nec-
essary operating costs, with the significant effect of
increasing the cutoff grade.

An aspect of mineralogy not used to advantage is
the determination of the sampling constant in Gy’s
equation for fundamental sampling error, to be intro-
duced in Chapter 5. Suffice it to say here that the sam-
pling constant is the product of four separate factors,
each of which is related to mineralogic features of
the mineralization. The names of these factors – min-
eralogic, liberation, size range, and shape – make it
clear thatmineralogic characteristics (including textu-
ral features) have an overriding control on the value of
the sampling constant. A thorough mineralogic study
relatively early in the exploration of a deposit can pro-
vide the mineralogic information necessary for early
optimization of the subsampling protocol to be used
for the many samples that form the basis of deposit
evaluation (cf. Sketchley, 1998).

2.8: GEOLOGIC DOMAINS

The concept of domains evolves naturally from the
variable character of mineralization inherent in min-
eral deposit models, the common occurrence of min-
eral zoning, and spatial variations in other physi-
cal characteristics. Each domain is characterized by
more-or-less uniform geologic characteristics (see
Figs. 2.1, 2.3, 2.5, 2.13, 2.16, and 2.17). The bound-
aries between adjacent domains can be sharp or gra-
dational and either smoothly sinuous or highly irreg-
ular. In many cases, domains differ significantly in

grade parameters (mean and range of values) and spa-
tial characteristics (smooth versus erratic variability
in space). For practical purposes, domains are gen-
erally defined on a scale significantly larger than the
size of the selectivemining unit (SMU)onwhichmine
planning commonly is based.

Domains are important in mineral inventory es-
timation because characteristics of one domain can
have a very different impact on estimation than do
characteristics of another domain. Because the con-
tinuity model for one domain can be very different
than that for another domain, delineation of domain
boundaries is important. An important factor from
a mining perspective is that a geologic domain too
small to be mined selectively probably is not wor-
thy of formal delineation. Geologic criteria are used
routinely to distinguish adjoining zones and provide
precise locations of zone boundaries wherever pos-
sible. Sharp boundaries generally do not present se-
rious problems when they can be interpolated with
confidence over a large volume of a deposit; how-
ever, gradational zone margins are more problematic.
A common procedure for localizing gradational zone
margins involves examination of variations in grade
and other characteristics along diamond-drill holes to
identify relatively abrupt changes in geologic char-
acter, repeated in several neighboring drill holes. For
example, high grades might be centered on a brec-
cia zone and might merge somewhat erratically with
neighboring lower-grade ground. If the occurrence
is repeated in enough nearby drill holes that phys-
ical continuity is a reasonable assumption, domain
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margins are defined by a subjective evaluation of sud-
den changes in grade values or grade variability along
appropriate drill holes. It is common practice to in-
terpolate smooth domain boundaries between control
points on drill sections and then to project (interpo-
late) these outlines from one drill section to another.
Thematter of defining domain boundaries is similar to
that for ore/waste boundaries discussed in Section 2.5.
Similarly, characterization of errors in estimating do-
main boundaries is comparable to error estimation of
ore/waste boundaries.

Any arbitrarymethod of boundary positioning can
be subjected to a rigorous evaluation of the effec-
tiveness of the original control points obtained along
drill holes (or other linear samples); evaluation of the
smooth interpolations is much more subjective. The
quantitative testing procedure involves two elements:
(1) correlation of paired values from each side of the
interpreted margin and (2) the ratio of average values
on each side of the interpreted margin (i.e., geochem-
ical contrast, viz. Sinclair, 1991; Sinclair and Postol-
ski, 1999) as outlined in Section 2.5.

2.9: PRACTICAL CONSIDERATIONS

Following is a general consideration of types of ge-
ologic and related information that can be useful in
developing a confident knowledge of mineral inven-
tory.Not all suggested information types require equal
emphasis for all deposits, nor are all suggestions nec-
essarily applicable in the simplistic manner in which
they are presented. Nevertheless, the specific sugges-
tions for data gathering are presented in a manner to
illustrate their potential importance to decisions re-
garding mineral inventory estimation – the general
tone of the suggestions is what is important; the de-
tails can be altered to suit a particular situation.

1. Geologic mapping, including drill-core logging,
is the basis of all resource/reserve estimation.
Data must be presented on clear maps and cross
sections, and fact must be easily distinguishable
from interpretation (interpolation and extrapola-
tion). Documentation is essential for all assump-

tions that have an impact on resource/reserve es-
timation decisions and to provide a basis for audit
by others. The use of standard codes for geologic
properties (e.g., Blanchet and Godwin, 1972) can
increase the efficiency of logging and field map-
ping, and provides a convenient form for incorpo-
ration into computer files.

2. Conduct district geologicmappingof a broad area,
including pertinent mineral deposits, on a scale
sufficient to develop the geologic history of the
area, and the relation of the deposit to that history.
Pay particular attention to pre-, syn-, and post-ore
processes.

3. Conduct detailed geologic mapping to provide
geometric constraints to the mineralized zone.
This work includes maps, sections, plans, isopach
maps, structure contour maps, Connolly dia-
grams, stratigraphic correlation, and so on as re-
quired to deal with the development of an appro-
priate ore deposit model for a specific mineral
deposit.

4. Detailed characterization of mineralization styles
(e.g., stockwork, simple vein, sheeted vein, pre-
ferred orientations of veinlets, crackle zone, brec-
cia, disseminated, massive), with emphasis on
characteristics such as orientations, mineralogy,
structure, lithology, alteration, and so on.

5. Deposit mapping should include a comprehensive
mineralogic (applied) study that includes atten-
tion to mineral associations, mineral zoning, tex-
tural variations (grain size, inclusions), features
affecting metal recovery, paragenetic relations,
association of precious metals with base-metal
sulphides, alteration mineralogy, and so on that
might have an impact on mineral inventory (e.g.,
different stages of veining that do not have the
same spatial distribution). A specialized applica-
tion of mineralogy is the early estimation of the
sampling constant inGy’s equation for fundamen-
tal sampling error.

6. Detailedmapping of ore/waste contacts where ex-
posed (trenches, stripped areas, underground ex-
ploration workings), preferably at several distinct
sites throughout the deposit, with at least one such
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area per mineralization style. At each locality, this
mapping should be done over a distance at least as
great as the normal distance of interpolation (e.g.,
distance between sections) so as to provide a ba-
sis for determining the magnitude of error that
results by imposing a smooth ore/waste contact
between control points. Ore/waste contact map-
ping should not be limited to drill-core logging
because that produces only a point view of the
contact and a one-dimensional view of the con-
tact zone. The aim of this category of mapping is
to gain a detailed appreciation of the nature of the
contact zone over distances that are at the scale of
the normal spacing between control points so that
a realistic idea can be obtained of errors implicit
in smooth interpolations. Where mining follows
such smooth surfaces, there is a definite possibil-
ity that some ore will be left in the walls and some
wallrock will dilute the mined ore material.

7. Detailed assay mapping across ore/waste bound-
aries in order to document the scale of the grada-
tions. Sample lengths might be much shorter for
this mapping than the common sample lengths of
the exploration program. Sampling lines across
the contact zone should be close spaced relative
to the distance between sections and should be
guided by the detailed geology. Sample design
should be such that composites of roughly com-
parable length to the standard exploration sample
could be formed from the smaller, more detailed
samples. Samples should be obtained contigu-
ously along closely spaced sampling lines; indi-
vidual samples can be of variable length to take
geology into account, with the main aim being to
understand the relation between grade and indi-
vidual geologic features.

8. In modern exploration programs, most samples
are linear (e.g., drill core, drill cuttings represent-
ing a particular interval of drilling, channel sam-
ples). Sampling design should include an effort to
maintain a more-or-less uniform sample support
(common length, mass, orientation) or to arrange
samples so that those of one support type can be
composited to rough equivalents of another sup-

port type. In general, samples should not cross
geologic boundaries; where they might, smaller
samples should be taken to conform to contacts.
It is easy to combine three 1-m sample assays to
a 3-m composite, but not possible to subdivide
a 3-m sample assay into 1-m assays without re-
sampling and reanalysis. A common support pro-
vides sound data for determining an unbiased his-
togram, as well as improving the estimation of
autocorrelation functions. Moreover, the use of
a common support contributes to minimizing lo-
cal estimation errors. In addition to common sup-
port, attention should also be directed to consid-
ering different spatial densities of sampling (sam-
ple spacing) in volumes characterized by differ-
ent mineralization styles, taking into account the
staged nature of exploration and the likelihood
that sample density will increase as exploration
proceeds.

9. Hard geologic boundaries are those across which
there is a sudden and significant change in geo-
logic character (definition depends to some extent
on scale). Hard boundaries must be defined dur-
ing exploration and used as a control in design-
ing a sampling plan. Individual samples should
not cross hard geologic boundaries such that data
from different geologic environments or different
ore types can be evaluated without contamination
of one data type with another. Soft boundaries
should be characterized by geochemical contrast
or correlation studies of data from both sides of
the boundaries.

10. Integrating all available geologic information into
an ore deposit model is useful because the process
requires critical evaluation of all characteristics
of a deposit, including continuity of various fea-
tures. Hence, developing an ore deposit model in
critical fashion provides confidence in interpola-
tions and extrapolations of geologic features (e.g.,
mineral zones, mineralizations styles), as well
as the detailed nature of ore/waste and domain
boundaries.

11. Geologic interpolations and extrapolations can be
made with improved confidence using a variety of
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drill holes, geophysical techniques, and multiele-
ment lithogeochemical surveys.
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2.11: EXERCISES

1. Select a well-described ore-deposits model from
one of the many compilations of such mod-
els (e.g., McMillan et al., 1991; Roberts and
Sheahan, 1988; Sheahan andCherry, 1993).Write
a three- to five-page account of the model and
include specific discussion of those features
that have a direct impact on mineral inventory
estimation.

2. The proceedings volumes of symposia on the ge-
ology of mineral deposits invariably contain cross
sections of the individual deposits considered. Se-
lect one such deposit/paper and provide a critique
of the cross sections or plans from the perspective
of their use in separating fact from interpretation
and their potential use for resource/reserve audit
purposes.



3
Continuity

Resource/reserve estimation depends first and foremost on a geological model that provides a sound, confident
expectation that a well defined volume (deposit/domain) is mineralized throughout. Without this explicit decision
regarding geological continuity of a delimited mineralized zone, neither estimates nor classification of mineral
inventory is possible. (Sinclair and Blackwell, 2000, p. 34).

In Chapter 3, continuity is defined in relation to
mineral inventory estimation, and the concept of
a mineral deposit consisting of several distinct
domains of continuity is presented. Several case
histories are discussed to illustrate the distinction
between geologic continuity and value continu-
ity, as well as to review some of the methods
available for studying continuity. Reference is
made to both classic and new approaches to con-
sidering continuity.

3.1: INTRODUCTION

Continuity is a topic of international concern in the
studyofmineral deposits and the classificationofmin-
eral inventories. This characteristic is an important
parameter in several national resource/reserve clas-
sification systems used to describe formally those
parts of a mineral deposit that can be regarded as
being well-defined assets of mining and exploration
companies. Examples of such systems are those of
the United States (USGS, 1980), Australia (AIMM,
1988), and Canada (National Policy Statement 2A
of the Canadian Security Administrators). These re-
source/reserve classification schemes describe the

near certainty with which the best-defined reserve
category should be known (by observation and very
limited interpolation) and the decreasing certainty of
continuity in other categories of resources/reserves.

During the 1980s, many gold exploration and pro-
ducing companies placed too little attention toward
confirming the physical continuity of mineralization
prior to an actual production decision (e.g., Clow,
1991; Knoll, 1989). The resulting errors in estimat-
ing metal grades and ore tonnages contributed to the
early closing of several mines and the abrupt termina-
tion of plans for production at others. More reliable
estimates of mineral inventories require better under-
standing of continuity as a prelude to detailed mineral
deposit appraisal.

Two types of continuity are recognized in min-
eral inventory studies (Sinclair and Vallée, 1994),
geologic and value continuity. Definitions are sum-
marized in Table 1.4. The following discussion of
continuity is adapted largely from Sinclair and Vallée
(1994).

3.2: GEOLOGIC CONTINUITY

Geologic continuity is the physical or geometric oc-
currence of geologic features that control localization
and disposition of mineralization. These controlling

59
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Figure 3.1: Qualitative relation of geologic continuity as a function of ore mineral abundance. The diagram is useful in showing
the relative difficulties of obtaining mineral inventory estimations in average deposits of the various classes shown. The
concept of geologic continuity is illustrated schematically along the x axis. Redrawn from King et al. (1982).

features can be lithologic or structural, primary or sec-
ondary, and commonly there is a complex interplay of
more than one control. Superimposed metamorphic,
structural, or alteration processes can disrupt (or en-
hance) an originally continuous body. Geologic con-
tinuity is a geometric feature and a function of scale;
increasing continuity within a mineralized zone can
be imagined (cf. King et al., 1982) in the progression
from widely dispersed mineral grains through larger
blebs and semimassive ore to massive ore (x axis in
Fig. 3.1). This is a useful if simplistic view because
the relative scales of sample size and the size of min-
eralized blebs also must be taken into account. For
example, 10-m blastholes in a porphyry-type deposit
are many orders of magnitude larger than the individ-
ual blebs of ore minerals. Thus, physical continuity
of mineralized ground should be viewed in terms of

the sample size – in this case, the zone of dissemi-
natedmineralization rather than the dispersedmineral
blebs.

Geologic observations regarding the nature of pri-
mary or secondary features is the input from which
the physical continuity of a mineral deposit is inter-
preted. This geologic information is based on some
combination of surface observations, drilling, and un-
derground information that provide the basis for ob-
serving and recording the main features of the min-
eral concentration of interest (mode of occurrence
and spatial distribution) and the major features con-
trolling mineral distribution: intrusion; volcanic or
sedimentary layer; faults or shear zones; and folds,
stockwork, and so on. The methods that can be used
and their effectiveness depend on the level of infor-
mation available and on the geologic framework and
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Figure 3.2: Example of the importance of using geologic in-
formation to interpret physical continuity of ore. This ideal-
ized example shows the vertical projection of a vein. Recog-
nition of the local discontinuity in the vein depends on
(i) a knowledge of lithologic control on presence or absence
of mineralization, and (ii) detailed geologic mapping and in-
terpretation. Redrawn from Rostad (1986).

deposit type present, but have much in common with
techniques of stratigraphic correlation and include
theoretic studies, alteration patterns, chemical pro-
files across mineralized structures, mineral associa-
tion patterns, and so on, all of which also contribute
to the development of an ore deposit model.

Geologic information is used to interpret explic-
itly, systematically, and in three dimensions (cf. Sides,
1992b) the general geologic environment and general
extent and character of mineralized ground. Then fol-
low assumptions (interpolations and extrapolations)
about the presence, extent, and limits of a mineral-
ized structure or mass in relation to the sample con-
trol sites and the known geology (e.g., Fig. 3.2). These
assumptions are based on an understanding of conti-
nuity derived from a geologic framework known only
within limits. For convenience, deposit types can be
grouped into a few basic categories. For example,
King et al. (1982) propose a useful geometric scheme
as follows: massive and/or disseminated, stratiform
(or planar/tabular), vein systems, surficial (resid-
ual), and alluvial (placer) deposits. These descriptive
categories can be further subdivided if necessary.
Direct geologic observations and correlations are sup-
plemented by indirect geophysical evidence to assist
in developing a three-dimensional image of the geol-
ogy in and around a mineral deposit.

Inmany cases, a particular geologic character per-
sists in much the same manner in all directions within
a domain (i.e., a feature is isotropic). However, most

geologic attributes are directional or anisotropic in
nature, and differ in their character as a function of
direction in space. Several examples emphasize the
importance of this attribute of anisotropy. Within a
zone of sheeted veins, it is evident that the physical
continuity of a single vein is more extensive within
the plane of a vein than across the vein. Similarly,
it is common that the regular array of sheeted veins
has greater physical continuity parallel to the plane of
the vein than across that plane. A syngenetic massive
sulphide deposit generally is more extensive paral-
lel to bedding than across bedding. Similarly, min-
eralization in shear zones is generally more elongate
within the plane of the shearing rather than across
the shear zone. Anisotropy of shapes of mineralized
zones is a common product of the processes that
form such zones and reflects underlying anisotropic
geologic attributes. This concept of anisotropy is fun-
damental in the application of geology to obtaining
high-quality resource/reserve estimates. Experience
suggests that preferred directions of geologic con-
tinuity commonly are also preferred directions of
grade continuity, as illustrated in Fig. 3.3 for the South
Tail zone of the Equity Silver Mine, central British
Columbia.

N

0 100 m

Figure 3.3: Open-pit limits, 1310 level, South Tail zone,
Equity silver deposit, central British Columbia. The dashed
line separates the deposit into two domains, each char-
acterized largely by stockwork mineralization. In the north-
ern (smaller) domain, the predominant veins strike roughly
easterly; in the southern domain, the predominant vein di-
rection is parallel to the length of the open pit. These dif-
ferent directions of strong continuity of veins are illustrated
schematically by the ellipses (the axes of which are propor-
tional to semivariogram ranges). After Giroux et al. (1986).
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Figure 3.4: Homogeneity of mineralization versus ore min-
eral abundance. As used here, the term homogeneity is
akin to the concept of grade continuity. Highly homoge-
neous ores are relatively easy to estimate with confidence;
less homogeneous ores are more difficult to estimate. Re-
drawn from King et al. (1982). Symbols are as follows: E =
evaporite; C = coal; Fe = bedded iron ore; P = phosphate;
B = bauxite; Pb Zn = stratiform lead–zinc; Ni = nickel;
SSn = stratiform tin; PC = porphyry copper; VSn = tin
veins; V = gold, silver veins; U = uranium. The diagram is
highly schematic and exceptions exist.

It is important to realize that adopting a deposit
model introduces implicit assumptions about both ge-
ologic continuity and value continuity, as implied in
Figs. 3.1 and 3.4. For example, the well-established
physical and grade continuity parallel to bedding con-
trasts markedly with the highly irregular geometric
form and erratic grade distribution characteristic of
many skarn deposits. These model-related assump-
tions, built into early resource/reserve estimates, must
be documented explicitly as work progresses. Once
deposit delineation has reached a sufficient level of
confidence, physical continuity can be studied effec-
tively through the use of many traditional procedures.
In tabular deposits – the use of structure contours (e.g.,
Fig. 3.8) and isopach maps (e.g., Fig. 2.15b) for eval-
uating trends and physical disruptions to trends – is
well established. Similarly, Conolly diagrams, based
on contoured distances from an arbitrary plane near

and subparallel to the tabular form of a mineralized
zone, are useful for recognizing changes in orientation
and disruptions in tabular bodies (Conolly, 1936).
Contoured maps of such variables as fracture den-
sity, vein density, and grade (one or more elements)
aswell asmineral ormetal zoningmaps for successive
levels or vertical sections are other useful procedures
(e.g., Fig. 1.17). They are particularly useful for eval-
uating continuity of equi-dimensional deposits and
for comparing spatial distributions of various metals.
For example, two metals may have been deposited si-
multaneously with the result that they have a similar
spatial distribution (e.g., Fig. 6.12), or they may have
been deposited at different paragenetic stages of de-
position, in which case there is a possibility that their
spatial distributions will differ significantly.

Geologic features that affect physical continuity
of a mineralized mass can predate, postdate, or be
synchronous with the mineralization process; hence,
a detailed geologic history is essential to sorting out
all possible complexities that might affect an interpre-
tation of continuity. Preexisting structures can them-
selves be physically continuous, but this does not
guarantee the existence of a continuously mineral-
ized zone. Undetected en echelon structures can cause
uncertainty in developingmodels of physical or grade
continuity (e.g., Leitch et al., 1991). The effect of
faulting or folding, which potentially disrupts min-
eralized ground, also must be considered. Clearly, a
detailed geologic evaluation, with particular attention
tomineralization control and possible subsequent dis-
ruption, contributes to the understanding of physical
continuity of geologic bodies and is an essential pre-
lude to mineral inventory studies.

Generally, the limiting scale on which one needs
to define geologic continuity is the size of the se-
lective mining unit. In the case of value continuity,
the required scale of knowledge is substantially less
than the dimensions of the selective mining unit. The
question of scale clearly is important for samples used
in reserve estimation, if for no other reason than the
constraints of possible mining methods and the im-
plications to ore/metal recovery. Composites that are
large relative to the size of original samples (e.g., 3-m
core samples vs. 12-m composites) have a smoothing
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effect on original grade values; consequently, a min-
eral distribution pattern that is highly irregular, as
based on contouring grades of short samples, might
appear much more regularly distributed if based on
much larger composites.

3.3: VALUE CONTINUITY

Value continuity is a measure of the spatial character
of grades, mineral abundances, vein thicknesses, or
some other value or quality (or impurity) measure,
throughout a specified domain of interest. As an ex-
ample of value continuity, grades are said to be contin-
uous over distances for which they show a recogniz-
able degree of similarity. Hence, continuity of grade
is linked closely with the concept of homogeneity of
mineralization (Fig. 3.4).Whereas a geologic attribute
is commonly a present or absent feature, value con-
tinuity is a question of degree. Mineralization may
extend between control points; the problem is to as-
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Figure 3.5: Example of a grade profile (5-m composite grades) along a drill hole in an epithermal gold deposit. The drill hole is
entirely within mineralized/altered volcanic rocks and illustrates different physical continuity for lower grades versus higher
grades. A low-grade population of grades is continuous over greater distance (on average) than is a high-grade population.

certain how representative the grades of the control
points are of the intervening ground. Generally, the
structural and/or lithologic zones that localize or con-
trol mineralization (i.e., zones of geologic continuity)
are the limitswithinwhich value continuity is defined.
It is one thing to have identified the structure(s) con-
trolling mineralization, but another thing to have rea-
sonable expectation that the structure, or a particular
part of the structure is continuously mineralized (and
of ore grade) between control points. Grades normally
are continuous over much shorter distances than the
dimensions of the controlling geologic structure.

In the past, value continuitywas examined subjec-
tively by using such traditional techniques as grade
profiles (Fig. 3.5) and grade–contour maps/sections
(e.g., Fig. 1.17); both are useful techniques and should
form part of the data evaluation stage in preparation
for a mineral inventory study. Grade profiles along
linear samples (e.g., drill holes, trenches) are use-
ful because they illustrate the spatial character of



64 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

contiguous grades (or nearly so) and closely spaced
samples over short to intermediate distances. Obvi-
ously, it is useful where possible to examine grade
profiles for drill holes with different orientations
through a deposit. Contoured values (commonly
widely spaced control points) reflect an implicit as-
sumption that the variable is continuous between con-
trol points. Hence, plots of contoured grade values,
while instructive, must be viewed critically in the
study of value continuity; there must be geologic rea-
son to believe thatmineralization is continuouswithin
the contoured area. For example, grade contours for a
bench of a porphyry-type deposit probably incorrectly
depicts that part of a mineralized field cut locally by
barren dykes.

More recently, value continuity has been stud-
ied by the use of autocorrelation functions such as
semivariograms and correlograms that quantify a sta-
tistical or average continuity in various directions
throughout a deposit or a significant domain within
a deposit. In general, these models show an increas-
ing average disparity between samples as the distance
between samples increases. For many deposits, such
measures level off at a sample spacing referred to as
the range (i.e., range of influence of a sample). Ranges
can be the same in all directions (isotropic continu-
ity) or can vary with direction (anisotropic continu-
ity). Relative ranges can be used to construct ellipses
that demonstrate variations in continuity in differ-
ent directions and from place to place in a deposit
(Figs. 3.6 and 3.7).

These quantitativemeasures of continuity are built
on an assumption concerning the physical continuity
of amineralized body. Commonly, this statistical con-
tinuity is determined with greatest confidence along
themain axis of sampling (e.g., along drill-hole axes).
Sampling in the other two dimensions is commonly
muchmore widely spaced (i.e., distance between sec-
tions and distance between drill holes along these sec-
tions is much greater than sample spacing along drill
holes; see Fig. 3.5). For these less well-sampled di-
rections, a conceptual understanding of continuity is
very dependent on geologic interpretation. In Figs.
3.3 and 3.7, the long axes of the ellipses are paral-
lel to the principal directions of geologic and value
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Figure 3.6: Experimental semivariograms (autocorrelation
functions) for horizontal and vertical directions for the east
domain of the East zone, Huckleberry porphyry copper de-
posit, central British Columbia (after Postolski, 1998). Note
that the ranges (distances at which the experimental semi-
variograms level off) differ with direction in the deposit
(i.e., value continuity is strongly anisotropic).

continuities in the various domains indicated. All el-
lipse axes are proportional to the ranges of influence
as determined from autocorrelation functions (in this
case, ranges of semivariograms), which characterize
average value continuity as a function of direction.
The use of autocorrelation functions as a tool with
which to characterize, compare, and contrast value
continuity quantitatively from one domain to another
is evident. Such ellipses are also useful in a relative
sense in depicting changing geologic continuity as a
function of direction in space.

Primary factors that affect the estimation of value
continuity in a particular geologic environment are:
(i) mineral/metal concentrations and (ii) mineral dis-
tribution patterns and controls at various scales.
Sample size (support) interacts with these primary
factors.
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Figure 3.7: Main zone, Huckleberry porphyry Cu–Mo de-
posit, central British Columbia. The zone is divided into
three domains (North, Central, and South), each charac-
terized by a continuity model illustrated schematically for
horizontal directions by an ellipse. The radii of the ellipses
represent ranges of influence for Cu as a function of di-
rection. A circular pattern indicates isotropic continuity of
grades; ellipses indicate anisotropic continuity of grades.
See Postolski and Sinclair (1998a).

In certain cases, value continuity is approximately
related to the concentrations of the metals/minerals of
interest and the geologic deposit model (cf. Fig. 3.4).
In particular, the average local variability of grades is
directly proportional to average grade. This generality
is consistentwith the concept of proportional effect, in
which the absolute value of an autocorrelation func-
tion (e.g., the level of average differences between
samples) varies systematically with mean grade, as
discussed in Chapter 8.

3.4: CONTINUITY DOMAINS

A geological domain is a spatial entity that
represents a well-defined mineralized body. A
qualified domain for mineral estimation should
contain no, or a minimum amount of, “non-
mineralized” materials. The domain boundaries
are usually defined on the basis of both assay and
geological information. Assays are used to de-
termine a cutoff criterion for the boundary, while
geological information, such as faults, may as-
sist to verify or refine the boundaries and to infer

the boundaries in the sections where insufficient
assay information is available. (Pan et al., 1993,
p. 382)

Different parts of a single deposit can be distinctive
geologically, and thus can be characterized by dif-
ferent models of physical and statistical continuity
(Vallée and Sinclair, 1993). Consequently, for min-
eral inventory purposes it may be desirable, even nec-
essary, to subdivide a deposit into separate domains,
using as a basis the geologic features that control or
characterize mineralization. Even a simple vein can
give way over a short distance to a zone of horsetail
veins. Similarly, where conjugate fractures control
mineralization, one fracture direction can predomi-
nate in one part of the deposit and the second fracture
direction elsewhere in the deposit (e.g., Figs. 2.1, 2.4,
and 3.3). In certain cases, a uniform sampling grid size
or orientation may not be appropriate for all domains
or zones of a deposit. The Kemess South porphyry-
type copper–gold deposit, described by Copeland and
Rebagliatti (1993), is characterized by five distinct
continuity domains with differing geologic charac-
teristics. These authors strongly emphasize the impor-
tance of geologic control in optimizing continuity as-
sumptions for mineral inventory purposes. Similarly,
each of the five distinctive lithologic domains at the
Golden Sunlight gold deposit has its own character-
istic autocorrelation model for gold-grade continuity
(Sinclair et al., 1983).

In practice, many problems in establishing phys-
ical continuity are related to shortcomings of the
geologic information base. For example, basic infor-
mation dealing with the geologic framework and the
actual stratigraphy or structure of the rocks hosting
a deposit may be missing or very sparse because
only limited drill intersections are available. In such
a case, the geologic model, the deposit (geometric)
model, the derived continuity assumptions, and the
interpreted grade and tonnages are all vulnerable to
large changes as new information is obtained.

Some of the types of domains that can be antic-
ipated in a porphyry-type deposit are illustrated in
Figs. 2.16, 2.17, and 3.7. In Fig. 2.17, distinction
is made between leached, supergene, and hypogene
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zoneswhose geologic (and ore) charactermight be ex-
pected to differ from one rock type to another. In order
to integrate such information into a mineral inventory
estimation it is apparent that the basic geologic char-
acteristics must be mapped spatially and examined in
conjunction with assay information. Even where the
host rock appears uniform in a porphyry environment,
different domainsmight result because of different in-
tensities or directions of predominant structures that
control primary mineralization (e.g., Fig. 3.7).

3.5: CONTINUITY IN MINERAL INVENTORY
CASE HISTORIES

A multitude of methods have been developed for
studying continuity, not all of which can be illustrated
here. Three gold-bearingmineral deposits of different
geologic types serve to demonstrate some of the use-
ful approaches that can be applied to developing an
understanding of both geologic and value continuity
as a prelude to undertaking a mineral inventory study
(i.e., the Silver Queen epithermal, polymetallic [Zn,
Pb, Ag, Au] vein, the Shasta epithermal Au–Ag vein,
and the Nickel Plate Au-bearing skarn [cf. Sinclair
and Vallée, 1994]).

3.5.1: Silver Queen Deposit

TheSilverQueenproperty in centralBritishColumbia
includes polymetallic, epithermal veins that were
mined briefly during 1972–1973. Production ceased
because of too few headings to provide sufficient mill
feed and liberation problems that led to very lowmetal
recoveries (W.Cummings, personal communications,
1990). Production andmost explorationwere centered
on the No. 3 vein system, which strikes northwest-
erly, extends for about a kilometer of strike length,
and dips moderately to the northeast (Leitch et al.,
1990). Thickness is variable, commonly in the range
of 0.1 to 2.0 m. Two recent independent mineral in-
ventories of the central segment of the No. 3 vein
(Nowak, 1991) indicate reserves of about 700,000
tons averaging 0.08 oz Au/t (2.7 g Au/t), 4.8 oz Ag/t
(163 g Ag/t), 0.2 percent Cu, 0.8 percent Pb, and
5.4 percent Zn.

Several geologic characteristics of the No. 3 vein
system influence the methodology used to evaluate
continuity, namely, changes in orientation of veins,
crosscutting faults, a variable alteration halo that lo-
cally is brecciated and mineralized, and the en ech-
elon character of the No. 3 vein system (Leitch
et al., 1991). These features were recognized through
detailed geologic investigations of exploration drill
core and limited underground workings, and their ef-
fects on estimation procedures are worth considering
briefly.

Most of the 118 exploration, diamond-drill-hole
intersections indicate clearly defined vein intervals; a
few anomalously thick vein intersections were found
to include both a vein interval and adjacent miner-
alized brecciated ground. Where intersected in exist-
ing workings, these brecciated margins were found
to have limited lateral extent relative to the more
continuous vein. The widely spaced drill data also
provide some insight as to the limited physical ex-
tent of these breccia bodies, in particular, recogni-
tion that they do not extend between any two adja-
cent drill holes. In contrast, the vein structure and its
associatedmineralization are evident in all 118 explo-
ration drill holes, thus establishing the general conti-
nuity of vein material within the controlling structure.
Precious metal grade profiles were found to define
vein thickness where marginal breccias occur (Leitch
et al., 1991). Thus, in several drill holes with abnor-
mally thick vein intersections from the late 1960s for
which logs and core were not available for reexam-
ination, true vein thicknesses were estimated using
precious metal profiles; the excess thicknesses were
attributed to noncontinuous breccia zones.

Vein continuity was investigated in detail by
means of a structure contour map (Leitch et al., 1991)
that displays the following features (Fig. 3.8):

(i) The en echelon character of parts of the vein
system

(ii) A substantial segmenting of the vein due to
offsets along cross faults, some with more than
100 ft (31 m) of apparent horizontal movement

(iii) An abrupt large change in vein strike near the
south end of the system.
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Examination of underground workings substanti-
ates this view of geologic continuity, as initially de-
veloped from exploration drilling.

Detailed investigations by Nowak (1991) demon-
strate well-defined autocorrelation for vein thickness
and various grade measures (Pb, Zn, Cu, Au, Ag) us-
ing both variograms and correlograms (Fig. 3.9). The
resulting geostatistical estimates (ordinary kriging) of
grades and tonnage are comparable to, but slightly
less than, global estimates obtained in an indepen-
dent polygonal study (Nowak, 1991). This is a pat-
tern that commonly exists in such comparative stud-
ies. Of course, the value continuity models assumed
for the two estimation methods are very different, and
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Figure 3.9: Average value continuity for gold accumulation
(a) and vein thickness (b) for the No. 3 vein system, Silver
Queen Mine, central British Columbia (see Fig. 3.8) illus-
trated by an autocorrelation function. In this example, the
autocorrelation function is a modified correlogram (i.e., a
correlogram for which all values have been subtracted from
1 so that the form is that of a semivariogram). In this
case, exponential models have been fitted to the data (see
Chapter 9). Data from Nowak (1991).

this contributes to the disparity in the estimates. The
polygonal method assumes the unlikely situation of
uniform, local continuity that is perfectly known for
each polygon of influence surrounding each data point
(drill hole); the geostatistical approach assumes a sta-
tistical continuity to ore grades represented as an av-
erage continuity by an autocorrelation function.

3.5.2: JM Zone, Shasta Deposit

The JM structure at the Shasta Mine, northern British
Columbia, is a highly altered and silicified zone in
basalt of the Toodoggone Formation. Gold and silver
values of economic interest are associated with small,
epithermal quartz veins that strike northerly with near
vertical dips, located within the much broader altered
zone. Individual veins extend along strike from a few
to 15 m; many occur in clusters across the strike to
define zones of economic interest, as shown schemat-
ically in Fig. 3.10. Drilling shows the broad, altered
zone to range to 100 m in width and commonly

25 m

Alteration Limit

Figure 3.10: Schematic representation of the physical dis-
tribution of high-grade values with short-distance continu-
ity, relative to spacing of drill sections, as occurs in the
Shasta deposit. Clusters of high grade, northerly striking
quartz veins are in a northerly striking altered zone within
unaltered volcanic rocks. Note that high-grade zones can
occur between drill sections and be unrepresented in data
available for estimation; hence, local estimates by projec-
tion of known grades are subject to large errors. Redrawn
from Sinclair and Vallée (1994).
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contains one to three separate vein concentrations
across its width. Individual zones of vein concentra-
tions are commonly from less than 1 m to several
meters in width (Nowak et al., 1991).

The two principal mappable features whose phys-
ical continuities are of interest are as follows:

(i) A variably mineralized, broad alteration zone
(ii) Confined zones of high concentrations of small

quartz veins or quartz-infilled breccia.

Surface exposures, exploration drill holes, and
underground workings all show that the alteration
zone is a continuous, crudely tabular zone. This zone
appears to have developed outward from various frac-
ture zones nowoccupiedbyquartz veins, concentrated
in less well-defined, vertically dipping lenticular
masses. Most individual quartz veins appear to have
a physical continuity very much less than the 25-m
spacing of drill sections; even clusters of veins com-
monly do not extend between two adjoining sections.

The clusters of quartz veins are associated with
the highest preciousmetal grades; understanding their
continuity is fundamental to forecasting the loca-
tions, tonnages, and grades of ore zones. The phys-
ical occurrence of ore-grade material between rel-
atively widely spaced sampling information from
exploration drilling provides an added component of
uncertainty.

A quantitative model for grade continuity (semi-
variogram model) has been constructed from produc-
tion data and known geology to demonstrate, through
simulation, the nature of grade distribution and the
correlation (continuity) problem (Nowak et al., 1991).
Figure 3.11 is an example of two such conditional
simulations done using GSLIB software (Deutsch
and Journel, 1998), and clearly demonstrates the in-
tractable problem of estimating local resources where
the physical continuity of ore shoots is short com-
pared with the spacing of available data. This exam-
ple demonstrates how important it is that exploration
data provide insight into the detailed nature of local
grade continuity so that there is clear appreciation
of whether interpolation is possible. When interpola-
tion is not possible, more closely spaced information
might be required, or conditional simulation might

(b)

(c)

(d)

(a)

Figure 3.11: Conditional simulations of grades above and
below cutoff, JM zone, Shasta Mine, Toodoggone Area,
British Columbia. (a, b) Two independent horizontal simu-
lations; (c, d) two independent vertical simulations. Black
is ore grade, stippled is altered rock below ore grade. Area
of simulation is 500 m × 55 m. White areas are unminer-
alized or areas for which insufficient data were available to
create a simulation.

prove adequate as an estimation procedure. Never-
theless, in such cases of insufficient data, conditional
simulation is a potent tool to understand and illustrate
the character of grade continuity, and may serve as an
adequate estimation procedure in some cases.

In summary, the geologic continuity of the broad
altered zones can be established with confidence by a
variety of routine geologic mapping procedures that
provide thenecessary information to construct a three-
dimensional geometricmodel. Exploration data, how-
ever, are much too widely spaced (drill sections are
about 25 m apart along the structure) to provide
a confident interpolation of grades. In such cases,
conditional simulation is shown to be a practical
means of clarifying and documenting the problem of
grade interpolation.

3.5.3: South Pit, Nickel Plate Mine

Mineralization at the South Pit, Nickel Plate Mine
(south central British Columbia) occurs as three
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Figure 3.12: Vertical E–W section (1000 N) through the cen-
ter of the South Pit, Nickel Plate skarn gold deposit, Hedley,
British Columbia. Labeled vertical lines are exploration drill
holes projected on the plane of the section. Basal lime-
stone and diorite sills are shown as shaded patterns. Rel-
ative gold grades in zones of skarn (blank) are indicated
by bar-graph profiles on drill holes. Ultimate pit and original
topography are shown for reference. Redrawn from Sinclair
et al. (1994).

zones of gold-bearing, massive to disseminated pyr-
rhotite-rich sulphides in a calcite skarn layer strik-
ing about N–S and dipping about 30 degrees to the
west (Figs. 3.12 and 3.13). Gold values are associated
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Figure 3.13: Plan of the South Pit, 5280 bench, Nickel Plate Mine, southern British Columbia. Dotted zones are mapped
dioritic intrusions that disrupt continuity of ore. Black rectangular areas are blocks estimated to be above cutoff grade (i.e.,
> 0.03 oz Au/t). Redrawn from Sinclair et al. (1994).

erratically with sulphides. The geometry of mineral-
ized zones can be approximated from assay plans and
sections (Sinclair et al., 1994). Almost all of the 371
surface exploration drill holes used are vertical and
intersect one or more of the sulphide-bearing zones
indicated in Fig. 3.12. The presence of sulphides in the
appropriate stratigraphic positions in large clusters of
drill holes demonstrates the geometric continuity of
the three sulphide zones in three dimensions. Thick-
nesses of these zones are variable, and so interpola-
tions between adjacent drill holes are approximate.
Nevertheless, the physical continuity of roughly tab-
ular form for each of the three sulphide-bearing zones
is established. Physical continuity of sulphide zones
is disrupted locally by thick dioritic sills (Figs. 3.12
and 3.13).

A detailed data evaluation included examination
of exploration drill-hole profiles (Fig. 3.12 and 3.14)
and probability graphs of gold grades (Fig. 6.6). Pro-
files showed that individual high-grade gold assays
were invariably flanked by very much lower grades
(i.e., high grades have very limited physical continuity
of the order of 3 m or less in a vertical direction along
diamond drill holes). No information is available as
to the extent of high-grade continuity in the plane
of stratification (between drill holes that are sepa-
rated by about 80 ft). The probability graphs identified
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Figure 3.14: Two short-grade profiles from vertical exploration drill data illustrate the different nature of continuity of high
grades (left) and low grades (right). In general, extreme grades are isolated from each other by relatively large intervals of
low grades, whereas low grades are more highly correlated spatially (i.e., low grades are more similar over much longer
distances than are high grades). After Sinclair et al. (1994).

this upper population of gold grades with low conti-
nuity as values above about 17 gAu/t (0.5 oz/t); coin-
cidently, this is the cutting factor used at the minesite
(Sinclair et al., 1994). Results of this study illustrate
the dramatic impact of accounting or not accounting
for the different characters of high- and low-grade
gold continuity; exploration-based estimates using the
inverse squared distance method overestimated grade
by about 45 percent, in contrast to a block kriging
approach that considered different continuity models
for high- and low-grade gold subpopulations. When
the differences in continuity are taken into account,
resulting reserve estimates based on exploration data
closely match production.

3.5.4: Discussion

In a discourse such as this, it is not possible to con-
sider all aspects of continuity in detail. Each mineral
deposit is, in many of its attributes, different from any
other. The three mineral deposits used as examples,
however, present very different geologic character-
istics that lead to different approaches to the study
of geologic or value continuity. Thus, the examples
provide an indication of the diversity of approaches
available, the importance of geologic control, and the

intellectual flexibility required by mineral inventory
estimators in adapting methodology to geology.

For the Silver Queen deposit, the traditional
method of structure contours is particularly useful in
defining primary and secondary aspects of en echelon
vein (geologic) continuity. Autocorrelation functions
were determined to quantify value continuity mea-
sures such as follows:

(i) Vein thickness (thus contributing to vein geome-
try and tonnage estimates)

(ii) Metal accumulations (grades× thickness), hence,
grades (Nowak, 1991).

Both widely spaced drill-hole information (70-m
spacing) and more localized, closely spaced informa-
tion from exploratory underground workings (about
3-m spacing) were used to develop the autocorrela-
tion models. The vein system was treated as a single
domain by “unfolding” the two segments of different
orientations to a common plane coincident with the
central part of the vein. Alternatively, the vein system
could have been considered two separate geologic do-
mains, separated where there is a sharp change in
orientation.

In the case of JM zone, the relatively sparse ex-
ploration drill-core assays were adequate to define
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geologic continuity of a broadly mineralized/altered
zone, but were too widely spaced (25 m) to charac-
terize grade continuity (Nowak et al., 1991). Closely
spaced underground information, although localized,
permitted the development of an autocorrelation func-
tion for grade, providing a basis for undertaking con-
ditional simulations of grade. These simulations
clearly demonstrate the absence of ore continuity be-
tween sections spaced at 25 m, and assist in defin-
ing the type of additional sampling information that
wouldbenecessary todocument details of value conti-
nuity, and serve as a sound basis for mineral inventory
estimates and, eventually, production quality control
(Nowak et al., 1991).

The crudely tabular shapes of mineralized zones
at the Nickel Plate Mine are well demonstrated by
two-dimensional views showing grade profiles as bar
graphs along exploration drill holes (Fig. 3.9 and
Sinclair et al., 1993). Geologic continuity of three
mineralized domains (layers) separated by barren
ground is evident. Autocorrelation studies done in-
dependently in each domain indicate that the same
autocorrelation model for gold can be applied to
all three layers. Grade data within individual lay-
ers demonstrate the common problem of multiple
populations – in this case, two, each of which must
be examined separately with respect to continuity.
How continuity for each data population is estimated
or dealt with depends on the data density and spa-
tial disposition of each population. At the Nickel
Plate Mine the low-grade gold population is suffi-
ciently abundant to warrant estimation of an auto-
correlation function (semivariogram). However, the
high-grade population occurs as isolated values or
clusters of very few values (i.e., the high-grade popu-
lation is not concentrated in large enough volumes for
a characteristic autocorrelation function to be deter-
mined). Instead, high grades were cut to a threshold
defined by a probability graph analysis of the total
assay data and involving partitioning of the cumu-
lative curve into two subpopulations, high and low
grades. This graphic technique has not been widely
used in the study of grade continuity, but clearly
has potential for such a purpose and warrants wider
consideration.

Generally, a substantial amount of data is required
to establish a sound autocorrelation model for a min-
eral deposit. With foresight and planning, such data
can be obtained early in the exploration history of a
deposit, although the absolute amount of data required
cannot be forecast in advance. Once an autocorrela-
tion model has been established, both grade estimates
and grade simulations based on such models can be
generated. The simulation example for the JM deposit
illustrates the advantage of simulations in appreciat-
ing grade continuity early in the exploration history
of a deposit. At advanced stages of exploration and
at the feasibility stage, conditional simulations, being
closely tied to increased quantities of grade informa-
tion, improve our local understanding of grade conti-
nuity and provide sound planning and quality control
information for both mining and milling.

3.6: PRACTICAL CONSIDERATIONS

All the practical considerations summarized for
Chapter 2 apply here. Assumptions regarding con-
tinuity must be adapted periodically to a continually
improving knowledge of the geologic characteristics
of a deposit.

1. The adequacy of mineral inventory estimates de-
pends on a thorough appraisal of two types of
continuity: geologic and value.

2. Confidence in both geologic continuity and value
continuity requires a thorough understanding of
the general and detailed geology of a mineral
deposit and the surrounding area. Models of both
continuity types must be refined and verified as
the geologic information base and the sampling
base for a deposit evolve.

3. Models of geologic and value continuity are en-
hanced by strict quality control procedures for
data acquisition, interpretation, and modeling.

4. Evaluating continuity requires systematic geo-
logic and sampling check work, perhaps using a
formal audit procedure. Many methods are tra-
ditional; increasingly, however, computer-based
data analysis software is becoming essential to
this work. More attention must be given to the
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three-dimensional aspects of sampling grids, par-
ticularly in situations in which the range of value
continuity is shorter than sample spacing in a par-
ticular direction.

5. Several established evaluation procedures that
have not been used widely in continuity studies
can provide useful insight into an understand-
ing of value continuity. They are: (i) the use of
probability graphs to identify thresholds between
grade categories (subpopulations) with different
continuities (cf. Noble and Ranta, 1982); (ii) the
use of autocorrelation studies to quantify value
continuity (regardless of whether geostatistical
estimates are to be obtained); and (iii) the use
of conditional simulation as a means of repre-
senting and understanding the nature of value
continuity.

6. The physical continuity of an ore-controlling
structure and the statistical continuity of ore-grade
material within that structure are fundamental at-
tributes of a geologic model that serves as a base
for mineral inventory estimation. These are not
attributes that can be easily quantified in terms
of risk. However, they are attributes that, on av-
erage, can be considered to be characteristic of a
deposit type, because deposit types generally are
characterized by particular attributes.
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3.8: EXERCISES

1. Contrast the different character of geologic conti-
nuity and value continuity in each of the following
scenarios:
(a) A zone of sheeted veins versus a stockwork

zone
(b) Massive Cu–Ni versus network Cu–Ni in ul-

tramafic rocks
(c) A feeder zone of a volcanogenic massive sul-

phide deposit versus an upper, stratified sul-
phide sequence of the same system. The
problem can be answered effectively by con-
structing sketches of the various mineral-
ization styles and superimposing ellipses to
represent geologic and value continuity in a
relative manner.

2. Table 3.1 provides U3O8 data (%) for contiguous
samples from eight drill holes (after Rivoirard,
1987). Construct a grade profile for any three con-
secutive drill holes and comment on the continuity
of both low and high grades (see also Fig. 7.9).
Assume that individual values are for 2-m samples
and that the drill holes are vertical, collared on a
flat surface, spaced at 25-m intervals, and num-
bered consecutively across a mineralized field of
flatly dipping sandstone beds.

3. Figure 2.1 is a geologic plan of the surface pit,
Endako molybdenum mine, central British
Columbia (after Kimura et al., 1976). Assuming
this level to be representative of the deposit, com-
ment on geologic and value continuity models for
the deposit.
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Table 3.1 Sample values of simulated U308 grades in eight drill holesa

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8

0.79 0.09 0.10 0.62 1.13 0.08 0.12 0.16
0.19 0.09 0.94 0.52 1.32 0.08 0.12 0.16
0.51 0.09 0.10 0.27 2.13 0.00 1.52 0.16
0.56 0.83 0.53 0.35 2.82 0.08 0.62 0.18
1.26 0.16 0.10 0.28 0.62 0.08 0.12 0.42
1.14 0.09 0.10 0.30 2.35 0.08 0.12 0.16
2.47 0.09 0.97 5.46 19.17 0.06 0.12 0.1
5.86 0.82 0.45 25.47 1.81 0.08 0.12 0.45
26.89 1.14 3.16 0.15 9.06 0.08 0.12 0.16
24.07 6.52 5.41 0.15 10.98 0.08 0.12 0.16
20.59 0.24 50.43 0.15 12.05 0.08 0.12 0.16
10.30 0.09 11.17 0.15 3.66 2.10 0.12 0.16
5.31 0.20 0.23 0.88 6.76 0.98 0.12 0.16
57.94 0.09 0.20 0.99 3.37 3.53 0.12 0.16
26.04 0.09 0.33 0.15 0.23 9.63 0.12 0.16
22.34 1.82 0.10 0.56 1.74 20.33 0.12 0.16
11.52 0.09 0.19 0.53 0.21 12.11 0.12 0.16
42.79 0.09 0.22 4.51 0.17 4.17 0.12 0.16
1.50 18.07 0.20 0.25 2.57 1.25 0.12 2.17
9.89 38.72 1.14 0.15 2.68 0.08 0.12 0.23
2.33 27.98 1.04 0.15 0.92 0.69 0.94 0.16
0.67 3.93 0.10 5.00 1.94 0.08 5.60 0.16
1.48 5.81 0.10 4.54 0.17 0.08 0.82 0.16
0.15 0.65 0.10 1.64 0.17 0.19 1.40 0.16
0.42 0.09 0.10 0.15 0.17 0.08 6.77 0.26
0.82 0.09 0.10 0.15 0.17 0.20 18.26 3.36
1.48 0.09 0.10 0.15 0.17 0.30 11.14 1.43
4.72 0.09 0.10 0.15 0.17 0.56 4.82 5.00
6.57 0.09 0.10 0.15 0.17 0.69 3.98 17.88
3.31 0.09 0.10 0.15 0.17 0.08 1.67 1.79
4.13 1.43 0.25 3.04 0.17 0.08 1.42 1.36
11.31 0.32 0.10 9.57 0.17 0.08 0.23 11.84
12.48 0.09 0.10 6.67 0.17 0.08 1.61 1.73
7.68 5.19 0.10 5.95 0.17 0.08 1.58 0.23
12.17 1.74 0.10 0.96 0.17 0.08 1.96 0.53
0.59 0.09 0.10 5.66 0.17 0.08 3.72 0.16
0.15 1.52 0.57 0.58 0.17 0.08 9.16 0.16
1.04 12.20 0.55 0.15 0.17 0.08 3.09 0.16
1.05 2.19 0.10 0.15 0.17 0.08 0.49 0.16
1.73 1.28 0.10 0.15 0.17 0.08 0.12 0.16
1.98 0.21 0.96 0.15 0.17 0.08 0.12 0.16
3.54 0.09 1.08 0.59 0.17 0.71 0.12 0.16

a After Rivoirard (1987).
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4. Consider a 100-m (northerly) by 30-m horizon-
tal zone of vertical, sheeted veins striking N–S.
Individual veins are 2–4 cm wide, can be traced
for 20–30 m along the strike, and are spaced at
10–15 cm intervals across strike. Three lines of
samples have been taken across strike: 25, 50,
and 75 m north of the south boundary. Each line
crosses the entire 30-m width of the deposit and
is composed of six contiguous 5-m samples.

(a) Comment on the quality of the sampling plan, as-
suming it to be an early stage evaluation.

(b) The grade estimation problem is two-dimensional
at this stage. How would you arrange an array of
5 × 10 m2 blocks for estimation? Why?

(c) Categorize the blocks in your array into several
groups of relative quality of estimate.



4
Statistical Concepts in Mineral Inventory

Estimation: An Overview

Statistics . . . should not be involved in ore reserve estimation until all other factors such as geological continuity and
contacts, lost core, representativeness, sampling and assay errors have been identified, examined and assessed.
(King et al., 1982, p. 18)

The aimofChapter 4 is to introduce classic statis-
tical terminology and methods in the context of
mineral inventory estimation. It is advantageous
for the reader who is unfamiliar with statistical
methodologies to have available an introductory
text in statistics from which to obtain a more
general background and insight into proofs or de-
velopments of various parts of the commentary.
Emphasis here is on simple and useful statisti-
cal procedures. Topics include central tendency,
dispersion, covariance, histograms, probability
density functions, probability plots, linear cor-
relation, autocorrelation, and linear regression.
All are presented in the context of their use in
mineral inventory estimation.

4.1: INTRODUCTION

Statistical methods and terminology have been ap-
plied to the characterization of ore since about 1945
(cf. Sichel, 1952; Swanson, 1945). Applications to
the study of quantitative numeric variables such as
metal grades or other deposit characteristics are com-
monly concerned with central tendency, dispersion
of values, the form of probability density functions
(histograms), simple correlation, autocorrelation,

relations among groups of variables, and a variety of
probabilistic statements related to some of these top-
ics. These traditional statistical approaches to sum-
marizing and understanding data are considered here
in their relation to mineral inventory estimation pro-
cedures. For deeper insight into the fundamentals of
statistics, reference should be made to the myriad of
texts available.

Statisticians speak of a population or universe
(i.e., the entire feature under study, e.g., a mineral
deposit). This universe or deposit is characterized
by variables (e.g., grades) with particular parameters
(e.g., mean, standard deviation) and a particular form
or shape to the spread of all possible values (data
items) about the mean (i.e., the probability density
function or the histogram). A general aim of statistical
work is to infer the parameters (characteristics) of the
universe (deposit) from a subset or sample of possi-
ble items (rock sample assays). For example, 345 rock
samples analyzed for Cu and Aumight be adequate to
characterize a particular deposit within an acceptable
level of error. Note the two uses of the word sample.
In statistical usage, the n individual values combine to
make a sample (consisting of n items) of the deposit.
In mining usage, a sample is commonly a physical
quantity of rock material, a representative fraction of
which can be analyzed to produce numeric measures
of quality (e.g., grades). Samples inmining evaluation

76
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projects generally are not randomly located in space,
but are more or less regularly positioned; sample pat-
terns vary from fairly regular to highly irregular, two-
or three-dimensional spatial arrays of data. Individ-
ual samples need not correspond in volume or mass
of rock to other samples, although some effort com-
monly is directed to having a uniform support (sample
size/shape) for most of a database.

4.2: CLASSIC STATISTICAL PARAMETERS

4.2.1: Central Tendency

Central tendency, the preferential clustering of values
in a data set, is most commonlymeasured by the arith-
metic average (m), determined by summing n values
and dividing the sum by n:

m =
∑

xi
n

.

If thenvalues are a randomsample of amore extensive
population, the average of the sample is an unbiased
estimate of the mean of the population. This mean
value can also be considered the expected value of a
random draw from the population.

In mineral inventory work, a common problem is
to estimate themeangrade from the grades of a limited
number of samples of differing size, as in the case of
forming composites (Section 6.3.1). As an example,
consider two successive drill-core samples that rep-
resent very different lengths of core. The mean value
of the combined sample is determined as a weighted
mean,withweights proportional to volumes ormasses
of the original samples (e.g., length in the case of split
core samples of different length, but of comparable
densities). A weighted mean is estimated as

mw =
∑

wi xi for
∑

wi = 1

where xi are the values being averaged and wi are
the corresponding weights. The relation wi = 1 is the
nonbias condition, which is essential to make the
weighted mean unbiased. As a simple example of a
weighted-mean estimate, consider two copper assays
of 1.5 percent and 0.5 percent for drill-core lengths

of 3 m and 1 m, respectively. The average, weighted
by lengths, is (1.5 × 3/4 + 0.5 × 1/4) = 1.25%, and
assumes that the densities of the two samples are iden-
tical. Suppose that the densities are 3.3 and 2.7 g/ml
respectively. The weighted average, mw , becomes

mw =
∑

(wi xi ) =
∑

(�i di xi )
/ ∑

(�i di )

= [(1.5× 3× 3.3)+ (0.5× 1× 2.7)]/

[(3× 3.3) + (1× 2.7)]

= (14.85+ 1.35)/(9.9+ 2.7)= 1.29

where wi = �i di/�(�i di ) and �i and di represent the
length and density, respectively, of sample i .

In mineral inventory work, weighting assays by
sample density might be important, but the procedure
is not as widely used as warranted, perhaps because of
the additional time and cost of obtaining density data.
A hypothetical example from Bevan (1993) demon-
strating the potential impact of density weighting is
given in Table 4.1 and involves the procedure for com-
bining grades of two equal volumes: one of chalcopy-
rite and the other of quartz, two minerals with very
different densities. The first weighting procedure in
Table 4.1 correctly takes relative weights of the two
volumes into account. The second weighting proce-
dure ignores the effect of different specimen densities
and produces a serious underestimate of the grade
(17.3% Cu versus a true grade of 21.25% Cu, an un-
derestimate of about 19%).

It is common practice in the mineral industry to
make subgroups (divide data into two or more grade
ranges) of duplicate assay data for the purpose of com-
paring average grades by two laboratories for each
grade range. For example, average grades above a
cutoff grade for two different laboratories might be
compared. In practice, it is incorrect to apply a cut-
off to the results of only one lab because this biases
the comparisons by including some second-lab values
below the cutoff grade. There are severalways to over-
come this problem. The first is to apply the threshold
to results of both labs. This method should be used
for thresholds that coincide with changes in sampling
and/or analytical methods by one of the labs. A sec-
ond method is to apply the threshold to the average of
paired data.
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Table 4.1 Example of volume weighting versus mass weighting in the estimation of weighted grades

Chalcopyrite cube (1 cm3) Quartz cube (1 cm3)

Specific gravity 4.25 2.67
Cube weight 4.25 g 2.67 g
Cu grade (%) 34.6 0

Correct grade of combined cubes = [(34.6+ 1+ 4.25)+ (0+ 1+ 2.67)]/[4.25+ 2.67] = 21.25% Cu with average specific
gravity = 6.92/2 = 3.46

If differences in specific gravity are not considered and a volume weighting is performed to calculate grade, incorrect grade of
combined cubes = [(34.6+ 1)+ (0+ 1)]/2 = 17.3% Cu

Source: After Bevan (1993).

The mean value, m, of a mixture of two popula-
tions is given by the expression

mw = p · m1 + (1 − p) · m2 (4.1)

where m is mean, subscripts 1 and 2 refer to popula-
tions 1 and 2, and p is the proportion of population 1.
Note that the mean of a mixture of two populations is
a weighted average that is constrained by the means
of the individual populations.

The median, another important measure of cen-
tral tendency (particularly for nonsymmetrically dis-
tributed data) is the value corresponding to themiddle
data item in an ordered data set (ordered from high
to low values, or vice versa); that is, 50 percent of
the values are higher than the median and 50 percent
of the values are lower. For small numbers of items
the median is a more stable estimator of central ten-
dency than is the mean. Medians are an integral part
of the Thompson–Howarth approach to the character-
ization of sampling and analytical errors as a function
of concentration (Section 5.2.1).

Modes are narrow class intervals of data that are
more abundant than are data in both adjacent class
intervals (i.e., modes are local peaks on a histogram).
Although a mode can correspond to either mean or
median values, the threemeasures of central tendency
are, in general, different (Fig. 4.1);mode,median, and
mean are equivalent in the case of a normal distribu-
tion. Modes are also important in signaling the possi-
ble presence of complex distributions made up of two
or more subpopulations (cf. Sinclair, 1976, 1991) and
are important for an understanding of outliers (espe-

cially abnormally high values) and their recognition
(see Chapter 7).

4.2.2: Dispersion

Dispersion is a measure of the spread of data values.
An obvious, but generally impractical, characteriza-
tion of dispersion is the range of data (i.e., the dif-
ference between the minimum and maximum values
of a data set). The range is generally unsuitable for
defining dispersion because it is highly susceptible
to the presence of a single extreme value. The most
fundamental measure of dispersion in a data set is the
variance, s2, defined as the mean squared difference

s2 =
∑

(xi − m)2

(n − 1)

where xi is any data value, m is the mean of the data,
and n is the number of data items. The term (n − 1),
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Figure 4.1: Histogram of a hypothetical data set of integer
values (abscissa) illustrating that modes, medians, and
means can differ for a single data set. Numbers of data
within each class are listed in each bar.
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referred to as degrees of freedom, originates in statis-
tical theory involving the sampling distribution of s2

(variance of a sample) in contrast to σ 2 (variance of
a population). The divisor (n − 1) is used so that s2

is not biased when a small sample (n < 30) is used to
characterize an entire population. Note that variance
is a “squared” quantity so that no distinction is made
between positive and negative differences used in its
calculation. The square root of the variance (i.e., the
standard deviation) is the commonly used practical
measure of dispersion because it is in the same units
as the variable in question, rather than being (units)2,
as is the case for the variance.

One of the important characteristics of variances
is that they are additive when the individual sources
of variability are independent. As an example, con-
sider the variability (error) that occurs among ana-
lytical data for a set of duplicate field samples; vari-
ability arises due to the sampling method used (s2s ),
the subsampling procedures (s2ss), and the analytical
technique (s2a ), so that the total variance, s2t , can be
expressed as the sum of variances arising from each
of the three sources, as follows:

s2t = s2s + s2ss + s2a . (4.2)

In this formula the analytical error variance is esti-
mated from duplicate pulp analyses. With this infor-
mation the subsampling error variance can be deter-
mined from pulp versus reject analyses, and from this
the total error and sampling error can be estimated
from duplicate sample (e.g., both halves of split drill
core) analyses. For these purposes, an internally con-
sistent set of data is required; that is, the reject du-
plicates should be selected from samples for which
there are duplicate half-core data. Likewise, dupli-
cate pulps should be run on some of the same samples.
Data not obtained in the forgoing fashion is likely to
be inconsistent, meaning that the populations (means
and standard deviations) represented by the paired
pulps, rejects, and half-cores might be very different,
in which case the variances would not be additive. It
is particularly useful to have a consistent set of paired
data because this leads directly to an appreciation of
themagnitude of error arising from eachmajor source
of variability, sampling, subsampling, and analysis.

Practical sampling and analytical experiments can
be designed to estimate the individual components of
variance and perhaps improve the quality of one or
more of those sources of variability in order to reduce
the overall error.

If a mean value m and related dispersion s have
been obtained from n data items, then the sampling
dispersion of the mean value (i.e., the standard error
of the mean, se) is given as

se = (s2/n)1/2 = s/n1/2. (4.3)

In other words, if means were determined for many
samples of size n, those means would have a disper-
sion (standard deviation) estimated by se.

In mineral inventory work, there is occasionally
confusion of the terms dispersion variance and error
variance. The distinction is clearly evident in the two
terms standard deviation and standard error of the
mean, as presented previously. The standard devia-
tion (or variance) is a characterization of the disper-
sion of a set of values (e.g., a set of grade values).
The standard error of the mean (or its squared equiv-
alent) for the same data is an estimate of the average
error made in estimating the true mean (of the popu-
lation) by the mean of the data set. In general, error
dispersion is much less than data dispersion.

The weighted variance attributable to a weighted
mean is given by the expression

s2w =
∑

[wi (xi − mw )
2]

/ ∑
wi .

Consider the three values 0.5, 1.0, and 4.0, which
have a mean of 1.18 and a standard deviation of 1.89.
If the respective weights for these three numbers are
0.2, 0.3, and 0.5, the weighted mean is 2.4 and the
weighted standard deviation is 1.14.

The sampling variance for a weighted mean
(weights are implied to be unequal) when weights
sum to 1, is as follows:

s2w =
{∑

[wi (xi −mw )
2]

}∑ /[∑
wi (1−wi )

]
.

(4.4)

In Eq. 4.8,
∑

wi (1 − wi ) is equivalent to (n − 1) of
Eq. 4.3, and the wi summed in the numerator has the
effect of n in Eq. 4.3 (i.e., the denominator takes into
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account degrees of freedom and the formula produces
results equivalent to Eq. 4.2 if weights are equal).

The variance of a mixture of two populations, w2,
is given by the following expression:

σ 2
w = p · σ 2

1 + (1− p)σ 2
2 + p(1− p)(m1 −m2)

2

where the σ squared terms are variances, the m is
means, the subscripts refer to populations 1 and 2,
and p is the proportion of population 1 in the mixture.
This relation is particularly useful in considering the
effect of outliers on data populations (see Chapter 7).

Percentiles (including quantiles) are values below
which a statedproportionof values in a data set occurs.
Thus, themedian is the 50th percentile. In some cases,
percentiles are used to describe dispersion; commonly
used percentiles are as follows:

P10, P90 values corresponding to 10 and 90
cumulative percent of data,
respectively

P25, P75 values corresponding to 25 and 75
cumulative percent of data,
respectively. Also referred to as
quartiles (Q25, Q75)

P50 value corresponding to 50
cumulative percent of data, the
median, Md .

Percentiles correspond closely with the concept of
probability, and are particularly useful in dealing with
cumulative frequency distributions (cumulative his-
tograms and cumulative probability plots). They pro-
vide rapid and simple insight into the symmetry or
asymmetry of a distribution of data about the mean
value. For example, if data are distributedmore or less
symmetrically about the mean, then the mean value is
approximately equal to the median, and a value such
as (P50 − P25) should be almost equal to (P75 − P50).

4.2.3: Covariance

Covariance (sxy) is a quantitative measure of the sys-
tematic variations of two variables (x and y) and is
given by the formula

sxy =
∑

[(xi − mx )(yi − my)]/n

where mx and my are the means of the two variables
being compared. If high values of x are associated
with high values of y and low values of x are associ-
ated with low values of y, the covariance is positive;
low values of x associated with high values of y (or
vice versa) produce a negative covariance. When x
and y are statistically independent, the covariance is
zero, although the converse is not necessarily true;
two variables can have a covariance of zero and yet
be dependent.

The covariance is an essential component of
the simple linear correlation coefficient discussed in
Section 4.6; moreover, it is fundamental to many geo-
statistical concepts that are introduced in subsequent
chapters.

4.2.4: Skewness and Kurtosis

Skewness is an indication of the departure of tails of
a distribution from symmetry about the mean. Posi-
tively skewed distributions have an excess of values
extending as a tail toward higher values; negatively
skewed distributions have a tail extending toward low
values (Fig. 4.2). Kurtosis is a measure of peakedness
(i.e., the relative height of a distribution in a tight range
about the mean). Quantitative measures of skewness
and kurtosis, available in most statistics texts, are not
used in mineral inventory studies. Skewness as a gen-
eral characteristic, however, is of considerable inter-
est as an indication of whether a distribution is better
described as normal or lognormal. In practice, the co-
efficient of variation (CV) is commonly used for this
purpose:

CV = s/m.

Values ofCV less than 0.5 are likely to approach a nor-
mal distribution, whereas values greater than 0.5 are
skewed and may be described better by a lognormal
distribution or a combination of distributions.

4.3: HISTOGRAMS

Histograms are graphs showing frequency of a vari-
able within contiguous value intervals (commonly
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Figure 4.2: Three examples of drill-core assay data pre-
sented as histograms: (A) negative skewness of 277 Fe as-
says, (B) approximate symmetry of 224 MoS2 values, and
(C) positive skewness of 309 Cu values. B.I., bar (class)
interval in percent metal; N , number of drill-core assays.
A normal probability density function (smooth symmetric
curve) has been fitted in (B) with the same mean and stan-
dard deviation as the data of the histogram. Data from
Becker and Hazen (1961).

a uniform class interval) that extend over the range
of the variable. The term is too often applied incor-
rectly to various types of profiles, particularly bar-
graph profiles along plots of diamond-drill holes.
Histograms are a simple and effective method of dis-
playing many attributes of grade data (Fig. 4.2). The
form of the distribution (negatively skewed, sym-
metric, positively skewed) is readily apparent, as are
a qualitative evaluation of dispersion, the extent to

which data cluster centrally, and the presence of one
or more modes. Note that these are all features of
shape of the histogram (i.e., distribution of data). A
clear appreciation of form of data distribution is es-
sential in a consideration of sampling and analytical
errors, determination of grade, and tonnage above cut-
off grade, and for various statistical tests. Histograms
are a common means of displaying such information
for mineral inventory studies.

In constructing a histogram (cf. Sinclair, 1976,
1991), the class interval should be uniform, a conve-
nient figure in the range 1/4 s to 1/2 s (Shaw, 1964);
the mean value should form a class boundary and
frequency should be as a percentage rather than an
absolute number (to allow comparison of histograms
based on different numbers of items). Each histogram
should be accompanied by a list of information that
includes number of items, class interval, mean, and
standard deviation. Data grouped for a histogram can
easily be recast in cumulative form and plotted as a
cumulative histogram (e.g., Fig. 4.3).

In the process of obtaining mineral inventory es-
timates, histograms are commonly used in ways that
purport to be representative of a large volume (e.g., a
mineral deposit). Because grade data are commonly
biased (i.e., clustered) in their spatial distribution
(Fig. 4.4a), it is important that some effort be made
to examine for and remove the influence of location
bias in a histogram of raw data (naive histogram).
For example, it is not uncommon in exploring min-
eral deposits to obtain a greater density of data from
high-grade zones than from nearby lower-grade
zones. In such a case, the available assay data are
biased toward high values and produce a histogram
that is positively skewed, perhaps even indicating the
existence of a separate high-grade population where
none exists. Such positively skewed biased distribu-
tions also might be mistaken for lognormal, when the
true underlying form is normal.

One procedure to correct for location bias in a data
set is to weight individual values by quantities propor-
tional to polygonal areas or volumes of influence (i.e.,
the polygonalmethod ofmineral inventory estimation
described in Chapter 1; see also Isaaks and Srivastava,
1989). A method commonly used by geostatisticians
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Figure 4.3: Illustration of the relation between a histogram
(shaded), a cumulative histogram (dashed bars), and a cu-
mulative curve (smooth).

(cf. Journel, 1985) is to superimpose a uniform grid
(two dimensional or three dimensional, as required)
over the area (volume) of the entire data set in such a
way that each cell of the grid contains one ormore data
items (Fig. 4.4a). Individual data items are weighted
by their proportion relative to total data within a cell
(i.e., each cell has the same weight regardless of how
manydata it contains, but theweight of individual data
items varies depending on howmany occur in a partic-
ular cell. In equation form, the weights of all cells are
equal (say, 1) and theweight of an individual sample j
within cell i is wi j = 1/ni such that wi j = 1 for each
cell containing data. In some cases, the weights are
scaled so that the total weight equals the total num-
ber of data points in the data set (N = ∑

ni ), but this
procedure is not recommended because it implies in-
correctly that the resulting histogram is known by N
equivalent data.

The grid size is clearly important in determin-
ing unbiased estimates of the mean, standard devi-
ation, and form of the underlying distribution. If the
grid size is so small that each cell contains only one
item, the weighted average is the mean of the orig-
inal data; if the cell size is so large that all data
are contained within one cell, the weighted average
is again the mean of the original data. Various cell
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Figure 4.4: (a) Illustration of variable clustering of data geo-
graphically, with an arbitrary, superimposed grid. For declus-
tering to produce an unbiased histogram, each cell receives
equal weight and that weight is divided equally among all
data within the cell. Hence, the five data in one cell each
receive a weight of 1/5th; each datum in a cell containing
two data receives a weight of 1/2, and so on. (b) When clus-
tered data are in high-grade areas, the optimum cell size for
declustering is found by a plot of weighted-mean grade ver-
sus cell size. The cell size producing a minimum-weighted
mean is the appropriate cell size with which to generate
weights that produce an unbiased histogram. See text for
a discussion of complications of this simple pattern.



S TA T I S T I C A L CONCEP T S I N M I N ERA L I NV EN TOR Y E S T IMA T I ON : AN OV ER V I EW 83

sizes between these two limits, however, produce a
weighted average lower than the raw data mean if
samples are overly concentrated in high-grade zones
(Fig. 4.4b). Similarly, if there is a concentration of
samples in low-grade zones, weighted averages for
intermediate cell sizes are greater than the average of
the original data. Optimum cell size is that which pro-
duces a minimumweighted mean if data are clustered
in high-grade zones or a maximum weighted mean
if data are concentrated in low-grade zones. Where
data are concentrated irregularly in both high- and
low-grade zones, the foregoing simple patterns can-
not be expected. Instead, it is necessary to determine
subjectively an underlying grid size that produces an
unbiased histogram.

Consider the case of samples preferentially locat-
ed in high-grade zones. Weighted averages can be
determined for a variety of grid spacings. A plot
of these weighted average grades (y axis) versus
grid spacing (x axis) define a curve that is concave
upward (Fig. 4.4b); the cell size that produces a
minimum weighted average provides unbiased es-
timates of mean, standard deviation, and form of
the underlying data distribution. An estimate of the
true form of the distribution (normal, lognormal,
bimodal, etc.) can be determined by examination
of a histogram of appropriately weighted data (see
example in Chapter 12). The nature of a data distri-
bution can have an impact on procedures for vario-
graphy (e.g., use of raw data, log-transforms, relative
semivariograms) and calculations involving disper-
sions for various supports. The presence of more than
one mode (subpopulation?) in the distribution indi-
cates the possibility of fundamentally different grade
continuities for the various subpopulations, a topic
developed further in Chapter 7.

4.4: CONTINUOUS DISTRIBUTIONS

Probability density functions (PDFs) are mathemati-
cal models used to describe the probability that ran-
dom draws from populations defined by the func-
tions meet particular specifications. For example, a
randomly selected item from a group of assays de-

scribed by such a function has a probability p = 0.25
of being below the first quartile; similarly, there is a
probability of 0.1 (i.e., 10%) that a random draw will
be higher than the 90th percentile; and so on. Unbi-
ased histograms, plotted with frequency as a propor-
tion, can be viewed as equivalent to a probability den-
sity function, albeit discrete rather than continuous, as
are many of the commonly used probability density
functions. This similarity can be appreciated by pic-
turing a smooth, continuous curve fitted through the
tops of class-interval frequencies of a histogram (e.g.,
Fig. 4.2b).

A majority of variables that are commonly esti-
mated in calculatingmineral inventories (grade, thick-
ness, accumulation, etc.) can be described satisfac-
torily by a few probability density functions, most
commonly normal or lognormal models, or mixtures
of two or more such models.

4.4.1: Normal Distribution

The normal or Gaussian probability density function
is the common bell-shaped curve, symmetric about
the mean value, so prevalent in much statistical liter-
ature. A normal distribution is defined by:

y = [(2π )−0.5s−1] exp[−(xi − m)2/2s2]

where m is the estimate of the arithmetic mean, xi is
any measurement, and s2 is the estimate of variance
of the population. A normal distribution is illustrated
in Fig. 4.5. Normal curves can be fitted to an un-
biased histogram to demonstrate the likelihood that
the variable in question is normally distributed (e.g.,
Fig. 4.2b). In such cases, the normal curve is assumed
to have the same parameters (mean and standard de-
viation) as does the histogram. A simple procedure
for fitting a normal distribution to a histogram is de-
scribed in the following section.

The normal distribution is widely used to describe
discrete data sets. Inmineral inventory studies, normal
distributions are particularly useful in dealing with
various types of errors, particularly errors in analysis
and sampling (see Chapter 5).
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Figure 4.5: Example of a normal (Gaussian) probability den-
sity function (PDF). The curve is symmetric about the mean
value, X m = 0.76. Spread (dispersion) is measured by the
standard deviation, s = 0.28. The distribution simulates a
Cu-grade distribution for which two arbitrary cutoff grades,
0.4 and 0.9, are shown.

4.4.2: Standard Normal Distribution

All items of an ideal normal distribution can be
transformed to the standard normal distribution as
follows:

zi = (xi − m)/s. (4.5)

That is, each item is transformed into a number of
standard deviations from the mean value. This trans-
formation produces a distribution of standardized nor-
mal scores or z values with a mean of zero and a
variance of 1, and leads to a formula for the standard
normal distribution of

y = (2π )−1/2 · exp(−z2i
/
2
)
.

The standard normal distribution is shown in Fig. 4.6.
Many commonly used statistical tables are based on
the standard normal distribution because any normal
distribution, regardless of mean and standard devia-
tion, can be related to standardized statistical tables
through the transform of Eq. 4.5.

The standard normal distribution is a useful ba-
sis with which to consider the concepts of probability
and confidence limits. Probabilities are in the range
0–1.0 and may be quoted as percentages. The likeli-
hood that a randomly drawn sample from a normal
distribution is less than a specified value x is given by

the proportion of area under the normal curve from
minus infinity to x (see Fig. 4.5). This area or prob-
ability can be found by transforming x to a corre-
sponding z value (Eq. 4.5) and searching a set of
tables of cumulative area from minus infinity to any
z score. The difference between such cumulative ar-
eas for any two z values gives the probability that a
randomly drawn sample lies between the two z val-
ues. Note that if the probability of a randomly drawn
sample being less than z is given by P>z , then the
probability that the random draw will be greater than
z is given by P>z = 1 − P<z . For example, the prob-
ability that a sample drawn from a normal population
will be greater than the mean value is 0.5; similarly,
the probability that the sample will be less than the
mean value is 0.5. The probability that a randomly
drawn sample is in the range (m − s) to (m + s) is
about 0.68 (Fig. 4.6). Proportions of the standard nor-
mal distribution above (or below) given z values are
tabulated in most statistical texts.

The sampling distribution of the mean values of
samples of size n is a normal distribution with a stan-
dard deviation given by the standard error (Eq. 4.3).
Thus, any sample of size n can be used to define the
distribution of means. In other words, the standard
error can be used to define confidence limits for the
mean value of a sample of size n. This generalization
is true for large values of n that closely approach a

-3 -2 -1 0 1 2 3
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95.44%

99.74%
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Figure 4.6: The standard normal distribution shows the dis-
tribution of standard deviates, or z values, as determined
from Eq. 4.1.
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normal distribution. For small values of n (< 30), the
confidence limits are underestimated using the stan-
dard error and must be determined using a t distribu-
tion, as defined in many statistical texts.

4.4.3: Approximation Formula for the
Normal Distribution

There are practical situations involving normal (and
lognormal) distributions for which it is important to
know the proportion of the distribution that lies above
or below a particular value. For example, in a normal
distribution of copper grades, it might be important
to determine the proportion of grades above a partic-
ular cutoff grade. To solve this problem, it is possible
to transform the cutoff grade to the corresponding
z value using the transform of Eq. 4.5. That z value
can then be located in a set of tables (in most intro-
ductory statistical texts) giving P<z the proportion of
the area under the curve from minus infinity to z. The
required proportion is then 1−P<z . In many cases the
use of tables is awkward, and it is more convenient
to approximate the proportion from one of several
formulae that exist for this purpose. One formula rec-
ommended by David (1977) for positive values of z is

P<z = 0.5[1 + {1 − exp(−2z2/π )}1/2
(4.6)

or

P>z = 1 − P<z (4.7)

where P<z is the proportion of the population below
the selected positive z value and P>z is the proportion
of the population above the selected positive z value.
Note that where z is negative, Eq. 4.6 calculates di-
rectly the proportion of the population that is greater
than z. These formulae provide estimates of proper-
tions of a normal distributin that are correct to better
than 1 in 1,000 for a practical range of z values (i.e.,
values in the range −2 to +2). They can be applied
to lognormal populations if data are transformed to
logarithms, which are normally distributed.

As an example of the application of Eq. 4.6, con-
sider the cases of samples from a 50,000-ton block

of potential ore for which an unbiased estimate of
mean Cu content is m = 0.76% Cu and grades are
normally distributed (Fig 4.5), as the variance is s2 =
0.08, s = 0.28. For a cutoff grade of 0.4%Cu, the cor-
responding z value is (0.4 − 0.76)/0.28 = −1.286.
With z = −1.286 in Eqs. 4.6 and 4.7, 0.903, or 90.3%
of the tonnage (i.e., approximately 45,200 tons) is
shown to have an average grade above 0.4% Cu.
Of course, this is an optimal estimate for ore/waste
selection because it is based on the distribution of
samples; practical selection units are several orders
of magnitude greater in size than are the sample,
and the dispersion of mean grades would be substan-
tially smoothed relative to sample grades. In this ex-
ample, when the cutoff grade is less than the mean
grade, a normal distribution of block grades can give
a higher proportion of tonnage above cutoff grade
than does a sample grade distribution. If the cutoff
grade were higher than the mean value, the selection
mining unit (SMU) grade distribution would estimate
less tonnage above cuoff grade than would sample
distribution.

In addition to knowing the proportion of tons
above cutoff grade, it is advantageous to know the av-
erage grade of thematerial above (and perhaps below)
cutoff grade. For a double truncated normal distribu-
tion, the average grade of material between A and B
is given by the expression

E[xA−B]

= m + Z [(A − m)/s] − Z [(B − m)/s]

�[(B − m)/s] − �[(A − m)/s]
· s

(4.8)

where

A is the value of lower truncation
B is the value of upper truncation
m is the mean of the normal distribution
s is the standard deviation of the normal distribu-

tion
Z [z] = (2)−1/2 exp(−z2/2)
�[z] is the proportion of area under the standard

normal curve from minus infinity to z.

For a lower truncation of A and no upper truncation
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(comparable to the application of a cutoff grade),
Eq. 4.8 reduces to

E[x>A] = m + Z [(A − m)/s]

1 − �[(A − m)/s]
· s

(4.9)

where symbols are as for Eq. 4.8.
As an example of the application of Eq. 4.9, con-

sider the population described two paragraphs previ-
ously and shown in Fig. 4.5, for which A = 0.40%Cu
and the parameters of the normal distribution arem =
0.76 and s = 0.28. Hence, Z [(0.4 − 0.76)/0.28] =
Z [−1.286] = 0.1745;�[−1.286] can be estimated
from Eq. 4.15 or from tables in statistical texts as
0.903. Substitution of these values in Eq. 4.6 gives
an expected mean value of Cu above cutoff grade of
E[X>0.4] = 0.814% Cu. For a second example, as-
sume the same normal distribution, but with a cutoff
grade of 0.9% Cu (i.e., the cutoff grade is greater than
the mean value). Therefore, Z [(0.9 − 0.76)/0.28] =
Z [0.5] = 0.35, and �[0.5] = 0.69. Substitution of
these values in Eq. 4.9 gives E[x > 0.9] = 0.76 +
0.28(0.35/0.31) = 1.075% Cu. Calculations of this
sort are useful in developing the concept of grade–
tonnage curves that are so prevalent in mineral inven-
tory studies (see Chapter 12).

It is occasionally useful to be able to plot a nor-
mal distribution or to fit a normal distribution to
a histogram (see Fig. 4.2b). The standard normal
distribution can be constructed by solving Eq. 4.10
(cf. Johnson and Kotz, 1970) for various values of z
and drawing a continuous curve through the points.
In constructing the curve, it is useful to be aware that
inflection points occur at xm − s and xm + s:

y = 0.3979(0.6065)z.z. (4.10)

Values of y for the standard normal curve can be ad-
justed so that a normal curve can be fitted to any his-
togram by transforming them (to y′), as in Eq. 4.12:

y′ = y(n · i/s) (4.11)

where n is the total frequency of data (n = 100 if the
histogram is constructed with frequency as a percent
rather than an absolute frequency), i is the class inter-
val, and s is the standard deviation of the data.
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Figure 4.7: An ideal lognormal distribution that approxi-
mates the distribution of blasthole assays at Bougainville
copper deposit (see David and Toh, 1989). Parameters of
the raw data of this distribution are: m = 0.45% Cu and s =
0.218.

4.4.4: Lognormal Distribution

If a variable x is transformed to logarithms [i.e., t =
Ln(x)] and these log values have a normal distribution,
the variable is said to have a lognormal distribution.
The raw data (untransformed values) of a lognormal
distribution are positively skewed (Fig. 4.7), but not
all positively skewed distributions are lognormal. It is
of interest to note that certain negatively skewed dis-
tributions might be treated as lognormally distributed
through the transformation

t = Ln(C − x)

where no value of x can be greater than the arbitrary
constant C. The product of two variables that are log-
normally distributed is also lognormally distributed.

In some cases, positively skewed data that are not
lognormally distributed can be made so by a simple
transformation involving the addition of a constant;
that is

ti = Ln(xi + k)

is lognormally distributed. Estimation of k is dis-
cussed in Section 4.5.1. When such a transformed
variable is used for mineral inventory estimation pur-
poses, the initial estimates must be back-transformed
(i.e., k must be subtracted from the initial estimates to
produce correct estimates). Various values of k gen-
erally have little effect on an eventual estimated value
of a point or block; however, changes in k can re-
sult in changes in logarithmic variance of as much as
50 percent (cf. Clark, 1987). The Sichel t estimator
(discussed later) also can be affected substantially by
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variations in k because the estimator depends on the
logarithmic variance. The lognormal distribution has
found widespread application in characterizing grade
distributions for mineral inventory estimation. This
general acceptance should not lead to noncritical ac-
ceptance of a lognormal form; detailed evaluation of
the probability density function of grade variables is
an essential precursor to mineral inventory estima-
tion. Many preliminary lognormal grade models turn
out to be significant oversimplifications of reality.

When manipulations of estimates are done with
transformed data, it is generally necessary to do a
back-transform to provide an estimate in terms of
original units. In the case of the lognormal distri-
bution, the back-transform of the mean logarithmic
value produces the geometric mean of the original
data, which is an underestimate of the truemean of the
data. Fortunately, parameters (mean and variance) of
the logtransformed distribution (natural logarithms)
can be used to estimate the mean and standard devia-
tion of the skewed distribution of raw (untransformed)
data using the maximum likelihood estimators of
Eqs. 4.13 and 4.14:

m = b · ev/2 (4.12)

s2 = m2(ev − 1) (4.13)

where b is the antilog of the mean log value (i.e.,
the geometric mean) and v is the variance in natural
log units. Equivalent formulas exist for Log 10 units
(e.g., Sinclair, 1986). The coefficient of variation can
be determined as follows:

CV = [ev − 1]1/2.

For small samples (n < 30) from lognormal dis-
tributions, Sichel (1952) showed that the maximum
likelihood estimator of Eq. 4.12 consistently over-
estimates the arithmetic mean; hence, he introduced
the t estimator, as follows:

t = ex̄ gn(V )

where x̄ is the mean log value

gn(V ) = 1 +
∞∑

r=1

{[(n − 1)r V r ]/[2rr !(n − 1)

× (n + 1)(n + 2r − 3)]}

for r’s that take on successive integer values beginning
with 1, V is the variance of logtransformed (natural)
values, and n is the sample size.

Sichel’s t estimator has found limited use in min-
eral inventory work outside the South African gold
fields because (i) it ignores autocorrelation and (ii) it
is complicated and cumbersome to use in practice.
Nevertheless, the t estimator is a useful conserva-
tive estimator of the arithmetic mean for small data
sets when a lognormal distribution can be assumed
with confidence. Tables for rapid determination of the
t estimator are provided by David (1977).

For a lognormal distribution of grades, as with
the normal distribution, it is possible to estimate the
proportion of tonnage (P>c) above a particular cutoff
grade (Eq. 4.14) and the average grade (gm > c) of
that proportion above cutoff grade:

P>c = 1 − �{Ln(xc/m)/d + d/2} (4.14)

where d is the standard deviation of logtransformed
(base e) data, xc is the cutoff grade (original units),
m is the mean of the distribution (original units), and
�{z} is the cumulative distribution function of a stan-
dard normal variable from −inf to z. The “recover-
able” metal, R>c (i.e., the proportion of total metal
that is contained in the tonnage above cutoff grade),
is given by

R>c = 1 − �{Ln(xc/m)/d − d/2} (4.15)

where symbols are as described previously. The aver-
age grade (x̄>c) of that proportion of material above
cutoff grade (xc) is given by

x̄>c = m · R>c/P>c. (4.16)

Values of R>c and P>c can be determined from tab-
ulations of the cumulative standard normal variable,
or can be estimated using Eqs. 4.14 and 4.15.

Equations 4.14 to 4.16 have many applications in
mineral inventory estimation because lognormal dis-
tributions or close approximations to lognormal dis-
tributions are relatively common for metal grades.
For example, the equations can be used to con-
struct grade–tonnage curves for lognormally dis-
tributed variables in the samemanner that comparable
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equations for the normal distribution can be used (see
Chapter 12).

The cumulative lognormal distribution has been
proposed to describe extremely skewed distributions
found for diamond grades and, more recently, cer-
tain gold deposits (Sichel et al., 1992). However, the
distribution has four parameters, the mathematics are
complex, and change of support and small sampling
theory are yet to be solved.

4.4.5: Binomial Distribution

The binomial distribution (Fig. 4.8), that is, the prob-
ability that a characteristic occurs in some items of
a data set, is a discrete distribution. For large n, the
distribution is closely approximated by a normal dis-
tribution, with mean equal to np and variance equal
to npq, where n is the total number of items, p is the
proportion of items that have a particular attribute,
and q is the proportion that do not have the attribute
(i.e., p = 1 − q). For example, 100 tosses of an unbi-
ased coin might be expected to provide 50 heads and
50 tails (i.e., p = q = 0.5). A test of the unbiasedness
could consist of 100 tosses, and for α = 0.05 (i.e.,
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Figure 4.8: Example of an ideal binomial distribution (fre-
quency as a percentage versus number of grains) of the
number of heavy mineral grains in alluvium samples, each
sample consisting of 1,000 grains. The corresponding nor-
mal distribution is shown as the smooth, symmetric curve
with a mean of 15 grains. The plot shows, for example,
that there is a more than 7 percent chance that a sam-
ple of 1,000 grains contain less than 10 grains of heavy
minerals when the expected number of grains is 15.

95 percent confidence range) the number of heads
should lie in the rangenp±2(npq)1/2, that is, 50± 10.
If the number of heads is outside this range, it is likely
that the coin is biased.

Consider the question of evaluating a set of dupli-
cate analyses for bias. Data in Fig. 5.11b are dupli-
cate Ag grades measured by two different laborato-
ries. If no bias exists, the expectation is that because
of random error the data points will be distributed
more or less evenly on either side of the line, with
slope = 1.0 (i.e., both labs will, on average, obtain
the same values). The data of Fig. 5.11b show that 19
of 21 values plot on one side of the line. Assume that
the binomial distribution can be approximated by a
normal distribution with the same parameters as the
binomial distribution. For α = 0.05, the range of no
bias is np ± 2(npq)1/2 = 10.5 ± 4.6, which clearly
does not contain the quantity 19. Consequently, the
data distribution leads to the conclusion that one lab
overestimates relative to the other, although which is
the faulty lab remains unknown without additional
information.

4.4.6: Poisson Distribution

Experiments yielding numeric values of a random
variable x, the number of successes occurring during
a given time interval or in a specified region, are often
called a poisson experiment; some examples are the
number of telephone calls received by an office during
each hour, the number of days that school is closed
due to snow, the number of nuggets in a subsample
of a gold ore, and so on. The poisson distribution is
fundamental to sampling theory.

A poisson experiment possesses the following
properties:

1. The number of successes occurring in one time in-
terval or specified region are independent of those
occurring in any other disjoint time interval or re-
gion of space.

2. The probability of a single success occurring dur-
ing a short time interval or in a small region is
proportional to the length of the time interval or
the size of the region, and does not depend on the
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number of successes occurring outside this time
interval or region.

3. The probability of more than one success occur-
ring in such a short time interval or falling in such
a small region is negligible.

The probability of x successes in a poisson experiment
is given by Eq. 4.17:

P(x ;µ) = (e−µµx )/x! for x = 0, 1, 2, 3, . . .

(4.17)

where µ is the average number of successes occur-
ring in the given time interval or specified region,
e = 2.71828, and x is any integer including zero. Note
that for x = 0, x! = 1.

The mean and the variance of the poisson distri-
bution P(x ;µ) both have the value µ. As Miller and
Kahn (1962, p. 374) state, there are many situations
in which the mean and variance are equal but that
do not fit the poisson distribution. Hence, the close
approach to the value unity, of the ratio of the mean to
the variance, does not necessarily imply a poisson dis-
tribution. Miller and Kahn (1962, p. 378) state: “If the
ratio of mean to variance exceeds unity, a rough infer-
ence may be drawn that a clustering effect is present.
If, on the other hand, the ratio is less than unity, the
inference is that there is a regular dispersion of points
such that individual points tend to ‘repel’ each other.”
The frequency of success (and the variance) is a func-
tion of the quadrant size (i.e., the sample size).

The poisson distribution is a limiting form of the
binomial distribution when n approaches infinity and
np remains constant. Hence, the poisson distribution
can be used to approximate the binomial distribution
when p is very small and n is very large.

Krumbein and Graybill (1965, p. 110) refer to
the use of the poisson distribution for “rare miner-
als in rocks expressed as number of grains in sub-
samples of fixed size.” Consequently, the distribu-
tion has application to deposits characterized by rare
grains of a valuable commodity, as is the case for
deposits of gold and diamonds. Consider applica-
tion of the poisson distribution to samples consist-
ing of rare gold grains in alluvium. Assume that a
500-g sample of sand contains, on average, two

grains of gold. Assuming equal grain size (say, 2 mm
in diameter) throughout, equivalent to an assay of
about 320 g Au/t. The probability that a randomly
drawn sample of 500 g contains zero grains of gold
is determined from Eq. 4.17 to be 0.27 (i.e., ap-
proximately one-quarter of such samples assay zero
gold even though the average grade is extremely
high). The potentially disastrous effect of the serious
lack of representativity of small samples is apparent.
An example of the poisson distribution is shown in
Fig. 4.9.

A further use of the poisson distribution has been
described byStanley (1998) as a basis for appreciating
the quality of assays for any component characterized
by the rare-grain effect. For the poisson distribution
the variance is the numeric equivalent of the mean

σ 2 = µ

and the coefficient of variation (CV) expressed as a
percentage is

CV% = 100σ/µ.

If precision (P) is defined as twice the coefficient of
variation, then

P = 2CV% = 200σ/µ = 200/µ1/2 (4.18)

whereµ is the average number of grains in the sample.
Consequently, the calculated precision can be used to
determine the effective number of grains of gold in
a sample by application of Eq. 4.18. This calculated
number of grains is actually the number of “uniform
size” grains that produce a poisson sampling error
equivalent to the precision of the sample in question.

For a sample size s (in grams) and gold concentra-
tion as a proportion (e.g., c = grams per ton divided
by 106), the total mass of gold (mt ) in the sample can
be determined (Eq. 4.19), aswell as themass per “uni-
form” grain (mg , Eq. 4.20):

mt = s · c (4.19)

mg = mt/µ. (4.20)

It is also possible to calculate the effective grain size
as a volume (Vg)

Vg = mg/ρ
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where ρ is the specific gravity of gold. Knowing the
volume, various ideal shapes can be attributed to the
grain (e.g., disk, sphere), providing there is indepen-
dent knowledgeof the various diameters for nonspher-
ical cases.

4.5: CUMULATIVE DISTRIBUTIONS

Data grouped into class intervals for the purposes of
constructing a histogram can also be considered in
terms of cumulative percentages for successive class
intervals, cumulated either from low values to high
or vice versa. This cumulative information can also
be shown as cumulative histograms (Fig. 4.3). As
with the histogram, a continuous curve can be used
to express the information of a cumulative histogram
(Fig. 4.3). Such curves, although easy to understand
and in relatively common use, are difficult to inter-
pret because of the ambiguity of evaluating curva-
ture by eye. Thus, other cumulative graphs find more
widespread use – in particular, probability graphs.
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Figure 4.9: Example of a poisson distribution for which the mean sample content is two grains of gold. Each bar of the
histogram can be generated by substituting its abcissa in Eq. 4.17. In this example there is about a 13 percent chance that
a sample of 1,000 grains contains no gold grains. Calculations are summarized in Table 4.2.

Table 4.2 Calculated probabilities that a sample
with a mean content of two gold grains will contain
various numbers of gold grains, assuming a
Poisson distribution (see Fig. 4.9)

Expression Probability Cumulative probability

e−220/1 0.1303 0.1303
e−221/1 0.2707 0.4010
e−222/2 0.2707 0.6717
e−223/6 0.1804 0.8521
e−224/24 0.0902 0.9423
e−225/1,200.0361 0.9784
e−226/7,200.0120 0.9904

4.5.1: Probability Graphs

Probability graphs are a practical, graphic means of
evaluating the form of the cumulative distribution of
a set of numeric data. Probability paper is constructed
so that the ordinate commonly is equal interval or log-
arithmic as required (i.e., depending on whether the
concern is with normal or lognormal distributions);
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Figure 4.10: Histograms of Fig. 4.2b and 4.2c are plotted as probability graphs. The near-normal distribution of MoS2 can
be approximated closely by a straight line. The strongly positively skewed Cu distribution forms a curved pattern, concave
upward. Had the negatively skewed histogram of Fig. 4.2a been plotted, it would have formed a curve concave downward.
Note that estimates of the mean and standard deviation of the “normal” distribution can be read from the straight line: m =
0.453, s = (P97.5− P2.5)/4 = (0.84− 0.092)/4 = 0.187. These compare with estimates from the data of m = 0.455 and
s = 0.189.

the abscissa is a variable scale arranged so that a cu-
mulative normal distribution plots as a straight line.
Examples are shown on arithmetic probability pa-
per (ordinate scale is equal interval) in Fig. 4.10. In
Figure 4.11, the ordinate is a logarithmic scale; cu-
mulative points that form a straight line on this plot
have a lognormal distribution. If a data set consists
of a mixture of two normal (or lognormal) subpop-
ulations of differing means and partly overlapping
ranges, the cumulative data plot on a probability graph
as a sigmoidal, curved line (Fig. 4.12). The example
of Fig. 4.12 has been constructed manually as a mix-
ture of 20 percent of lognormal population A mixed
with 80 percent of lognormal population B. Each
point on the curved line can be determined from the

equation

Pm = fA · PA + fB · PB
where

Pm is the cumulative percentage of the
“mixed” population

PA is the cumulative percentage of
population A

PB is the cumulative percentage of
population B

fA is the fraction of population A in
the mixure, and

fB is the fraction of population B in
the mixture ( fB = 1 − fA).
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Figure 4.11: The positively skewed Cu histogram of Fig. 4.2c shown as a cumulative plot on a log probability plot (ordinate
is a log scale). These data, so strongly concave in Fig. 4.10, are much closer to a straight line when plotted on log
probability paper; hence, they are approximated, if crudely, by a straight line representing a lognormal distribution. The
mean, estimated from the 50th percentile of the straight line approximation on this diagram, is the geometric mean and
substantially underestimates the mean of the raw data.

A sample calculation is shown on the diagram. Mix-
tures of any two populations can be constructed in
a similar fashion to examine the form of a “mixed
population” on probability paper. The construction
of the mixed population in Fig. 4.12 is proof that a
normal distribution that plots as a straight line over
the whole range of probabilities (cumulative percent-
ages) does not form a straight line if plotted over a
portion of the range; instead, the line is curved, com-
monly strongly. There aremanymisconceptions in the
mineral deposit literature in which curved probabil-
ity graphs are approximated by a series of linear seg-
ments, each of which is incorrectly stated to represent
a normal distribution or a lognormal distribution, as
the case may be.

Probability graphs (Sinclair, 1976) are amore use-
ful means of depicting density distributions than are
histograms because linear trends are easier to inter-
pret than bell-shaped curves and departures from lin-
ear trends are easily recognized. Such graphs are par-
ticularly sensitive to departures from normality (or
lognormality), are less ambiguous than histograms

for the recognition of multimodal data, and are par-
ticularly useful for the selection of optimal thresh-
olds separating the various subpopulations (Sinclair,
1991). Thresholds may bear some relation to cutting
factors, as used so commonly in many traditional
resource/reserve estimation procedures (cf. Sinclair
and Vallée, 1993). Methods for threshold selection,
however, commonly involve assumptions as to the
density distributions (e.g., normal, lognormal) of the
subpopulations.

A common but not necessarily wise practice in
the mineral industry is to accept skewed data distri-
butions as either two-parameter or three-parameter
lognormal distributions (e.g., Krige, 1960; Raymond
and Armstrong, 1988). The three-parameter lognor-
mal distribution is particularly widely used in an ef-
fort to transform data to near-normal form through
the use of a constant k (the third parameter) added
to all raw data values prior to a log transformation.
An example is shown in Fig. 4.13. The constant k
can be determined by trial and error; a first and per-
haps adequate estimate can be determined as follows
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Figure 4.12: Many cumulative distributions have a sygmoidal shape, such as the curve shown here. This curve was generated
artificially by combining the two perfect lognormal distributions A and B in the proportions 0.2A and 0.8B. Each of the points
defining the mixed cumulative distribution can be generated as illustrated for the point PM , using the formula shown. Other
points are determined by solving the formula for the appropriate values of PA and PB, read at a particular ordinate value.
Note that any arbitrary distribution can replace A and B, but the calculation method remains the same. Hence, application
of this simple formula allows construction of any combination of any two known distributions.

(Krige, 1960):

k = (
M2

d − F1 · F2
)/

(F1+ F2− 2Md ) (4.21)

where Md is the median (50th percentile) of the data
and F1 and F2 are data values at two symmetrically
disposed cumulative frequencies, say at the 20th and
80th percentiles. The values of Md , F1, and F2 can
be read directly from a log probability plot of the raw
data. An alternative means of interpreting the surplus
of low values is as a separate subpopulation (proce-
dures for dealing with subpopulations using proba-
bility plots are described in Chapter 7). One advan-
tage of the concept of subpopulations is that it fits
conceptually with a general consideration of multiple
subpopulations in assay data.

The cumulative distribution is a characteristic of
a mineralized field and can be examined in various
local domains to test for uniformity/nonuniformity
over a largerfield.A smooth curvewith a similar shape
throughout a deposit (i.e., in various disjoint volumes)
suggests uniformity in the character of mineralization
(cf. Raymond, 1982).

Probability graphs are relatively well established
in mineral inventory work for illustrating cumulative
distributions, particularly as a subjective justification
of two- and three-parameter lognormal distributions.
However, they have not been used extensively in this
field for partitioning populations and selecting opti-
mal thresholds, procedures that are useful in data eval-
uation but may also have application to the question
ofmultiple-continuity populations. Thus, partitioning
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Figure 4.13: Cumulative frequency distribution of 1,000 val-
ues (open circles) from the Merriespruit Mine, South Africa,
as a logprobability plot. The lognormal distribution with the
same mean and standard deviation as the logtransformed
data is labeled “A. Theoretical lognormal” and clearly does
not describe the distribution (open circles) well. If a con-
stant, k = 55, is added to all values and the cumulative
curve is replotted (filled circles), a straight line fits the trans-
formed data well. Redrawn from Krige (1960).

procedures are introduced in Chapter 7, with more
detailed methodology provided by Sinclair (1974,
1976).

4.6: SIMPLE CORRELATION

Correlation is a measure of similarity between vari-
ables or items (e.g., samples). Simple, R-mode cor-
relation is concerned with similarity between pairs
of variables; Q-mode correlation deals with the sim-
ilarity between pairs of samples, perhaps using many
variables to make the comparison. Here, attention is
restricted to R-mode correlation. When two or more
variables are to be examined, a quantitative study of
correlation can be useful. Thewidely familiar, simple,
linear correlation coefficient is given by

r = sxy/(sx · sy) (4.22)

where

r is a simple, linear correlation
coefficient (−1< r < 1)

sxy or Cov(x, y) is the covariance
of x and y

sx is the standard deviation of x
sy is the standard deviation of y.

A perfect direct relation between x and y gives r = 1;
a perfect inverse relation between x and y results in
r = −1; a value r = 0 means that no relation ex-
ists between x and y; real data give fractional val-
ues and may approach the limits noted (Fig. 4.14).
If variables x and y are normally distributed, nonzero
values of r can be tested for statistical significance
in relation to critical r values obtained from tables
in many standard statistics texts (e.g., Krumbein
and Graybill, 1965), provided, of course, that the
two variables themselves are distributed normally.
The presence of outliers and/or nonlinear trends can
lead to false values of the correlation coefficient
(Fig. 4.15). To offset such problems it is useful to ex-
amine x–y plots of all possible pairs of variables in a
data set.

Correlation coefficients have a variety of appli-
cations in resource/reserve studies. They are neces-
sary in certain formal calculation procedures such
as

(i) Error estimation for grades determined from sep-
arate estimates for thickness and accumulations
(e.g., Sinclair and Deraisme, 1974)

(ii) Construction of the correlogram autocorrelation
function

(iii) Establishing models of one variable in terms of
another (e.g., instrumental eU3O8 versus chemical
U3O8)

(iv) Examining interrelations among many variables
(v) Dealing with many variables to provide indica-

tions of zonal distributions ofmetals (e.g., Sinclair
and Tessari, 1981).

These applications are illustrated elsewhere in this
text, particularly in Chapter 6.
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4.7: AUTOCORRELATION

Autocorrelation involves the correlation of a vari-
able with itself, the paired values being separated
in either time or space. Consider a line of equis-
paced samples (along a drill hole, trench, drift, etc.).
Imagine tabulating the data in successive adjoining
pairs, the centroids of which are separated by a dis-
tance (lag) h. The first member of each pair is x
and the second member is y. Thus, a correlation co-
efficient can be determined for the tabulated data
by applying Eq. 4.18. Variables x and y, being the
same, have the same parameters – x = y (or, xi =
xi+h) and sx = sy (or, sxi = sxi+h). Thus, Eq. 4.22
reduces to

r = Cov(xi , xi+h)
/
s2x .

The process can be repeated successively for pairs of
samples separated by 2h, 3h, and so on, and eventu-
ally all the calculated correlation coefficients can be
plotted versus their respective lags (hs) to produce a
correlogram as shown in Fig. 4.16. In many mineral
deposits, nearby sample pairs are similar and more
distant sample pairs aremore different. Consequently,
a common form for a correlogram is to have high val-
ues of r for short sample separation and lower values
of r for increasing sample separation. Each calculated
r value can be tested statistically for significant differ-
ence from zero. The sample separation at which the
correlogram is not significantly different from zero
is the range (i.e., the average range of influence of a
sample). Clearly, autocorrelation is an important at-
tribute of grades in quantifying the average range of
influence of a sample in a mineralized field.

It should be apparent that the range (and form)
of the correlogram can vary from one direction to an-
other in response to differing geologic character of the
substrate being examined (e.g., in an iron-formation
unit, the autocorrelation of Fe grades in a direction
parallel to bedding need not be the same as the auto-
correlation perpendicular to bedding). Autocorrela-
tion is a vector property that can be anisotropic, with
the anisotropy controlled by geology. In general, the
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Figure 4.16: Examples of correlograms; that is, correlation
coefficient (r ) versus sample separation (h). (A) A theo-
retical example; (B) correlogram for 118 contiguous Zn
percentage values from sphalerite-bearing mineralization,
Pulacayo, Bolivia; and (C ) correlogram for 129 contiguous
Ti percentage values from an anorthosite complex, Black
Cargo Area, California. Redrawn from Agterberg (1965). The
general pattern of all three diagrams indicates that nearby
samples are more similar than are more widely spaced
samples.

degree of autocorrelation decreases as sample spacing
increases in all directions.

In addition to the correlogram, other autocorrela-
tion tools include the covariogram and the variogram
(or semivariogram), both of which are essential in
geostatistics; hence, a more detailed discussion of au-
tocorrelation is given in Chapter 8.

For a lognormally distributed variable, the
(auto)correlation coefficient of the logtransformed
data is given by

rlognormal = {[1 + E2] r − 1}/E2

where E is the coefficient of variation of logtrans-
formed data (i.e., E = slognormal/X lognormal).
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4.8: SIMPLE LINEAR REGRESSION

There are many practical situations in which it is de-
sirable to fit a straight line to a set of paired data.
In the previous discussion of correlation it is appar-
ent that a geometric view of the significance of the
correlation coefficient could be that it represents a
relative measure of how well two variables approach
a straight line on an x–y graph. A linear model is
expressed as follows:

y = b0 + b1x ± e

where x and y (independent and dependent variables,
respectively) are the variables being considered, b1
is the slope of the line, b0 is the intercept on the y
axis, and e is the random dispersion of points about
the line (as a standard deviation). A commonly used
procedure to produce an optimum linear model in x
and y is to minimize the squares of the error e. This
criterion is equivalent to solving the following two
normal equations:

∑
yi − n b0 − b1

∑
xi = 0

∑
yi xi − b0

∑
xi − b1

∑
x2i = 0

where all summations are known from a set of n pairs
of data. Note that different equations are determined
depending onwhich variable is taken as the dependent
variable y. The equation with one variable as the de-
pendent variable can be very different from the equa-
tion with the alternate variable taken as y (Fig. 4.17).

The normal equationsmust be solved to determine
values of b0 and b1 that minimize the error (disper-
sion) parallel to the y direction:

b1 =
∑

xi yi − (∑
yi

) (∑
xi

)/
n

∑
x2i − (∑

xi
)2/

n
(4.23)

b0 = ȳ − b1 · x̄ .
Scatter about the line (parallel to the y axis), s2d , can
be determined from Eq. 4.24 and can be used to de-
termine confidence limits on estimated y values:

s2d =
[∑

y2i − b0
∑

yi − b1
∑

xi yi
]/

n

(4.24)
s2d = σ 2

y (1 − r2).
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Figure 4.17: Plot of sample density (D g/cc) versus nickel
grade (%), Falconbridge Nickel Mines, Sudbury (after Bevan,
1993). A straight line and a quadratic trend have been
fitted to the data; both describe the data well. Least
squares equations are: D = 2.839+ 0.297 Ni and D =
2.88+ 0.238 Ni+0.013 Ni2. In both cases, all the error
has been attributed to D .

Confidence limits on b0 and b1 can be determined
if necessary (e.g., Krumbein and Graybill, 1965).

This simple linear relation is important histori-
cally in the development of practical geostatistics. In
an exhaustive study of the relationship between sam-
ple assays and block grades for gold deposits of the
Witwatersrand, Krige (1951) recognized an empiri-
cal, linear relation between estimated panel grades
and the average grade of samples within the panel, as
follows:

yb = m + b1(xb − m) (4.25)

where yb is a particular block grade, m is the mean of
both samples and blocks, and xb is the average of sam-
ple grades within the block. This equation is equiva-
lent to Eq. 4.23. Krige’s work centered on the fact that
such an empirically determined relation was different
from the y = x line, the hoped for result. This differ-
ence he subsequently referred to as conditional bias
(i.e., a bias that is conditional on grade). He showed
that high-grade estimates, on average, overestimate
true grades, and low-grade estimates, on average, un-
derestimate true grades. The coefficients of Eq. 4.25
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are (Matheron, 1971)

1 = r (σx/σy)

b1 = r (σy/σx )

b1 = σ 2
y

/
σ 2
x < 1.

A slope less than 1 guarantees that sample grades,
on average, overestimate true grades above the mean
and, on average, underestimate true grades below the
mean. Note that for these relations to hold, estimates
are plotted on the x axis and “true” grades are assigned
to the y axis. The general result indicated here, the
so-called regression effect, applies wherever a slope
of one might be expected (hoped for) but for which
the variances are different for the two variables being
compared.

In many situations in which the relationship be-
tween two variables is not linear, it may be possible to
approximate a linear relation by transforming one of
the variables. Providing x and y are completely deter-
minable from available data, the linear model applies,
as in the following examples:

y = b1 · e−kz ± e
(4.26)

y = b1 · z2 ± e.

Examination of scatter diagrams thus becomes
a useful data analysis procedure in recognizing the
presence of pairs of correlated variables and pairs of
variables that exhibit a linear relation. Some nonlinear
relations that can be made linear through transforma-
tions, such as those defined by Eq. 4.26 can also be
investigated in this manner.

Figure 4.14 demonstrates the inherent linear char-
acter of paired variables characterized by a high ab-
solute value of the correlation coefficient. Figure 4.17
is a practical example of the use of least squares rela-
tions; both linear and quadratic least squares models
are shown, relating density of ore (D) to nickel grade
(Ni). These traditional least squares models place all
the error in D because Ni is assumed to be known
perfectly in order to use it as an estimator of density.
In this case, the linear relation is not improved sig-
nificantly by fitting a quadratic equation to the data.
Traditional least squares models are used routinely in

cases such as this, in which one variable is used to
estimate another.

4.9: REDUCED MAJOR AXIS REGRESSION

A reduced major axis (RMA) regression is desir-
able when it is important that errors in both vari-
ables be taken into account in establishing the re-
lation between two variables (Sinclair and Bentzen,
1998). The methodology for reduced major axis re-
gression has been described in an earth science con-
text byAgterberg (1974), Till (1974),Miller andKahn
(1962), andDavis (1986). Agterberg (1974) describes
RMA as the normal least square of standardized vari-
ables when standardization involves the following
transforms:

zi = xi/sx and wi = yi/sy
y = b0 + b1x ± e.

Note that these transformations are analogous to
forming standardized z values except that the resulting
transformed zi andwi values are centered on x/sx and
y/sy , respectively, rather than zero. In fact, identical
least-squares results would be obtained using stan-
dardized data (see Kermack and Haldane, 1950). Till
(1974) emphasizes the importance of using RMA in
comparing paired (duplicate) analytical data.

The general form of the reduced major axis line
is given by Eq. 4.23 as follows:

y = b0 + b1x ± e

where x and y are paired values, b0 is the y-axis inter-
cept by the RMA linear model, b1 is the slope of the
model, and e is scatter about the line as a standard
deviation. For a set of paired data, b1 is estimated as

b1 = sy/sx

where sx and sy are the standard deviations of x and y,
respectively, and b0 is estimated from

b0 = ȳ − b1 x̄

where ȳ and x̄ are the mean values of y and x, re-
spectively. Usually, we are interested in whether the
line passes through the origin because, if not, there
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Table 4.3 Parameters of gold analyses for duplicate blast hole samples and three fitted linear models, Silbak
Premier gold mine, Stewart, British Columbia

Correllation coefficient
Variable Mean (g/t) Standard deviation (AU vs. AUD)

AU 3.429 4.088 0.727
AUD 3.064 3.817

Linear model Intercepta Slopea Dispersion about line Remarks
AUD regress on AU 0.737 0.679 2.62 g/t All error attributed to AUD
RMA 0.137 0.934 4.13 g/t Error shared between AU and AUD
AU regress on AUD 1.340 1.284 2.81 g/t All error attributed to AU

a All linear models are of the form AUD = sl + AU + int + e, where sl = slope and int = intercept.

is clearly a fixed bias of some kind. The error on the
y-axis intercept, s0, is given by

s0 = sy{([1 − r ]/n)(2 + [x̄/sx ]
2[1 + r ])}1/2

where r is the correlation coefficient between x and y.
The error on the slope is

ssl = (sy/sx )([1 − r2]/n)1/2. (4.27)

The dispersion Srma about the reduced major axis is

Srma = {
2(1 − r )

(
s2x + s2y

)}1/2

where sx and sy are the standard deviations of x and y,
respectively; x is the independent variable; and y is
the dependent variable.

These errors can be taken as normally distributed
(Miller and Kahn, 1962) and, for duplicate analyti-
cal data, can be used to test whether the intercept
error range includes zero (in which case the inter-
cept cannot be distinguished from zero) and the slope
error range includes 1 (in which case the slope can-
not be distinguished from 1). The dispersion about
the RMA line can be used in several practical com-
parisons, including: (1) the comparison of replicates
of several standards by one laboratory with repli-
cates of the same standards by another laboratory; and
(2) the comparison of intralaboratory paired analyses.
An example is provided in Fig. 4.18, where analyses
of duplicate blasthole samples are plotted for a set
of quality-monitoring data from the Silbak Premier

gold deposit, Stewart, British Columbia. In this ex-
ample, the two traditional least-squares models (error
attributed entirely to one variable) contrast strongly
with the centrally positioned RMA model. Parame-
ters of the variables and the three illustrated linear
models are summarized in Table 4.3. In this case, the
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Figure 4.18: Plot of original Au analyses (Au) of blasthole
samples versus duplicate blasthole sample analyses (AuD)
for the Silbak Premier gold mine, Stewart, British Columbia.
Three linear models are shown fitted to the data: (1) all the
error attributed to Au, (2) reduced major axis solution, and
(3) all the error attributed to AuD. Parameters of the three
models are summarized in Table 4.3. Large differences ex-
ist among the linear models because of the relatively wide
scatter of data.
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RMAmodel is appropriate for interpreting the signifi-
cance of the data. The intercept has an error, s = 0.31,
and therefore cannot be distinguished from zero. The
slope, although apparently very different from zero,
has a large error of s0 = 0.058 reflecting thewide scat-
ter of data; hence, the slope cannot be distinguished
from 1. The large dispersion of data can be quantified
by Eq. 4.27 as Srma = ±4.13 g/t, a remarkably large
value that leads to great concern about the blasthole
sampling procedure.

4.10: PRACTICAL CONSIDERATIONS

1. A rigorous training in basic statistical concepts
and procedures is a useful practical background
from which to consider the applications of statis-
tics to mineral inventory estimation. Simple sta-
tistical concepts must be appreciated in general
terms and, more particularly, with regard to spe-
cific uses in mineral inventory estimation.

2. Statistical approaches to dealing with data are
conveniently accessible for use in a wide range
of commercial computer software, including var-
ious data management and display programs de-
signed specifically for the mineral industry. The
algorithms used in such software packages must
be understood.

3. Graphics tools are an increasingly important part
of the arsenal contributing to an understanding of
data and software that incorporates many means
of viewing data in simple conceptual ways are
widely available. The ease of use and quality of
graphics must not cloud a basic understanding
of the principles used and the true nature of the
data.

4. No single software package necessarily provides
all the forms of output that are desirable when
dealing with the extremely large amounts of mul-
tivariate data that are commonly available for a
mineral inventory study. Practitioners will find it
useful to have sufficient familiarity with various
software packages so that transfer of data from
one to another becomes a trivial matter. Basic
programming skills are particularly useful as a
time saver in achieving a range of goals (e.g.,

building files of particular subsets of the data, sort-
ing out outliers, testing various data transforms).

5. Statistical procedures must be understood so that
they are applied confidently and correctly in
practice. An example is the contrast between and
interpretation based on classic regression (for-
mula dependent on which variable is selected as
the dependent variable), which assumes all the
error is in one variable, and regression techniques,
such as reduced major axis, which incorporates
error in both variables.

6. The use of statistics in mineral inventory estima-
tion should be guided by geologic information, as
indicated in Chapters 2, 6, and 7.
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4.12: EXERCISES

1. Given three contiguous drill core samples of
lengths 2, 3, and 5 m that assay 3%, 6%, and
12 percent Zn, respectively, compare the arith-
metic mean of the assays with the weighted
mean, assuming that density is uniform through-
out. What is the weighted mean Zn grade if the
respective specific gravities are 3.2, 3.7, and 4.1?
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Compare the unweighted standard deviation with
the weighted standard deviation.

2. (a) Calculate the mean and variance of the 60 in-
teger values of Fig. 4.1. Construct a lognormal
distribution with the same mean and variance.

(b) Assuming perfect lognormality and a cutoff
grade of 3.5, determine (1) the proportion of
volume above cutoff grade and (2) the aver-
age grade of the material above cutoff grade.
Compare these estimates with those deter-
mined directly from the data.

(c) Suppose that the spread of original values in-
cludes an abnormally high sampling plus ana-
lytical variance (%2) that has been reduced by
an absolute amount of 0.55 through the im-
plementation of an improved sampling pro-
cedure. Recalculate the proportion of volume
above cutoff and the average grade of material
above cutoff (assuming lognormality) using
the new dispersion. The difference between
these estimates and those of part (b) provide
an indication of false tonnage and grade that
can result from large errors in assay data.

3. A grain count of 320 grains of heavy min-
eral concentrate yielded 7 grains of cassiterite
(SnO2). Calculate the error of the estimate. What
is the likelihood that the true grain count is 4 or
less?

4. Calculate the probability of 0, 1, 2, 3, . . . nuggets
of gold in a sample of 2,000 grains known to con-
tain, on average, 2 nuggets per 5,000 grains?

5. A 0.5-kg sample of a placer sand has an average
grain size of 2 mm, and grain counts show that
the average scheelite content is 3 grains. What is
the proportion of random samples that on average
contain 0, 1, 2, . . . grains of scheelite?What is the
expected WO3 content of samples with a weight
of 3 kg, assuming that only quartz and scheelite
are present?

6. A sample of approximately 2,500 grains yields 0
grains of gold in a region where other samples

contained some gold grains. What is the proba-
bility that the 0-grain result is simply an expected
sampling variation of a material that contains an
average of 0.5 grains of gold per 2,500 grains?
What would the probability be of 0 gold grains if
the sample size were doubled?

7. The following tabulation contains class inter-
val and cumulative percentages for 120 Au
analyses from a polymetallic, massive sulphide
deposit:

Cutoff

Grade

(g/t) % Data ≥≥≥≥≥ Cutoff

0.0 100
1.0 99
2.0 81
2.5 60
3.0 35
4.0 8
4.5 3
5.0 1
5.5 0

(a) Construct the histogram and fit by a normal or
lognormal probability density function.

(b) Calculate the mean and standard deviation of
the data. Note that this can be done using fre-
quencies (specifically, Freq/100) as weights.

(c) Plot the data on both arithmetic and logarith-
mic probability paper. Estimate the parame-
ters in each case and compare with the results
of (b).

(d) Assuming that the histogram is unbiased,
use a normal or lognormal approximation
(whichever is best) to calculate the proportion
of tonnage above a cutoff grade of 2.25 g/t Au.

8. The gold data (inch-pennyweight) of Fig. 4.19
(cumulated inTable 4.4) are shown in a simple and
widely used formof presentation for planning pur-
poses in tabular deposits (Royle, 1972). Plot the
data on arithmetic and log probability paper and
interpret. Interpretation should include comment



Table 4.4 Tabulation of assay data (in dwt) shown in Fig. 4.19

Value (in dwt) Lower drift Number in upper drift Raise Total number Cumulative number Cumulative percent

Trace 3 5 5 13 13 9.42
<10 1 2 0 3 16 11.59
10–20 1 5 4 10 26 18.84
20–30 4 3 0 7 33 23.91
30–40 0 3 0 3 36 26.09
40–50 0 1 0 1 37 26.81
50–60 5 1 1 7 44 31.88
60–70 0 2 1 3 47 34.06
70–80 1 0 0 1 48 34.78
80–90 3 1 1 5 53 38.41
90–100 0 1 0 1 54 39.13
100–200 7 3 0 10 64 46.38
200–300 1 7 1 9 73 52.90
300–400 2 4 1 7 80 57.97
400–500 3 6 3 12 92 66.67
500–600 2 2 0 4 96 69.57
600–700 3 1 0 4 100 72.46
700–800 4 2 2 8 108 78.26
800–900 1 0 2 3 111 80.43
900–1,000 4 1 1 6 117 84.78

1,000–1,100 3 0 2 5 122 88.41
1,100–1,200 0 0 1 1 123 89.13
1,200–1,400 3 1 3 7 130 94.20
1,400–1,600 0 0 0 0 130 94.20
1,600–1,800 3 2 0 5 135 97.83
1,800–2,000 1 0 0 1 136 98.55
2,000–3,000 0 2 0 2 138 100.0
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Figure 4.19: Data for underground workings of a gold-bearing quartz vein. Values are in dwt at regular intervals along
underground workings and along a stope face. Redrawn from Royle (1972).
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on the form of the distribution, the possibility of
the presence of two or more subpopulations, and,
if possible, a rough estimate of thresholds between
subpopulations.

9. The following cumulative data (U3O8) represent
1,081 analyses for a uranium deposit (Isaaks,
1984). Parameters are: m = 4.87%, s = 7.84,
CV = 1.61. Plot the data on both arithmetic and
log probability paper. Comment on the probable
number of subpopulations and the problem(s) that
arises in determining this number.

Grade

(%U3O8)

of Data Cumulative %

0.2 22.0
0.3 34.0
0.5 46.0
1.0 54.0
1.5 60.0
2.5 69.0
5.0 75.0
82.0 90.0
20.0 94.7



5
Data and Data Quality

Sampling theory cannot replace experience and common sense. Used in concert with these qualities, however,
it (sampling theory) can yield the most information about the population being sampled with the least cost and
effort. (Kratochvil and Taylor, 1981, p. 938)

This chapter provides a brief introduction to
the types of data normally encountered in min-
eral inventory estimation, a consideration of
errors in data, designing data gathering effec-
tively, and monitoring the quality of data as
they are obtained. Topics proceed to a general
consideration of data arrays and their impact
on reserve/resource estimation, the importance
of sampling experiments in optimizing sam-
pling procedures and discussions of subsampling
and analytical quality control. Gy’s sampling
equation and its implications are considered at
length. A general approach to grade control in a
porphyry-type, open-pit environment is summa-
rized.

5.1: INTRODUCTION

Mineral inventories are estimated from quantitative
measurements (assays) derived from representative
samples of rock material; these data are extended in
some manner to much larger volumes/masses as part
of the estimation process. Volumes for which grades
are estimated commonly are up to 1 million times the
total sample volume onwhich the estimates are based;
obviously, raw data must be of high quality. Samples

must be distinguished from specimens; specimens of
ore or waste are selected by geologists to exemplify
particular features of mineralogy, texture, structure,
or geologic relations and are unlikely to be represen-
tative of ore grades in much larger volumes. “Grab
samples” of ores can be highly biased with respect
to grade; both grab samples and geologic specimens
are “point samples” as described by Vallée (1992,
p. 48), and should be avoided for purposes of mineral
inventory estimates. Point samples are useful for such
purposes as characterizing types ofmineralization and
demonstrating physical continuity of mineralization.

Sample values are used tomake estimates ofmean
grades of blocks of variable size, such that blocks can
be classified as ore or waste; clearly, high-quality data
are desirable as a basis for this decision. The quality
of estimates depends on the number of samples used,
the mass of individual samples, the orientation of in-
dividual samples, the spatial distribution of samples
relative to the block to be estimated, sampling proce-
dures, sample reduction methods, and, of course, the
value continuity of the variable (grade) in question.

Deliberate errors are unacceptable and special se-
curity measures may be necessary to guard against
their occurrence. Illegal activities can include salting
(purposeful contamination of samples or outcrops),
importing mineralized material (e.g., drill core) from
another property, and falsification of supposedly

104
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Table 5.1 Types of samples used traditionally in mineral inventory estimation

Name Brief description

Point A localized specimen taken to illustrate a particular geologic/mineralogic feature; a prospector’s “grab sample”
(a small, localized chip). Generally not representative of grade, and thus cannot be projected from site of origin.
Can be indicative of continuity of mineralization. Commonly small in size, perhaps 0.1–0.2 kg.

Linear Has one very long dimension relative to others. Includes drill core and cuttings, channel samples (highly regular
cuts from a rock surface), or a series of adjacent or nearly so chip samples. Individual linear samples are
generally 0.5 to several kg. This is the type of sample that forms the main database of most mineral inventory
studies.

Panel Generally a regular array of chips taken over a more or less planar surface such as a surface exposure of ore on
the face/wall of underground openings. Such samples commonly range from 1–5 kg.

Broken ground Large amounts of broken ground can result from trenching and the driving of underground openings. This material
can be sampled regularly as it is produced or may be moved to one or more localities with variable and unknown
mixing, possible segregation of heavy components, losses during transit, and dilution during sequential moves.
Representative sampling is a difficult problem generally requiring large samples. Used to optimize ore-dressing
procedures.

Bulk Very large samples (hundreds to thousands of tons) generally taken to verify grade estimates from smaller
samples or to optimize ore-dressing procedures prior to mill design and construction. Small-scale mining
procedures are generally required to obtain these samples.

Source: From Vallée (1992, 1998a).

historic documents (Wunderlich, 1990). Verification
of technical literature, independent sampling, regu-
lar control of sampling and analytical procedures,
special security precautions, and the use of reli-
able staff are means of minimizing deliberate errors
(cf, Rogers, 1998). AsAgricola (1556) stated: “A pru-
dent owner, before he buys shares, ought to go to the
mine and carefully examine the nature of the vein,
for it is very important that he should be on his guard
lest fraudulent sellers of shares should deceive him”
(Hoover and Hoover, 1950, p. 22).

5.2: NUMERIC DATA FOR MINERAL
INVENTORY ESTIMATION

5.2.1: Types of Samples

The principal categories of samples useful in mineral
inventory estimates are summarized in Table 5.1. Lin-
ear samples are most common, particularly samples
of drill core and/or cuttings, supplemented in some
cases by channel and chip samples. Channel samples
are those in which all solid material is collected from
a long prism of rock of rectangular cross section; chip
samples are those in which rock chips are collected at

one or more points in a regular pattern, along a line in
the case of a linear chip sample. Channel sampling is
labor intensive, and both channel- and chip-sampling
techniques require access to rock faces. Channel
and chip samples are suited particularly to outcrops,
trenches, and underground workings, and generally
are taken with the aid of handheld drills. In the
case of strongly preferred orientations (e.g., bedding,
shearing), channels should be oriented across the
layering; chip samples are more appropriate when
directional heterogeneities are less pronounced. The
principal problem encountered with both channel
and chip sampling is preferential breaking of soft
minerals. Soft ore minerals may be overrepresented
in a sample and thusmay impose a high bias on the re-
sulting grade; conversely, soft-gangueminerals can be
overrepresented and may lead to underestimation of
grade. The problem can be minimized by taking large
samples or, where possible, taking separate samples
from soft and hard zones and weighting correspond-
ing grades by proportions to obtain a weighted-grade
estimate.

Drill-based sampling methods are now used rou-
tinely, particularly for evaluation of large mineral
deposits where abundant data are required from what
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would otherwise be inaccessible parts of a deposit.
Rotary, percussion, auger, and diamond drills are used
(with variants) depending on specific circumstances.
Either solid rock core or fragmented or finely ground
cuttings are brought to surface by drilling and sam-
pled for assay. Both core and cuttings provide in-
sight into the nature of inaccessible parts of a deposit
and are most informative and representative where
they are at a large angle to the direction (plane) of
greatest continuity of mineralization. Core is com-
monly split, one-half being retained for geologic in-
formation and the other half providing material for
assay. Core splitting can be done with a mechan-
ical splitter or with a diamond saw; use of a saw
is labor intensive but may be warranted when it is
important to reduce sampling variability, as in the
case of many gold deposits. In rare cases, the en-
tire core is used either for assay or to create compos-
ite samples for mill tests. Such procedures should be
avoided if at all possible because “half core” should
be saved and stored safely, as it is an essential ref-
erence material with which to develop new concepts
of both geologic and grade continuity as knowledge
of a deposit evolves (cf. Vallée, 1992). Photograph-
ing split core in core boxes is a widely used proce-
dure for preserving evidence of the character of the
core and is particularly essential when all of the core
is consumed for either assaying or testing milling
procedures.

Many types of drilling do not produce core. In-
stead, they provide broken and finely ground material
that is flushed to the surface (by air or water) and
is either sampled systematically by machine as it ar-
rives at the surface or accumulates in a pile that must
be subsampled. The amount of cuttings from a single
drill hole can be enormous and the sampling problem
is not trivial. Generally, drill cuttings must be reduced
in mass substantially by a sampling procedure such
as riffling to produce a sample of manageable size for
subsampling and assay.

Drill samples are subject to a variety of sources of
error (e.g., Long, 1998). For example, some types of
ground (e.g., highly altered rock) are difficult, if not
impossible, to core, and core loss may be substantial.

Such core loss can result from the presence of soft
minerals in a hard surrounding (e.g., galena in quartz)
or from superimposed fracturing and/or alteration
(e.g., a shear zone). When drill cuttings are sampled,
soft material high in a drill hole can collapse and
contaminate cuttings lower in a hole. Water is an
inherent part of many drilling procedures and its low
relative density can result in material, such as gold,
high in a drill hole (e.g., above the water table) being
transported to lower depths in the hole.

Panel samples are normally taken underground,
intermittently as a working face advances (i.e., as an
adit or drift is advanced round by round by drilling
and blasting). Generally, the sample is a combination
of chips taken from a close-spaced, two-dimensional
grid over the surface, and thus commonly represents
a surface area of about 2× 2 m. Such samples ordi-
narily are used as a check on samples of smaller or
different support (size, shape, orientation). As with
any chip-sampling procedure, panel samples can be
biased if soft material is included in nonrepresenta-
tive amounts in the ultimate sample. When possible,
hard and soft materials might be chip sampled and
analyzed separately; a weighted average for the panel
can be based on the proportions of hard and soft ma-
terials and their respective bulk densities.

It should be noted that a substantial amount of
assay information for some variables (e.g., uranium,
berylium) can be obtained directly by instrument
readings from a rock face so physical samples
might not be taken. Hand-held instruments on rough
rock faces can produce large errors because cali-
bration generally does not take surface roughness
into account. There is increasing use of borehole
geophysical methods to obtain assay information.
Passive techniques (e.g., gamma ray spectrometry)
record natural emissions from rocks, and active
techniques (e.g., spectral gamma–gamma and X-ray
fluorescence) have an electronic or radioactive
source that bombards the rocks so that characteristic
emissions can be recorded (Killeen, 1997). Ac-
tive techniques are applicable to a wide range of
elements. All instrumental methods must be cali-
brated with great care.
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5.2.2: Concerns Regarding Data Quality

The aim of sampling is to provide value measures
(e.g., assays of metal grades) that are the fundamen-
tal information to be used in making resource/reserve
estimates. Individual value measures are subject to
variability from three discrete sources: (i) real geo-
logic variations, (ii) sampling errors, and (iii) mea-
surement (analytical) errors. The effects of real geo-
logic variability can be dealt with through the use
of autocorrelation functions and statistical methods
closely tied to the concept of “range of influence” of
a sample (see Chapters 8 and 9). To a limited extent
(generally negligible), this source of variability can
be decreased by increasing sample size.

There are several ways in which an approach
to sampling and data gathering can be arranged to
maximize the quality of the data and the resulting
mineral inventory estimates, whatever the method of
estimation. Some of the more important factors are
as follows:

(i) To reduce and know the magnitudes of errors
in the database (assays, thickness, sample coor-
dinates), in particular, to improve and monitor
the quality of assays and the representivity of
samples

(ii) To develop a sampling plan and procedure that
are appropriate to the task

(iii) To ensure that analytical methods and proce-
dures have adequate precision and accuracy

(iv) To integrate geology into the data accumulation
and evaluation phases so that data are obtained
and used in optimal fashion with respect to the
geologic character of thematerial being sampled.

Minimizing errors in sampling and assaying re-
duces the nugget effect (random variability) and the
sill of the experimental semivariogram (seeChapter 9)
and thus improves the quality of model fitting to the
experimental semivariogram. An improved autocor-
relation (e.g., semivariogram) model is an improved
quality measure of average continuity of grades and,
if geostatistical methods of estimation are to be used,
reduces the estimation error. Using a single, aver-

age semivariogrammodel for an entire deposit, rather
than models adapted to the various geologic domains
present, can lead to an inappropriate application of
geostatistics with abnormally large and unrecognized
errors in a high proportion of the estimates.

Sampling methods, sample preparation proce-
dures, and assaying procedures are too commonly
accepted routinely without rigorous checking during
information gathering for delineating and detailing
a specific mineral deposit (e.g., Pitard, 1989, 1994).
Requirements for sample parameters such as sample
mass, particle size, and number of particles per sample
differ as a function of the character of mineralization.
Sampling procedures that are not optimal introduce an
additional, possibly large, component of variance to
the geologic/mineralogic variations that are described
by autocorrelation functions such as semivariograms
or correlograms. Systematic tests to help optimize
data-gathering procedures are used far too rarely in
practice, despite the low cost of such measures and
the increased error that is implicit in the added vari-
ance. Samplingmethods should not be accepted with-
out testing (Sinclair and Vallée, 1993), as methods
suitable for one deposit type might be totally inap-
propriate for another. Often, too little attention is paid
to reviewing the implications of the various parame-
ters and procedures associatedwith standardized sam-
pling methods such as diamond drilling (e.g., chang-
ing core sizes, variable core recovery, variable sam-
pling methods).

The same scrutiny used in quality control of sam-
pling procedures should be applied to assaying prac-
tices and results (Vallée, 1992). Reducing the assay
variability related to procedural and instrumental de-
ficiencies also improves delineation of ore limits and
the efficiency of grade-quality control during pro-
duction. Design of optimum subsampling procedures
can be guided by Gy’s sampling equation (Gy, 1979;
Radlowski and Sinclair, 1993) to appreciate in-
herent errors and to minimize the nugget effect
(Pitard, 1994). Reports of assay results should con-
tain information about sample preparation and analyt-
ical methods, including information about detection
limits.
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5.2.3: Location of Samples

Inherent in the use of sample grades to develop a min-
eral inventory is the implicit understanding that sam-
ple locations in space are well known. Unfortunately,
this is not always the case. Sample sites and drill-
hole collars must be surveyed for accurate positioning
in three dimensions. Drill holes wander, depending
on their orientation and the physical characteristics
of rocks they intersect. Even small deviations from
a planned orientation at the collar of a hole can re-
sult in substantial departure of the end-of-hole from
the planned/projected position. A drill hole must be
surveyed at intermittent locations along its trace and
this information is then combined with the surface in-
formation (collar coordinates) to determine realistic
three-dimensional coordinates for samples along the
“true” drill-hole trace. Most commercial, down-hole,
surveying devices routinely measure angle of plunge
to better than 1 degree and the angle of azimuth to
better than 0.1 degree (Killeen and Elliot, 1997). The
problem is illustrated in Fig. 5.1, in which small, pro-
gressive changes in the plunge of a drill hole
(1–3 degrees over 50 m) result in the end-of-hole be-
ing shifted about 30 m from its projected position.
Lahee (1952) discusses much larger deviations in
which drill hole ends are displaced by 20 percent or
more of the hole length. Traditional down-hole sur-
veying methods can be affected by variable magnetic
character of the surrounding rock. Gyroscopes can be
used inside the drill casing where magnetic proper-
ties are a problem. New techniques such as ring-laser
gyros do not depend on magnetic properties and have
almost no moving parts.

5.3: ERROR CLASSIFICATION
AND TERMINOLOGY

5.3.1: Definitions

The accuracy of a sampling and analytical proce-
dure is a measure of how closely the true value of
the sample is approached by reported analyses. Gen-
erally, true values are not perfectly known and tra-
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Figure 5.1: An example of a correct drill-hole trace based
on survey information, relative to the expected (projected)
trace if the hole did not wander. Triangles are survey posi-
tions along the drill hole, where hole plunge and azimuth
were measured. Dotted pattern indicates eighteen 10 ×
20 m blocks intersected by simple projection of the collar
orientation, but not intersected by the correct drill-hole po-
sition. In this example, small direction changes of a degree
or so, at 50-m intervals down the hole, result in an overall
9-degree deviation in orientation (and about 30-m displace-
ment) near the hole bottom.

dition has led to a general procedure that provides
a close approach to true values of samples. Funda-
mental to the method is the availability of a compo-
sitional range of standards that are widely analyzed
(internationally in some cases) by a variety of proved
analytical methods and whose mean values are well
known. These mean values are accepted as the true
values and the standards are used to calibrate local,
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secondary standards (natural and/or synthetic materi-
als) that serve as routine calibration controls in most
commercial andminesite laboratories. Replicate anal-
yses of internal standards are commonly reported by
commercial laboratories along with assay results re-
ported to a client; the consistency of such data is a
measure of the reproducibility of the analytical pro-
cedure, and the nearness of the average of replicates
to the accepted standard value is also a measure of
accuracy. It is important not to use a false measure of
accuracy. If the aim of an assay is to determine soluble
oxide copper accuracy for such a variable, it should
not be compared to total Cu content.

Departures from true values are called bias, a mat-
ter that often receives too little attention, “and yet is
normally the most significant source of error in eco-
nomic terms” (Burn, 1981). Bias can be considered
ideally as either proportional to concentration or fixed
(constant regardless of concentration).

Reproducibility (precision) is a measure of the
inherent variability of a specified sampling and analyt-
ical procedure and need bear little similarity to accu-
racy (Fig. 5.2). For example, a particular acid extrac-
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Figure 5.2: Types of errors in measurement data: random and systematic errors, each with narrow (good-quality) and wide
(poor-quality) precision. µ is the true population value that is being estimated by samples (histogram); x̄ is the mean value
of the sample.

tion for copper may not attack certain Cu-bearing
minerals, and thus may underestimate copper even
though repeated analyses give very consistent results.

Replicate analyses of a sample are not all identi-
cal; a variety of errors are involved in any measure-
ment procedures and these accumulate in the reported
analytical values. In general, when only random er-
rors are present, the error can be summarized as an
average variance (s2) or as a standard deviation (s) rel-
ative to the mean (x̄). Commonly, the relative error as
a percentage is used (100s/x); the quantity s/x is also
known as the coefficient of variation (CV). Precision,
a quantitative measure of reproducibility, commonly
is quoted in terms of two standard deviations as a
percentage of the mean:

Pr = 200s/x̄

but can be generalized as a function of concentration
as

Prc = 200sc/xc.

The error, sc, commonly varies systematically as a
function of concentration (see Section 5.3.2).
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Detection limits of analytical techniques should
be reported; a useful definition of detection limit is
that concentration at which Prc = 100, or equivalent,
the concentration at which 2sc = xc (Thompson
and Howarth, 1976). Note that precision can be
very different for different metals, even though the
metals might be measured by the same analytical
method.

The recognition of bias (systematic departures
from the truth) is more difficult and requires a quality
control system. A program involving periodic anal-
yses of standards can serve as an early indicator of
bias and is an essential component of a quality con-
trol program. A more extensive consideration of bias
is provided in Section 5.8.

A thorough understanding of data quality is
clearly important in estimating mineral inventory.
Less obvious, however, is the impact of data qual-
ity on the extensive reconciliation work that is in-
variably done during production. It is common prac-
tice in operating mines to compare estimated metal
with mill heads over practical operational time units
(e.g., weekly or monthly production). This procedure
serves as a complex indicator of the quality of estima-
tion and is part of a broader mass balance procedure
that indicates the extent to which production agrees
with expectation (estimation). Assay data that are of
low quality, for whatever reason, make these compar-
ative studies (reconciliations) ambiguous or uninfor-
mative.

Errors in sampling and analytical methods gen-
erally can be treated by statistical methods, provid-
ing reasonable design has gone into generating the
appropriate information. Random errors, as a rule,
are considered to be normally distributed, with sev-
eral exceptions (Thompson and Howarth, 1976), as
follows:

(i) The analyte is concentrated in a very small pro-
portion of the particles constituting extremely
heterogeneous samples (e.g., cassiterite or gold
grains in a sediment).

(ii) Precision is poor and calibration is nonlinear
(e.g., calibration can be logarithmic near the de-
tection limit).

(iii) Concentrations are within an order of magnitude
of the digital resolution of a measuring instru-
ment.

(iv) Concentration levels are near the detection limit
and “subzero” readings are set to zero or re-
corded as “less than” (produces a censored dis-
tribution).

(v) Outliers are present in the data (considered in
Chapter 7).

5.3.2: Relation of Error to Concentration

Experience has shown that errors in the numeric val-
ues of assays commonly are a function of metal con-
centration. As a rule, this relation is poorly docu-
mented and is rarely quantified in cases of mineral
inventory estimation. The problem has been investi-
gated extensively by Thompson and Howarth (1973,
1976, 1978) and Howarth and Thompson (1976)
in relation to geochemical data sets in which val-
ues can extend over several orders of magnitude.
They demonstrate that it is inappropriate to assign
the same average (absolute or relative) error to both
low- and high-valued items in a data set that spans
a large compositional range (an order of magnitude
or more). Their work suggests that a linear model
provides an acceptable estimation of error as a func-
tion of composition for analytical data of common
geochemical media (samples of soils, sands, water,
rocks, etc.); assays that serve as a base for mineral
inventory are just a special case of analytical data
for rock media and are appropriate for study us-
ing the Thompson–Howarth method. A cautionary
note is that the Thompson–Howarth method is re-
stricted to a quantification of random error as a linear
function of metal concentration, bias is ignored, and
some other method of testing for bias is essential (see
Section 5.8). Moreover, the linear model is assumed
to apply to the entire compositional range being in-
vestigated. Such an assumption could be inappropri-
ate in cases in which data are derived from two or
more completely different styles of mineralization.
The method is meant to be applied to situations in
which duplicate samples are distributed through the
various analytical batches that generate a complete
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data set and cannot be identified by the laboratory
conducting the analyses. Hence, the duplicate sam-
ples are representative of the conditions that prevail
throughout the generation of the entire data set. The
Thompson–Howarth method is not meant for paired
data generated by different laboratories, analysts, or
sample types.

The Thompson–Howarth procedure considers
paired data to be a basis for monitoring errors, al-
though it can be adapted easily to use a variable num-
ber of replicate analyses. Similarly, the method as
published for geochemical data recommends a min-
imum of 50 pairs of analyses; for more precise as-
say data, the authors have found as few as 30 du-
plicates to be adequate. The general method is as
follows:
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Figure 5.3: Sampling and analytical errors of gold analyses as a function of composition, based on 55 duplicate samples
from the J&L massive sulphide deposit, southeastern British Columbia. Ordinate is standard deviation of replicate analyses
(or absolute difference of sample pairs); abscissa is average concentration of replicate analyses. Filled squares are individual
samples that have been replicated; + signs are median differences (or standard deviations) versus averages of successive
groups of 11 sets of sample replicates. A linear model has been fitted to the + signs to describe error as a function of
composition. See text for details. CV = coefficient of variation; r = correlation coefficient; Det. Lim. = detection limit as
calculated from the data (i.e., concentration at which concentration equals twice the standard deviation).

(i) For a set of paired (duplicate) data, determine the
mean concentration of each pair [(x1 + x2)/2]
and the corresponding absolute difference in
concentrations (i.e., |x1 − x2|).

(ii) Arrange paired data in order of increasing con-
centration, using means of pairs.

(iii) Divide the full data set into successive ordered
groups of 11 for geochemical data. (The authors
have found that as few as seven pairs per group
is adequate.)

(iv) For each group, find the group mean value (con-
centration) and the median value of pair differ-
ences.

(v) Plot the median difference of paired data in each
group versus the corresponding mean value for
the group (Fig. 5.3).
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(vi) Obtain a line through the plotted mean–median
points (by eye or by regression). This line has the
form:

y = b + kx .

If b and k are multiplied by 1.048 (because me-
dians have been used as estimates of standard devia-
tions), the equation becomes

sc = so + m · c
where c is the concentration, m is the slope, and so is
the y-axis intercept. A slightlymodified version of the
Thompson–Howarthmethod of error analysis is avail-
able in the program ZERROR (publisher’s website),
although it is evident from this sequence of steps that
the analysis is done easily in a spreadsheet. ZERROR
accepts duplicate and/or replicate analyses. Thus, in-
stead of plotting absolute difference of pairs versus
mean value, a plot of standard deviation versus mean
value is provided. The two are essentially equivalent
for paired data over short concentration ranges that
result from the ordered grouping of pairs as described
for the Thompson–Howarth procedure. Use of the
program should be preceded by a general examina-
tion of paired data for bias, as outlined in Section 5.8,
because the method is not sensitive to the recognition
of bias. Figure 5.3 is an example of the output of
ZERROR.

The Thompson–Howarth method was designed
for duplicate geochemical data from a single labo-
ratory, data that are commonly of relatively low qual-
ity in comparison with assay data that are the basis
for resource/reserve estimation. In addition, there is
an implicit assumption that the two sets of analyses
being compared are subject to the same errors, on av-
erage. This obviously need not be truewhere duplicate
results by two different labs are being compared – in
which case the resulting error model is intermediate
between the models for each lab individually. Conse-
quently, despite its increasing use for data evaluation
vis-à-vis mineral inventory estimates, the method is
not entirely suitable for broader applications involv-
ing both systematic and random errors or data from
multiple laboratories. An alternative and more gen-
eral approach to monitoring data quality is outlined
in Section 5.8.

5.3.3: Bias Resulting from Truncated
Distributions

Truncation of a grade distribution, as in the applica-
tion of a cutoff grade used to separate ore from waste,
necessarily leads to a bias in resulting estimates of re-
coverable metal, even though high-quality, unbiased
assay data are used to make the estimates. The prob-
lem arises because block classification as ore or waste
is based on estimates, which, no matter what their
quality, contain some error. Thus, somevalues above a
cutoff (truncation) grade are estimated as being below
cutoff grade and vice versa. In a simplistic example,
Springett (1989, p. 287) illustrates the problem:

[C]onsider the trivial but informative example of
a gold deposit with a constant grade of 1.7 g/t
(0.05 oz per st) completely homogeneously
distributed – thus any sample or truck load that
is taken from the deposit contains exactly 1.7 g/t
(0.05 oz per st) of gold. The operator is unaware
of this uniform grade distribution and will carry
out selection by means of blasthole samples.
Assume a sampling error that is normally dis-
tributed with a mean of zero and standard devia-
tion of 0.34 g/t (0.01 oz per st) that is incurred at
both the mill and the mine. Obviously, if perfect,
error-free selection was possible, then if the cut-
off grade was at any value equal to or below
1.7 g/t (0.05 oz per st) the entire deposit would
be delivered to the mill, and if the cutoff grade
were at any value greater than 1.7 g/t (0.05 oz
per st) none of the deposit would bemined. How-
ever, given the assumed error distribution de-
scribed above, the apparent distribution of blast-
hole sample grades will then be normally
distributed with a mean of 1.7 g/t (0.05 oz per st)
and a standard deviation of 0.34 g/t (0.01 oz
per st). If selection is carried out by the polyg-
onal method, then two curves can be developed
showing for a range of cutoff grades: the aver-
age grade reported by the mine (and) the average
grade reported by the mill.

The foregoing example, illustrated in Figs. 5.4
and 5.5 in units of oz/t, assumes a constant grade of
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Figure 5.4: Normal estimated grade distribution with mean
of 0.05 oz/t and standard deviation of 0.01 oz/t (i.e., 20
percent error as one standard deviation). Note that the
true uniform grade is 0.05 oz/t and that dispersion of
estimates arises entirely because of error of estimation.
Redrawn from Springett (1989).

0.05 oz/twith an error (standard deviation) of 0.01 oz/t
to give the distribution of estimated block grades of
Fig. 5.4. For various cutoff grades, the expected av-
erage grade of material mined (estimated using Eq.
4.18) is much higher than is actually reported as re-
covered at the mill (Fig. 5.5). It is apparent that even
in this simplistic case, a systematic high bias for esti-
mates of contained metal is introduced by truncation
(selection relative to a cutoff grade) despite the unbi-
ased character of the sampling error.

G
ra

d
e

 (o
z/

t) 0.08

0.09

0.03

0.04

0.07

0.05

0.06

0.02

Grade (oz/t)
0.03 0.04 0.05 0.06 0.07 0.08

Figure 5.5: Estimated and true grades of production versus
cutoff grade for the normal distribution of Fig. 5.4. Filled
squares are average grade of blocks estimated (due to ran-
dom error) as having grade above the true grade. Filled cir-
cles indicate true grade of blocks selected as ore. Note that
as the cutoff grade increases, the extent of overestimation
of grade increases. Redrawn from Springett (1989).

Amore realistic detailed example of the impact of
various levels of block estimation error on estimated
and true copper grades at the Bougainville porphyry
copper deposit is documented in Chapter 19. In gen-
eral, if the cutoff grade is greater than the mean grade
of the distribution, the effect of sampling plus ana-
lytical error is to increase estimated tonnage and de-
crease estimated average grade relative to reality. For
cutoff grades less than the average grade, the effect is
to decrease estimated tonnage and increase estimated
average grade relative to reality. In the latter case, the
increase in grade is generally slight, perhaps imper-
ceptible.

5.4: SAMPLING PATTERNS

5.4.1: Terminology and Concerns

Traditional sampling patterns are random, random
stratified, regular, and irregular (Fig. 5.6). Random

a b

c d
Figure 5.6: Examples of sampling patterns: (a) random
sample locations within field V; (b) stratified random sam-
ples, with each of n samples located randomly within a
small block, v, within field V; (c) regular sampling pattern,
with all samples located at nodes of a regular grid with cells
summing to V; and (d) clustered (biased) sampling pattern,
that is, the sampling is not representative of field V.
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sampling rarely is used in mineral deposit appraisals,
principally because of the influence of geology on
grade distribution. Instead, grid sampling, stratified
sampling, or a close approach to these sampling strate-
gies is used to optimize sampling patterns within a
framework determined by geologic structures and do-
mains. An important element of this approach gener-
ally consists of orienting the most dense sampling di-
rection perpendicular to the plane of greatest geologic
continuity, as estimated from the geologic model in
vogue at the time of sampling. Such a strategy can
lead to several pitfalls because of the assumptions in-
volved; thus, continual review and refinement of the
sampling strategy is required as geologic and assay
knowledge improves. All regularly spaced sampling
grids are subject to the possibility of strong bias be-
cause of periodicity in the sampling field. This prob-
lem is particularly serious for widely spaced explo-
ration data.

A general problem in all cases of estimation is
whether sufficient data are available for the required
estimate; obtaining additional data may be desirable,
even necessary. As indicated previously, sampling
grids commonly provide concentrations of data along
more-or-less regularly spaced cross sections that serve
as a basis for geologic modeling. When the sampling
procedure is drilling, the layout of drill-hole grids di-
rectly affects the understanding of both geologic and
value continuity, which, because of relatively widely
spaced data, can be particularly uncertain in direc-
tions perpendicular to the drill sections. Wherever
possible, the orientation and plunge of a drill hole
is selected roughly perpendicular to the perceived
planes of strongest continuity, subject to limitations
of surface topography and geologic structure. In con-
sequence, sample points or intersections commonly
are far more widely spaced in the horizontal plane;
thus, the detailed determination of continuity that is
obtained with relative ease and assuredness along the
drill-hole axis is not readily obtained in the other two
dimensions. In such cases, physical or value discon-
tinuities that are shorter than the drill-hole grid cell
may be missed, particularly where actual rock expo-
sures are sparse or absent. For example, experimen-
tal semivariograms for the Huckleberry porphyry Cu
deposit (Main zone) are illustrated in Fig. 3.6 by ex-

perimental semivariograms in three orthogonal direc-
tions. These semivariograms were determined from
vertical exploration–drill-hole assay data; down-hole
composite samples are spaced about 8 m apart,
whereas in the horizontal plane samples are mostly at
least six to eight times as far apart. Clearly, the auto-
correlation (semivariogram) model is not well known
over short distances in two of the three principal grid
directions, a situation that could be rectified by gath-
ering appropriate and closely spaced data during ex-
ploration.

A relatively widely spaced sampling pattern may
be appropriate for deposit delineation and global re-
source estimates when geologic information is abun-
dant, when a geologic model can be established with
confidence, and when value continuity can be shown
to lack significant discontinuities. More closely
spaced control data are required for local estimation,
particularly when the block size for estimation pur-
poses is much smaller than the drill-hole spacing at
an early stage of exploration.

These limitations of commonly used exploration
drilling patterns are shortcomings for widely used
deposit estimation procedures because they directly
affect the adequacy of the database for mineral inven-
tory estimation. Such inadequacies cannot be com-
pensated for by mathematic- or computer-based data
treatment procedures; instead, they lead to assump-
tions and more room for unquantifiable error.

Sampling patterns evolve as the deposit evaluation
process progresses through various stages. The first
sampling pattern (grid orientation, grid spacings, and
sample sizes) generally is chosen to delimit long-
range geologic continuity and provide a general in-
dication of grade distribution. Early grids commonly
are more or less square or rectangular. A substan-
tial literature exists contrasting the efficiencies of
square, triangular, and hexagonal grids (e.g., Yfantis
et al., 1987), but these highly idealized grids are gen-
erally not worth the effort during exploration and
evaluation of a mineral deposit because of the over-
riding control of geology and grade distribution on
the need for detailed information. Whatever the ini-
tial relatively wide-spaced grid sampling, this work
should be supplemented by some local, closely spaced
samples in all major directions to provide initial
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insight into a quantitative, three-dimensional model
for short-range, as well as long-range, grade continu-
ity. Short-range information at a relatively early stage
of deposit evaluation can be obtained from drill holes
with distinctly different orientations and from sam-
pling of surface trenches and areas of surface strip-
ping. At later evaluation stages, additional samples
are required for geologic purposes and for local es-
timation, particularly as deposit definition work ap-
proaches the requirements of the mining feasibility
stage; some examples of this are denser sampling net-
works, stricter sampling parameters to ensure high-
quality data, and bulk-type samples. Closely spaced
samples (e.g., “assay mapping”) are required along
all the principal dimensions of a deposit so that short-
range continuity, possibly anisotropic, can be quanti-
fied. Such “infill sampling” may continue the rectan-
gular form common in early sampling plans, although
alternative patterns (e.g., triangular and square two-
dimensional arrays) are recommended by some au-
thors (e.g., Annels, 1991). This short-range continuity
is an essential piece of knowledge on which to base
interpolations both at the exploration stage and later,
and is too often minimized in manymineral inventory
studies.

5.4.2: Sample Representativity

The concept of sample representativity refers to mini-
mal bias and acceptable random error, but in common
usage, because the term is ambiguous it is used in
at least two specific contexts. First, it is used in the
sense that a particular type of sample is appropriate for
a particular purpose. For example, small-radius drill
holes may not provide adequate core samples because
of core loss or because the variable in question has a
high nugget effect, whereas a larger-diameter core
may provide better core recovery and decrease the
nugget effect, and thus be more appropriate. Hence,
we talk of the representativity of a particular sampling
method for a stated purpose. A given sampling proto-
col appropriate for one deposit may not give adequate
(representative) results for another deposit. Vertical
drill holes, for example,might not produce a represen-
tative sampling where the style of mineral occurrence
is as near-vertical veinlets.

A second, perhaps wider use of the term sample
representativity relates to how well a given assay or
set of assay values represents a mass being estimated.
In this sense, the question is related not to the sam-
pling method, but to the size of individual samples,
the number of individual samples, the sampling pat-
tern (spatial distribution of samples), and to how ad-
equate these factors are in representing the mass to
be estimated. A relative measure of the representativ-
ity of samples for estimation purposes is difficult to
determine because it is based on subjective geologic
interpretation as well as implications from assay data
themselves. Given that geologic continuity is assured
and that an appropriate autocorrelation model can be
determined, the relative representativity of a particu-
lar sampling pattern and number of samples is given
by the global estimation error. Of course, various sam-
pling patterns can lead to essentially equivalent esti-
mation variances, and some of these patterns might
contain large local estimation errors.

The aim of sampling is that samples (and their
grades) be representative of the larger mass to be esti-
mated. In other words, to qualify as representative, a
sample grademust be close to the grade of the block it
is meant to represent. Of course, individual samples
can vary widely in grade, even over very short dis-
tances; consequently, an increase of the mass of sam-
ple used to estimate a volume improves the represen-
tativity by decreasing the possible grade fluctuations.
This increase inmass can be accomplished by increas-
ing the size of individual samples (e.g., increase diam-
eter or length of drill core) or by increasing the spatial
density of samples so that more samples are available
for estimation purposes within a fixed volume. One
global estimate of representativity is an autocorrela-
tion function for samples of a particular support – for
example, the semivariogram (see Chapter 9).

Sampling of segregated (stratified) material is a
problem commonly encountered in mineral inventory
estimation and reconciliation studies. In many situ-
ations, broken material with a wide range of sizes
is to be sampled. Finely ground material and any
heavy mineral particles (perhaps rich in soft or brittle
minerals) commonly move physically through inter-
stices to accumulate at the bottom, as in a “muck car,”
for example. There is obvious difficulty in obtaining a
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representative sample by a shovel or other kind of cut-
ting system. It is rare that such samples can be taken
in a way that guarantees absence of bias unless the
entire car of material is the sample. Another common
sampling environment is the conical pile of drill cut-
tings that accumulate at the top of blastholes; these
can be strongly stratified in a reverse sense relative
to the true stratification in the drill hole. Moreover,
piles of cuttings can be deposited asymmetrically be-
cause of air turbulence from the drill. Clearly, blast-
hole cuttings require careful sampling procedures, in-
volving sample supports that cross the stratification
and are also representative in the other two dimen-
sions.

A special problem of sample representativity in-
volves the common case of sampling or subsampling
broken or granular material to be analyzed for a rare
component such as a heavy mineral (e.g., gold, di-
amonds). As a generalization, the problem can be
mitigated to some degree by increasing the sample
(subsample) mass. Such samples, each incorporating
less than five rare grains, can be considered with a
Poisson distribution (Eq. 4.31). Consider a beach sand
that contains two grains of gold (µ = 2) per 30,000
total grains (30,000 grains of quartz–feldspar sand is
approximately 400 g). Equation 4.31 can be solved for
various values of x to give the probability of occur-
rence of samples containing x grains as follows: the
chance of taking a 30,000-grain sample containing
three grains of gold is P(3, 2) = (e−223)/(3.2.1) =
0.180. Other discrete probabilites can be determined
in a similar manner and are listed in Table 5.2. Re-
sults such as these, although idealized, are useful
because they represent expectations with careful
sampling. Note that only about one-quarter of the
30,000-grain samples taken report the correct gold
content; a significant number of samples (about 1 in 7)
contain no gold; one-quarter report 50 percent of
the true average; and the remainder report substan-
tial overestimates. Bold probabilities in Table 5.2 are
expected (average) results.

To examine the effect of an increase in sample
size, assume that the sample size is doubled. Thus,
the number of contained gold particles doubles, so
µ = 4. Equation 4.18 can be solved for this situation
to produce the results listed in Table 5.2. Note that

Table 5.2 Probabilities that 30,000- and
60,000-grain samples, with respective average
contents of two and four gold grains, will contain
various numbers of gold particles

Probability
Grains in sample

30,000 grains 60,000 grains (no.)

P (0,2) = 0.135 P (0,4) = 0.018 0
P (1,2) = 0.270 P (1,4) = 0.073 1
P(2, 2) == 0.270 P (2,4) = 0.147 2
P (3,2) = 0.180 P (3,4) = 0.195 3
P (4,2) = 0.090 P(4, 4) == 0.195 4
P (5,2) = 0.036 P (5,4) = 0.156 5
P (6,2) = 0.012 P (6,4) = 0.104 6
P (7,2) = 0.0034 P (7,4) = 0.060 7
P (8,2) = 0.0009 P (8,4) = 0.030 8

the range µ ± 0.5µ now contains 82 percent of the
possible samples, whereas with the smaller sample
this range contained 72 percent of possible samples.
The increase in sample size has “squeezed” both tails
of the distribution toward the true mean value.

Sample representativity also can be evaluated by
comparing the measured metal contents of succes-
sive parts (unit volumes) of a bulk sample with corre-
sponding estimates of those units based on available
sample/assay information (John and Thalenhorst,
1991). A one-to-one relation between estimated value
of unit volumes and true metal contents is not to be
expected because of conditional bias (Section 4.8).

5.5: SAMPLING EXPERIMENTS

5.5.1: Introduction to the Concept

Sampling procedures such as those referred to briefly
in the introduction to this chapter are too commonly
accepted routinely without rigorous checking of their
viability. Sampling methods found acceptable for one
deposit type might be totally unsuitable for another
deposit. Sample sizes can differ significantly among
sample types – for example, a segment of a AX dia-
mond drill core 15 ft long has a mass of about 0.004
short tons, whereas cuttings from a 12-in diameter
blasthole in a mine with a 15-m bench height can be
between three and four short tons. Systematic tests,
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required to help optimize sampling procedures, need
not be costly. Too often, we forget to review the im-
plications of the various parameters and procedures
associated with a standardized sampling method such
as diamond drilling. In some cases, a uniform sample
grid size or orientation may not be appropriate for all
domains or zones of the deposit.

A common source of ambiguity in interpreting
and utilizing quantitative data is that several sam-
pling methods have been used during the evaluation
of a deposit. For example, evaluation work can in-
volve linear samples (diamond drilling, rotary drill or
channel sampling), surface (two-dimensional) sam-
ples (panels), and large-volume samples (trench sam-
ples, mining round samples, and bulk samples). In
places, some of these sample types may represent dif-
ferent areas of the deposit with little or no overlap;
hence, systematic data to make comparative studies
and check for representativity (relative random error,
possibility of bias) of sampling methods may be lack-
ing. Even when two or more sample types are inter-
dispersed in the same domain there can be difficulties
of interpretation to the point of serious uncertainty if
the level of accuracy of the various sample types is
not known. Establishing the relations among different
sample types requires a systematic approach to data
gathering; in particular

(i) Areas of overlap of the various samplingmethods
that are large enough, with numbers of samples
sufficient for recognizing correlation, for exam-
ple, diamond drilling an area of a bulk sample, or
directing drill holes parallel to channel samples

(ii) Systematic statistical and geostatistical controls
of each sample set by itself and relative to other
data sets involved.

5.5.2: Comparing Sampling Procedures
at Equity Silver Mine

In mine production, quality control of sampling of-
ten can be improved. Of course, accumulated experi-
ence in a producing mine offers an initial measure of
quality control, but too few operations try to improve
the quality of routine sampling procedures beyond
this starting point. As an example of the potential

impact of sampling method on estimates (and thus
on productivity), consider the case history of Eq-
uity Silver Mine, central British Columbia, where
mine personnel conducted a small but revealing test
of several methods of sampling production blasthole
cuttings. The general problem of sampling blasthole
cuttings is widely recognized, and a selection of prac-
tical sampling approaches is presented by Annels
(1991).

The blasthole sampling procedure used at
the Equity Silver Mine, a tube (pipe) sampling
method somewhat modified from that described by
Ewanchuck (1968), involves shoving a 3-in diameter
tube (pipe) into four spots symmetrically located in
the cuttings pile (Fig. 5.7), upending the tube so that
material remains in it, and transferring the material in
the tube to a sample bag. A second method, channel
sampling (with a 4-in-wide shovel) along four
symmetrically distributed radii of the cuttings pile to
produce four separate samples and a composite chan-
nel sample, was to be tested. Finally, the total bulk of
remaining cuttings was taken as a sample to provide
a means of mass balance for the entire blasthole cut-
tings pile. Because all the cuttings from a particular
drill hole were used as sample material, it is possible
to produce a weighted average grade (weighted by
samplemass) – that is, a best estimate of the true value
of the cuttings pile. Results of individual sampling
methods can be compared with this best estimate
(Table 5.3 and Fig. 5.8). Calculations indicate that
the use of channel sampling at Equity would have
produced a dramatic improvement in assay quality,
and thus a significant improvement in ore/waste
classification and a corresponding increase in profit.
The decreased sampling error by channel sampling is
particularly evident in x–y plots of analytical data for
tube and channel sampling versus the best estimate
(Fig. 5.8).

Some of the important results of this sampling
experiment, based on a cutoff grade of 50 g Ag/t and
the assumption that the best weighted value is correct,
include the following:

(i) Tube sampling of 42 cuttings piles misclassified
7 samples: 4 ore samples as waste and 3 waste
samples as ore.
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Channel 1

Channel 2

Channel 3

Channel 4

Tube sample

Blasthole

Outline of
cuttings pile

Figure 5.7: Idealized plan view of a pile of cuttings surrounding a blasthole. Xs mark locations of four scoops (using a tube)
combined to produce a tube sample. Four channel positions are shown relative to the elongated form of most piles of cuttings.
(when the drill travels to the next hole, the bit drags through the cuttings, showing the direction of drill travel). Redrawn
from Giroux et al. (1986).

(ii) Channel sampling of 42 cuttings piles misclassi-
fied a single sample (and block) of ore as waste.

(iii) Of the 18 samples identified as ore by tube sam-
pling, metal content was overestimated by about
9 percent (Table 5.4).

(iv) Of the 18 samples identified as ore by channel
sampling (not the same as the 18 identified by
tube sampling), metal content was overestimated
by about 5.2 percent (Table 5.4).

(v) There are hidden losses to each samplingmethod
resulting from misclassification of ore as waste
(i.e., lost operating profit from ore classed as
waste). In the case of tube sampling, three ore
samples were lost because they are incorrectly
classed as waste. For channel sampling, the cor-
responding loss was one sample.

Additional well-documented examples of the de-
sign of practical experiments to evaluate sampling
procedures and sample reduction protocols include
the Colosseum gold mine (Davis et al., 1989),
the Mount Hope Molybdenum Prospect (Schwarz
et al., 1984), and the Ortiz gold mine (Springett,
1984).

5.5.3: Sampling Large Lots
of Particulate Material

The sampling of two- and three-dimensional piles of
broken material (e.g., crushed ore/waste, low-grade
stockpiles, tailings, dump material) presents serious
problems of potential bias and, generally, economic
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Table 5.3 Assay data, blasthole sampling experiment, Equity Silver Mine (see text)

Tube Channel Bulk Best

Cu Ag Cu Ag Cu Ag Cu (%) Ag (g/t)

1 0.14 5 0.25 18 0.26 22 0.246 20.0
2 0.06 20 0.05 22 0.04 15 0.043 17.9
3 0.02 11 0.02 6 0.01 4 0.014 4.98
4 0.08 123 0.07 103 0.07 101 0.068 102.4
5 0.03 36 0.06 70 0.04 54 0.046 59.9
6 0.69 274 0.97 393 0.87 389 0.879 387.5
7 0.69 148 0.6 163 0.52 151 0.540 155.7
8 0.12 10 0.1 8 0.16 20 0.132 15.0
9 0.06 76 0.06 62 0.05 46 0.053 53.1
10 0.11 85 0.15 142 0.14 117 0.139 126.0
11 0.03 28 0.03 32 0.04 47 0.035 40.5
12 0.02 27 0.03 27 0.04 37 0.035 32.8
13 0.28 108 0.07 55 0.03 50 0.051 53.5
14 0.07 76 0.09 98 0.09 86 0.087 90.5
15 0.09 126 0.09 160 0.12 178 0.105 169.5
16 0.06 42 0.07 35 0.06 48 0.062 42.7
17 0.47 11 0.44 131 0.38 11 0.394 58.5
18 0.56 325 0.43 217 0.45 226 0.433 225.1
19 0 0 0.02 5 0.03 7 0.025 6.0
20 0.14 78 0.09 45 0.08 40 0.083 43.0
21 0.33 199 0.24 123 0.3 147 0.271 138.9
22 0.07 31 0.07 28 0.05 23 0.057 25.2
23 0.04 19 0.04 18 0.03 14 0.033 15.7
24 0.04 11 0.03 10 0.03 10 0.029 10.0
25 0.04 29 0.02 18 0.03 21 0.026 20.0
26 0.42 220 0.39 233 0.43 268 0.403 252.8
27 0.18 52 0.11 21 0.09 16 0.097 19.0
28 0.02 301 0.76 175 0.79 181 0.737 181.9
29 0.24 43 0.27 89 0.21 74 0.227 79.1
30 0.02 10 0.02 9 0.02 11 0.019 10.2
31 0.19 15 0.15 26 0.16 24 0.15 24.5
32 0.24 4 0.19 4 0.23 3 0.209 3.4
33 0.15 141 0.25 240 0.17 167 0.194 195.2
34 0.06 51 0.03 22 0.03 21 0.03 22.2
35 0.02 16 0.06 57 0.07 66 0.063 61.1
36 0.03 22 0.01 10 0.02 13 0.016 12.1
37 0.07 6 0.03 12 0.01 7 0.019 9.0
38 0.05 28 0.08 45 0.11 78 0.094 63.6
39 0.1 55 0.03 17 0.05 26 0.043 23.2
40 0.2 68 0.19 68 0.16 54 0.168 59.9
41 0.04 9 0.06 18 0.04 8 0.046 12.0
42 0 2 0.01 2 0.01 2 0.009 2

MEAN 0.149 70.0 0.160 72.3 0.155 68.6 0.153 70.1
ST. DEV. 0.1776 83.67 0.2096 83.94 0.1997 83.10 0.1956 82.30
CV 1.190 1.20 1.31 1.16 1.29 1.21 1.28 1.17
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Table 5.4 Comparison of overestimation of blasthole grades by two sampling techniques, Equity Silver Mine

Sampling method Ore samples (no.) Average estimate Grade true Overestimation (%)

Tube 18 139.2 127.7 9.01
Channel 18 143.2 136.1 5.22
Best 19 132.3

Slope = 1.02
y intercept = 0.781
Dispersion = 3.83
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Figure 5.8: (a) Average channel-sample Ag assay (g/t) ver-
sus weighted average of blasthole cuttings pile (best Ag).
Note the substantial reduction in spread of plotted data
for channel samples in comparison with original tube data.
(b) Original tube-sample Ag assay (g/t) versus weighted
average for all blasthole cuttings (best Ag) for 42 sample
pairs analyzed for Ag, Equity Silver Mine, Ltd. An RMA line
(parameters shown) is essentially equivalent to the y = x
line. Redrawn from Giroux et al. (1986).

constraints limit the amount of sampling that can
be carried out. Gy (1979, p. 357) states, “Practi-
cally . . . the sampling of three-dimensional particu-
late objects is a generally unsolvable problem and
repeats essentially the same statement with regard
to two-dimensional piles (i.e., sheetlike or tabular
piles). The best general solution is to deal with what
Gy (ibid) calls one- or zero-dimensional modifica-
tions of two- and three-dimensional piles. A one-
dimensional moving stream of fragmented material is
generally a solvable sampling problem; the material
can be sampled by taking uniform volumes at regu-
lar intervals from the moving stream (e.g., a conveyor
belt).

A lot that is naturally divided into a large number
of equal units of practically uniform weight (Gy,
1979, p. 359) is said to be zero dimensional if
primary sampling consists of a selection of a certain
number of these units (Gy, 1979, p. 359). Units
are such uniform volumes as bags, barrels, and
truckloads. When handling large tonnages under the
form of zero-dimensional objects in a routine way,
the most accurate and the cheapest of all solutions
consists in selecting for instance one unit out of 10
or 20 (primary sample) according to a systematic or
stratified scheme, in discharging the increment-units
into a surge bin (Gy, 1979, p. 361). Clearly, sampling
of zero- or one-dimensional lots (masses) involves
moving the entire lot.

5.6: IMPROVING SAMPLE REDUCTION
PROCEDURES

It is surprising that low-skilled and low-paid
workers are often involved in the critical process
of sampling andpreparation of samples for assay,
particularly in light of the millions of dollars that
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might be dependent upon the results. (Kennedy
and Wade, 1972, p. 71)

Sample reduction (subsampling protocol) is the to-
tality of procedures that are used to extract a much
smaller representative amount for actual analysis from
a large sample volume. A mineralized sample com-
monly is a mixture of relatively large but variably
sized fragments of solidmaterial that must be reduced
in both particle size and weight to a small amount of
finely ground material that is analyzed to determine
metal content. This overall procedure, known as a
subsampling protocol, involves a series of steps of
alternating particle size reduction and mass reduc-
tion that can be demonstrated by a simple, purely
illustrative example. Suppose that a sample consist-
ing of 1 m of half-core weighs 2,700 g and consists
of fragments up to 10 cm in length. The sample might
be crushed so that the maximum particle diameter is
0.5 cm. Then the crushed material is homogenized
and a portion is taken – say, one-quarter of the orig-
inal sample, perhaps by riffling. This smaller por-
tion (2,700 × 1/4 = 675 g) is then further crushed
or ground to a much smaller particle size, and again
the material is homogenized and a fraction is taken,
perhaps one-quarter of the material (675 × 1/4 =
168 g). The remaining three-quarters of material
(about 675 − 168 = 507 g) at this stage might be
saved as a reject and the one-quarter taken is fur-
ther ground to provide a pulp, part of which is an-
alyzed. Assuming no loss of material during size re-
duction, the amount of material forming the pulp is
1
16 of the original sample, or 2,700/16 = 168 g, of
which perhaps 30 g is measured out for actual anal-
ysis. The reject and unused pulp commonly are re-
tained for a specified period of time, perhaps one or
two years, in case they are required for quality control
purposes.

It is wise to have a comprehensive understanding
of the mineralogy of ore and gangue minerals as a
basis for developing a sample reduction scheme. An
example showingmany steps in the reduction of a bulk
sample (20 tons) to material for assay is illustrated in
Fig. 5.9. The proceduremust ensure adequate homog-
enization at each stage of mass reduction in order to
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Figure 5.9: Sample reduction diagram for a bulk sample
taken from the Ortiz gold deposit. Note the steplike char-
acter that reflects alternate reductions in sample mass
and particle diameter in order to reduce a large sample
volume (ca. 20 tons) to a volume (grams) that can be an-
alyzed. Redrawn from Springett (1983).

eliminate bias and minimize random errors. Sample
reduction schemesused in operatingmines commonly
can be designed to provide high-quality subsamples,
and therefore high-quality assays. The normal re-
sult of an inadequate sample reduction system is a
large random error (sampling plus analytical error)
in assays; of course, biases and procedural errors are
also possible. These large errors contribute to a high
nugget effect and possible masking of the underlying
structure (ranges) of autocorrelation.At the very least,
they lead to larger than necessary errors in block esti-
mation and in defining ore limits; thus, they contribute



122 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

to ore/wastemisclassification problems, loss ofmetal,
and difficulties with mass balance reconciliations.

Gy (1979) addressed this problem at length in
developing a sampling equation that has been widely
accepted in the mineral industry (e.g., Springett,
1984), with significant modification in the case of
some gold deposits (Francois-Bongarcon, 1991). A
practical means of applying Gy’s ideas is through the
use of a sampling (or sample reduction) diagram on
which a safety line, based on Gy’s fundamental sam-
pling error equation, is plotted as a guide to acceptable
sample reduction procedures (Fig. 5.10). When little
is known of the detailed characteristics of an ore,
Gy’s general safety line can be used as a guide; when
properties of an ore are reasonably well understood, a
safety line tailored to a specific ore can be determined.

On a sample reduction diagram, the sample path
is plotted as a series of connected straight lines rep-
resenting alternating particle size reduction stages
(crushing, grinding, pulverizing) and mass reduc-
tion stages (subsampling). In such sample reduction
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Figure 5.10: Sample reduction diagram for blasthole sam-
ples, Nickel Plate Gold Mine. Two safety lines are shown:
the base metals line is after Gy (1979), and the Au
safety line is an approximate, arbitrary line that empha-
sizes the relative difficulty of generating gold versus base
metal analyses with low error. After Radlowski and Sinclair
(1993).

schemes, it is important that the initial particle size
reduction stage be sufficient to move the sample posi-
tion to the left of a safety line (representing a predeter-
minedmaximum allowable error) and that subsequent
stages not cross to the right of the safety line. When
sufficient information is available, a safety line can be
determined for each ore (see later); otherwise, a gen-
eralized safety line can be used. Further details of the
procedure are provided by Gy (1979), Pitard (1989,
1994), and Francois-Bongarcon (1991). The exam-
ple in Fig. 5.10 is for rotary-drill cuttings and explo-
ration diamond-drill core for the Nickel Plate Mine,
Hedley, British Columbia (Radlowski and Sinclair,
1993).

Gy’s (1979) simplified sampling equation is as
follows:

(1/MS − 1/ML) = Cdx/s2

where

MS(grams) is the weight of the sample
ML(grams) is the weight of the lot being

sampled
C(g/cm3) is the sampling constant
d(cm) is the maximum particle diameter

(mesh size retaining upper 5
percent)

s (fraction) is the relative fundamental
sampling error

x is the exponent (commonly = 3).

The equation links the variables s, MS, ML, and
d, and can be solved for one if the others are fixed.
Commonly, ML is very large so that 1/ML is negli-
gible and only two variables must be fixed to solve
for a third. The exponent (x) and sampling constant
(C) must be estimated prior to undertaking calcula-
tions; determination of C requires substantial insight
into the character of the material being sampled. The
exponent x is commonly taken as 3.0 (Gy, 1979); for
some gold deposits, it is 1.5 (Francois-Bongarcon,
1991).

The sampling constant (C) can vary over a wide
range, from 10−4 to 10+4 g/cm3, and should be
determined carefully for each particular type of
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fragmental material. For very preliminary evalua-
tions, estimation of C can be avoided by reference
to Gy’s standard safety line for base-metal sampling
(i.e., C = 0.08g/cm3). In practice, the estimation of
C is difficult, but is critical to the successful applica-
tion of Gy’s equation (see Sketchley, 1998; Francois-
Bongarcon, 1998). A crude approach is to determine
an “effective” C empirically by solving the equation
in controlled situations in which all other variables
are known, for example, when paired data can be
used to determine the relative error. A much more de-
tailed, time-consuming, and costly approach involv-
ing a “heterogeneity” study (Gy, 1979; Pitard, 1989) is
more accurate and may be warranted. Alternatively,
the sampling constant can be estimated with some
ambiguity, as described later.

The sampling constant is given by the equation

C = m · L · f · g

where

m [g/cm3] is the mineralogic composition
factor

L (0.001–1) is the liberation factor
f (0.2–0.5) is the particle-shape factor
g (0.25–1) is the size-range factor.

As Francois-Bongarcon (1991) pointed out, Gy’s
sampling constant, C , is not truly constant, but de-
pends on the value of L, as indicated in the fol-
lowing.

5.6.1: The Mineralogic Composition
Factor (m)

The mineralogic composition factor

m = 1 − a

a
[(1 − a)ρc + aρg]

where

a is the critical component (mineral)
as a weight fraction of the whole

(e.g., in a zinc ore for which sample
reduction is being evaluated to
obtain acceptable quality Zn
assays, the critical component is
sphalerite; however, for gold in the
same ore, the critical component is
the mineral hosting the gold)

ρc [g/cm3] is the density of the critical
component

ρg [g/cm3] is the density of the gangue
component.

5.6.2: The Liberation Factor

The liberation factor (L = 0–1.0) is

L = [dL/d]
b

unless d exceeds dL, in which case L = 1, where
dL [cm] is the liberation diameter of the critical com-
ponent (difficult to estimate); and, d [cm] is the ac-
tual diameter of the largest particle and b (exponent)
is determined experimentally (Francois-Bongarcon,
1998).

5.6.3: The Particle Shape Factor

The particle shape factor ( f = 0.2–0.5) is

0.2 ≤ f ≤ 0.5

( f = 0.5 assumed for most applications; f = 0.2 for
gold ores).

5.6.4: The Size Range Factor

The size range factor (g = 0–1.0) is

g is a function of d/ds

where d [cm] is the upper size limit (5 percent over-
size) and ds [cm] is the lower size limit (5 percent
undersize).

Empirical estimates used in practical applications
(Gy, 1979) are
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Large size d/ds > 4 g = 0.25
Medium size 4 > d/ds > 2 g = 0.50
Small size 2 > d/ds > 1 g = 0.75
Uniform size d/ds = 1 g = 1.00.

5.6.5: Applications of Gy’s Equation

Gy’s formula is especially useful in designing appro-
priate subsampling procedures and in the initial eval-
uation of an existing subsampling protocol. However,
the formula calculates an ideal fundamental sampling
error that is only approached in practice, and the for-
mula should not be used to replace the use of replicate
data to determine andmonitor the actual error inherent
in a particular sampling protocol.

5.6.6: Direct Solution of Gy’s Equation
(Simplified Form)

Relative fundamental sampling error(s) can be calcu-
lated if the following are given:

(i) Exponent (exp) and sampling constant (C), esti-
mated as discussed previously

(ii) Sample weight (MS in grams)
(iii) Maximum particle diameter (d in cm).

For example, such information is available from
theflowsheet describing sample reduction procedures
in assay laboratories. Note that in many cases, ML is
so large relative to MS that 1/ML is negligible.

Minimumsampleweight required,MS, can be cal-
culated if the following are given:

(i) Exponent (exp) and sampling constant (C), esti-
mated as discussed previously

(ii) Maximum particle diameter (d)
(iii) A known or targeted relative sampling error.

Maximum particle size tolerated (do) can be cal-
culated if the following are given:

(i) Exponent (exp) and sampling constant (C), esti-
mated as discussed previously

(ii) Sample weight (MS)
(iii) Known or targeted relative sampling error.

5.6.7: User’s Safety Line

Gy (1979) introduced the concept of a safety line on
a sample reduction diagram as a means of quality
control. Provided thatmass reduction and particle size
reduction procedures keep a subsample reduction path
to the left of a safety line, then the subsampling system
involves a fundamental error at least as low as that
used to define the safety line. An equation for a safety
line canbedetermined fromGy’s equation, as follows:

Md = k · dx

where k is equivalent to (C/s2) and x is an exponent,
normally taken as 3. The functionMd versusd appears
as a straight line on a log–log graph of particle size
versus sample mass. C can be estimated as discussed
in Section 5.6, and a safety line can then be drawn
for a desired limiting error (s). Examples of safety
lines for base metal and gold deposits are shown on
Fig. 5.10. The basemetal safety line is fromGy (1979)
and is based on k = 125,000. If cost is more important
than precision, lower k to 60,000; if precision is more
important, increase k to 250,000.

5.7: ASSAY QUALITY CONTROL
PROCEDURES

The problem of analyzing Au in copper rich
ores is not new or unusual. Any heavy metal in
large quantities can hinder the analysis of Au
by the traditional Fire Assay Lead Collection
procedure. However, an experienced Fire Assay
Chemist can usually get around this problem by
either lowering the effective sample weight (in-
crease flux to sample ratio), or by pre-leaching
the sample. (R. Calow, personal communication,
1998)

5.7.1: Introduction

The use of Gy’s equation for fundamental error con-
trol, using a safety line on a sampling diagram,
represents a somewhat idealized expectation that is
approached in practice but may not be attained.
A quality control program is necessary in order to
know and to monitor variations in data quality. For
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this purpose, the concept of an analytical system
(Thompson and Howarth, 1976) is useful. An ana-
lytical system is composed of the following:

(i) The set of samples with the analyte in a specific
matrix

(ii) The exactly defined analytical procedure
(iii) The particular instruments used.

A corollory of this concept is that the samples for
a system should be drawn from a homogeneous
type, otherwise one may be attempting to mea-
sure a meaningless average precision between
two distinct systems. (Thompson and Howarth,
1976, p. 692)

Laboratories usually maintain a system of check-
ing for subsampling and analytical errors. This nor-
mally involves periodic reanalysis of internal and in-
ternational standards. These data should be reported
routinely to clients to allow them to evaluate it.

In general, laboratory users should invoke their
own systematic approach to quality control involving
the taking of duplicate samples (perhaps 1 in every 20
samples should be analyzed in duplicate), the use of
project standards, systematic interlaboratory checks,
use of different methods for particular analytical situ-
ations (e.g., metallic assays for high-grade gold ores),
and reassaying of unexpectedly high (or low?) values.
Such procedures provide information pertinent to the
recognition of bias and the magnitude of random er-
rors. It is important that the results of all these qual-
ity control measures be provided to those conducting
mineral inventory estimates in a concise and informa-
tive way. For all this concern, however, errors arising
in the laboratory are generally small compared to er-
rors that arise from sampling procedures.

5.7.2: Using the Correct Analyst
and Analytical Methods

Only scientifically tested and generally accepted ana-
lytical procedures are appropriate ways with which to
generate assay data for use in mineral inventory es-
timation. “Black-box” methods for which there is
no obvious scientific explanation are inappropriate,
and results based on such methods are unacceptable.

Bacon et al. (1989) provide a useful discussion of an-
alytical procedures, particularly as they apply to pre-
ciousmetal deposits, and conclude that traditional fire
assaying, done by an accredited professional assayer,
provides the best approach to preciousmetal assaying.
Only a few jurisdictions maintain a rigorous, formal
testing procedure for registering assayers. Hence, it is
important to know the reputation of an assayer as well
as inquiring into the assayer’s qualifications and the
general validity of the analytical methods used. The
assay laboratory itself warrants an inspection – labs
should be cleanwith an appropriate ventilation system
(not too strong, not too weak) in the preparation room
and a well-organized reject storage facility. A well-
conceived quality control system should be in place.

For many metals, analytical procedures are well
established. Problems can arise in special cases (e.g.,
if instrumental analysis is used to measure uranium
content, there is an assumption of equilibrium in the
decay scheme of uranium). In certain deposits, this
equilibrium is attained only imperfectly and caution
is required. When chloride dissolution methods are
used for coarse-grained native silver, the silver can
become coated with silver chloride, which inhibits
dissolution; in such cases, it is important to maximize
the surface area of the native silver. Coarse native
gold (grains larger than about 100 µ in diameter) rep-
resents a common and difficult problem that requires
special attention, perhaps involving “metallic” assays
(see later).

Even when an acceptable analytical method is
used, it is important to maintain internal checks on
the quality (including accuracy) of data being pro-
vided by a laboratory. A routine system of submis-
sion of standards should be followed, as well as hav-
ing samples checked by another reputable laboratory.
An example is the significant bias that can enter fire
assay data because of peculiar sample compositions
not suited to the fluxes in routine use by a labora-
tory. Such problems can be identified by a systematic
quality control program of duplicate sampling and
analyses. Figure 5.11 is a comparison of assay results
by two laboratories for Cu and Ag values for tailing,
ore, and concentrate samples from the Equity Silver
Mine (Giroux et al., 1986). Clearly, both laborato-
ries, on average, produced similar results for Cu, with
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Figure 5.11: Plots of duplicate analyses for 23 samples by two different laboratories for (a) copper and (b) silver at Equity
Silver Mine. The 45◦ lines are equal value reference lines. Samples are tailing (T), ore (O), and concentrates (C). The two
labs produce good agreement for Cu values, but slightly different results for Ag.

relatively slight scatter (low random error); in the case
of Ag, however, even qualitative inspection reveals a
small bias, which can be demonstrated statistically in
several ways. Without further insight, it is not possi-
ble to knowwhich laboratory is systematically in error
(i.e., does one systematically overestimate, does the
other systematically underestimate, or are Ag assays
from both incorrect?).

The grinding procedure/equipment used in sam-
ple preparation can contribute to contamination either
from the grinding equipment itself or from smeared
particles retained from previous samples (cf. Hickson
and Juras, 1986). Cross contamination can be a seri-
ous problem, for example, if samples bear native gold.
For such materials, cross contamination can be pre-
vented by grinding “blank”material between samples
and then cleaning the equipment with nylon brushes
and compressed air.

Some problems of quality are specific to specific
elements. Coarse gold, for example, may require that
samples be examined to identify and collect coarse
gold for a “metal” analysis that is then weighted with
the corresponding “rock” analysis to give a final assay
result. The procedure could involve

(i) Examination of sample descriptions (e.g., drill-
hole logs) for reference to visible gold

(ii) Passing the sample through a shaking table or
use of a vanning shovel for visual assessment

(iii) Reexamination and reassay of samples in which
free gold was not recognized but for which the
assay value is abnormally high.

Two graphic approaches are useful for assistance
in monitoring and quantifying accuracy of laboratory
assay results; routine analyses of standards can be
examined regularly on binary plots of assay versus
time or assay versus known value. Time-dependent
plots provide a check on systematic variations that
can result from new staff, equipment problems, vari-
ations in quality of chemicals, and variations in the
physical operating conditions in the chemical lab-
oratory. Biases and abnormalities show up clearly
(Fig. 5.12). Value-dependent plots are particularly
useful in documenting the presence or absence of bias
and for comparing results by various analytical tech-
niques or from different laboratories. Figure 5.12a,
a time-dependent plot for twomolybdenumstandards,
reveals systematic variations over time, as well as a
general tendency for the analytical method to under-
estimate both samples relative to the known values
(arrows on the y axis). Value-dependent plots (e.g.,
Fig. 5.13) show the means and standard errors plotted
versus the differences from the corresponding known
values. In the case illustrated, replicate analyses of
five molybdenum standards using a two-acid disso-
lution method are seen to underestimate consistently
the true values of standards determined by a four-acid
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Figure 5.12: (a) Time plots of analytical data for two Mo standards, E and D (redrawn from Schwarz et al., 1984). The
expected (known?) values with which these replicates should be compared are 0.2347 ± 0.0184 for E, and 0.1160 ±
0.0038 for D. It is common practice to show the true value and confidence limits of the standard as lines parallel to the x
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except for one outlier; results 11–20 are accurate but not precise; results 21–30 show a systematic trend that warrants
investigation; results 31–40 are precise but not accurate; results 41–50 are both precise and accurate.

dissolution technique; the bias ranges from almost
zero at low values to almost 10 percent in the case of
the highest grade standard.

The possibility of fraud involved in the produc-
tion of assay results must be considered. A reasonable
level of security is essential, beginning at the time
samples are taken, during transport to the assay lab-
oratory and during treatment in the laboratory. There
are numerous examples in which laxity in these mat-
ters has led to fraudulent practices that took far too
long to uncover and resulted in public announcements
of totally erroneous mineral inventory estimates. Fre-
quent independent audits of sampling and analytical
procedures are the best safeguard against fraudulent
practice.

Once data of acceptable quality are obtained, there
remain many opportunities for human errors to creep

in accidentally; for example, incorrect plotting, rever-
sal of figures in transcribing data, and order of mag-
nitude errors. Many such errors can be identified by
examining sorted tabulations of data for outliers, not-
ing extreme values on postings as plans or sections,
comparing similar plots done independently, and ex-
amining a variety of common graphical outputs (his-
tograms, probability plots, scatter diagrams) obtained
routinely in the normal course of data evaluation.

5.7.3: Salting and Its Recognition

Salting is the surreptitious introduction of material
into samples (McKinstry, 1948, p. 67). Salting of pos-
sible ore material is an unfortunate occurrence some-
times encountered in the evaluation of some gold de-
posits, and its presence or absence must be assured
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during the process of data verification. Unfortunately,
salting can take many forms (e.g., McKinstry, 1948),
from contaminating the rock in-place to surreptitious
introduction of extraneous metal at some stage of the
sampling protocol or during procedures at the ana-
lytical laboratory. Where core drilling provides the
great bulk of perhaps tens of thousands of samples,
the impracticality of salting the ore in-place on a sig-
nificant scale is apparent. However, the possibility of
salting at some stage of the sampling protocol is al-
ways a concern. In the case of gold deposits, the record
shows that historically, salting has been achieved by
adding material to samples, including the addition of
gold shavings, placer gold, or a solution such as gold
chloride. Such saltingmight occur when the sample is
first taken, at some intermediate stage in the sampling
protocol, or in the analytical laboratory.

When salting occurs, its identification is essential
to deposit evaluation and procedures must be imple-
mented to either identify or ensure the absence of
salting. Such procedures are part of a general data
verification program. Checking sampling procedure
and results is therefore essential as a means of iden-

tifying the presence or absence of salting. There are
a number of approaches that can be used to corrob-
orate analytical data for this purpose, including the
following:

(i) Sampling protocols must be examined in intri-
cate detail to identify those stages most suscep-
tible to salting

(ii) Duplicate sampling from accessible sites (e.g.,
remaining drill-core halves)

(iii) Comparison of production with estimates
(iv) Microscope examination of rejects and pulps
(v) Twinned drill holes
(vi) Bulk sampling from surface sites
(vii) Exploration drives, including bulk sampling.

In general, the purpose of these undertakings is to
verify the quality of reported grades or provide evi-
dence of salting. Consider each of these approaches in
turn.

The examination of sampling protocols involves
a critical review of the established chain of custody
(e.g., Kratochvil and Taylor, 1981) and target harden-
ing procedures (e.g., Rogers, 1998). A chain of cus-
tody is the detailed procedure that each sample follows
such that “the integrity of samples fromsource tomea-
surement is ensured” (Kratochvil and Taylor, 1981,
p. 928). The chain of custody normally is documented
as part of the sampling protocol with emphasis on the
security incorporated into the protocol. Target hard-
ening procedures are those specific procedures de-
signed to overcome perceived weaknesses in a chain
of custody. Weaknesses in the security measures that
form part of a chain of custody are generally evident
to geologists andmining engineers experienced in the
evaluation of mineral deposits.

Duplicate sampling fromaccessible sites is a time-
honored procedure for identifying or offsetting salting
(e.g., McKinstry, 1948). This could take the form of
analyzing the retained or second half-cores for com-
parison with existing analyses for the corresponding
first halves. Standard techniques can then be used to
compare original and duplicate sampling results to
test for the presence of bias. If a significant differ-
ence was noted between two independently obtained
sets of analytical results, normal procedure would be
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to undertake check analyses and, in certain cases, to
involve an umpire laboratory. This approach is the
best way to guarantee the presence or absence of sig-
nificant salting in a large data set because it need
not be restricted to a small part of the sampling–
subsampling–analytical protocol.

“Assay returns which give a very much higher av-
erage than records of past production may or may
not be correct but in any case they call for an expla-
nation” (McKinstry, 1948, p. 69). Reconciliation of
mine production data with estimates, particularly es-
timates based on diamond-drill data, is difficult in the
best of cases because

(i) There are large uncertainties in estimating dilu-
tion during mining.

(ii) Identification of ore blocks during mining uses a
different, more comprehensive database than is
used for making block estimates (e.g., blasthole
data vs. diamond-drill-hole data).

(iii) Individual blocks of ore cannot be monitored
through the mill, hence their true grade cannot
be measured.

(iv) Ore from more than one working face is put
through the mill over a short time period, the
block estimation method is biased, and so on.

Consequently, reconciliations of production with
estimates is an ambiguous means of identifying prob-
lemswith theunderlyingdatabase unless verydetailed
evaluations of other factors can be incorporated into
the overall reconciliation.

In some cases, when the introduction of gold to
samples is as particulate gold and has taken place prior
to the separation of the pulps and rejects, the pulps
and rejects can be examined visually and microscopi-
cally for the presence of gold shavings or placer gold
grains. Such examinations would not provide insight
into salting by a gold-bearing solution, norwould they
give direct evidence of salting that occurred at a later
stage of the subsamplingprocedure or during analysis.

Twinned drill holes, bulk sampling, and under-
ground drives are all relatively expensive and time-
consuming methods of checking the validity of data.
Any or all of these grade verification procedures can
form part of a due diligence. It should be noted that

these three methods are directed toward verifying
the general representativity of samples rather than
identifying individual samples that are unrepresen-
tative of the true grade. Consequently, they are used
mostly when data validity remains a problem after
other methods have been used. Of these three ap-
proaches, the use of twinned drill holes is by far the
most widely used method to verify the general mag-
nitude of grades.

5.8: A PROCEDURE FOR EVALUATING
PAIRED QUALITY CONTROL DATA

5.8.1: Introduction

A program of duplicate sampling and assaying is a
routine, quality control/quality assurance undertaking
in a sampling program designed to accumulate infor-
mation on which to base a mineral inventory. Such a
program should include (cf. Thompson and Howarth,
1976) the following:

(i) Large numbers of duplicates that can be used to
provide stable statistics

(ii) Duplicates that span the entire range of values of
material being analyzed

(iii) Assurance that the materials selected for dupli-
cate analysis are representative of the bulk of
material being analyzed

(iv) Quality control samples that are not recognizable
by the analyst.

The evaluation of duplicate sampling data
requires thoroughness and regularity in examining
paired data, both graphically and statistically. It is
essential to test systematically for bias and accuracy
and differences in these errors as a function of
composition. Histograms and scatter plots are two
familiar and simple graphics tools that can be used
to aid the data evaluation process.

5.8.2: Estimation of Global Bias
in Duplicate Data

Global or average bias in duplicate data can be eval-
uated by examining differences between paired data
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values (e.g., original analysis minus repeat analysis).
These differences can be viewed in a histogram to
appreciate the symmetry or asymmetry of the distri-
bution of the differences, and statistics can be used to
conduct a formal statistical test for the existence of
bias. When bias is indicated, such tests in themselves
do not indicate which of the original or replicate data
are incorrect; additional information is necessary to
reach a decision as to whether either or both contain
bias.

Histograms of a variable are a simple graphics
tool that, for a single variable, illustrate the range of
values, the range of the most abundant values, and
the general disposition of values relative to the mean
(i.e., the shape of the distribution). Histograms of
differences (and the corresponding means and stan-
dard deviations) provide insight into the presence and
level of global bias between the two components of
a set of paired data. In addition, they demonstrate
symmetry or asymmetry of the distribution, thus in-
dicating possible incompatibility of paired data for
specific ranges of values. The character of a his-
togram can be quantified by three common statis-
tics: the mean, m (measure of central tendency); the
standard deviation, s (a measure of the extent of the
spread of values about the mean); and the coefficient
of variation (CV), a measure of asymmetry of the
distribution.

5.8.3: Practical Procedure for Evaluating
Global Bias

1. For paired data, a difference, d , is determined for
each pair of values (e.g., d = Au2−Au1). It is
practical to subtract the original analysis from any
repeat analysis; in this way, the original analysis is
the standard of reference and negative differences
mean that the duplicate underestimates relative
to the original, and positive differences means
that the duplicate overestimates relative to the
original.

2. The histogram of differences is examined for out-
liers. Any outliers present are removed and a new
histogram is used to characterize the relation be-
tween paired data for the range in question. The

origin of outlier values requires close scrutiny –
they can arise due to inherent sampling error or op-
erational error. When due to an inherent sampling
error, they may well relate to abnormal miner-
alogic/textural form, as is commonly the case for
gold.

3. Statistical parameters are calculated and summa-
rized with particular emphasis on mean and stan-
dard deviation of the differences and the form
of the distribution (histogram). If no bias exists
between the duplicate analyses, the mean differ-
ence, m, should be close to zero. The mean and
standard deviation can be used to test whether or
not m is significantly different from zero (paired
t-test). In general, if the range m ± 2(s/n1/2)
includes zero, then the mean is equivalent to
zero and no global bias can be demonstrated
by this test (ca. 95 percent confidence level). If
this range does not include zero, then bias ex-
ists and an estimate of the average or global
bias is given by the mean difference. The pres-
ence of outliers destroys the validity of this
test.

4. Asymmetry of a histogram of differences arises
because one of the pair members suffers abnor-
mal error in relation to the corresponding mem-
ber, generally for relatively high values. Which
member is in error is uncertain and an understand-
ing of the source of error requires additional in-
formation; this problem can be investigated fur-
ther by examining the binary plot of the paired
data.

5. In certain cases, it is useful to use histograms to
compare the quality of several laboratories. If sta-
tistical parameters are to be used for this purpose,
it is important that n be large, outliers be removed,
and the duplicate data reflect an equivalent range
of values in all laboratories being compared.Com-
parisons include: (i) extent of global bias, if any;
and (ii) relative spread of differences. In compar-
ing cases involving different units, the compar-
ison of spread of differences must be made us-
ing a relative variable, such as the average error
as a proportion of the mean grade of duplicates
used.
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Table 5.5 Statistical summaries for various duplicate data sets, Silbak Premier Mine, British Columbia

Deposit Type of duplicate Units n Mean diff. s s/n1/2 Remarks

Silbak Premier, Au Pulp/reject oz/t 127 0.0028 0.0127 0.00113 Mine lab vs. Min-En, 83
126 0.0025 0.0123 0.00110 Less one outlier

Pulp/reject oz/t 395 0.0334 .422 Mine lab vs. Min-En, 86
393 0.0044 .0592 0.00298 Minus two outliers
350 0.0028 .0223 0.00119 Assays up to 0.35 oz/t

Split core, 1
2 vs. 1

4 oz/t 147 0.0197 0.143 0.0118 Analyses by mine lab

6. For many assay distributions there is an abnor-
mally high proportion of assays of very low val-
ues, and a corresponding sparsity of higher values.
The high value of n that emerges from this can
lead to a bias being recognized through the use of
a paired t-test. This does not imply that a bias is
demonstrated for the entire range of data.

5.8.4: Examples of the Use of Histograms
and Related Statistics

Several replicate data sets obtained from producing
or past-producing gold mines are used to demonstrate
the use of histograms and simple statistics described

above in characterizing quality of data (Tables 5.5 and
5.6). Some of the results of Table 5.5 are illustrated in
Figs. 5.14 and 5.15, respectively. In Table 5.5, for n =
126, one outlier has been removed so that a fair paired
t-test can be made. Such a test shows a small global
bias between results of the two labs (i.e., the mean
± twice the standard error does not include zero).
For n = 393, two outliers have been removed and a
paired t-test cannot identify bias. The data ofTable 5.6
are partly for different types of paired samples, and
include values greater than 1 oz/t; thus, the results
are not directly comparable with those in Table 5.5.
Of the examples summarized in Table 5.6, only the
Shasta data indicate identifiable bias.
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Table 5.6 Statistical summaries for duplicate data sets from Mascot, Shasta, and Silver Stack gold mines

Deposit Type of duplicate Units n Mean diff. s s/n1/2 Remarks

Mascot, Au One pulp oz/t 221 0.0017 0.0313 0.00211 Kamloops lab vs. mine
lab, assays to 1.5 oz/t

Shasta, Au One pulp oz/t 83 0.396 1.68 Mine lab repeats, assays
up to 30 oz/t

81 0.160 0.493 0.0548 Assays up to 11 oz/t
Silver Stack, Au Pulp vs. reject 1 oz/t 40 −0.0372 0.222 0.0351 Assay ton by mine lab

includes outliers
Pulp vs. reject 2 oz/t 40 −0.0200 0.249 0.0394 One assay ton by mine lab

includes outliers

5.8.5: A Conceptual Model for Description
of Error in Paired Data

Ideally, with paired analyses of either the same sam-
ples or duplicate samples, one hopes that the paired
results will be identical or nearly so (i.e., on an x–y
graph, the data plot on the line y = x). Of course,
some random error is always present, so the best that
can be hoped for is that the paired data will scatter
somewhat about the line y = x , producing a cloud of
points bisected by the line y = x (e.g., Fig. 5.11a).
This pattern is not always met in practice because the
amount of random error in one of the sets of data
might be very different than the amount of random

error in the second set (perhaps from a different lab-
oratory). This means that the dispersions of the two
data sets could be different even though both sets of
analyses represent the same samples. The obvious ef-
fect of these differences is that the general trend of
the cloud of plotted points is not well described by
the line y = x because of excessive scatter.

A second type of error can be present, that is, sys-
tematic differences between the duplicate analyses.
In this case, the two sets of data might plot prefer-
entially on one side of the line y = x . In fact, there
are two extreme kinds of bias that can be present in
analytical data: proportional bias and fixed bias. In
the case of proportional bias, each pair of analyses in
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a set of paired data has the same or nearly the same
ratio as any other pair. The result is shown ideally in
Fig. 5.16b. Fixed bias arises when one analysis is
equal to the corresponding paired analysis plus a con-
stant, as shown in Fig. 5.16c. Of course, both types of
bias can be present in a set of paired data (Fig. 5.16d),
and random error is always present to some extent
(Fig. 5.16a–d), producing scatter about the general
trend of plotted values. In the general case, all types of
error might be present in a set of paired data, random
error plus fixed bias plus proportional bias, as shown
in Fig. 5.16d. These combinations of patterns can
be represented by a linear regression model with the
form

y = b0 + b1x ± e

(c)

(a)

(d)

(b)

x

x

x

x

y

y

y

y

y = x

y = a + x
y = a + bx

y = bx

y = x

y = x

y = x

Figure 5.16: A simple linear model to describe errors in
paired data as a function of composition. Scales for x
and y are equal interval. (a) Dispersion of paired data
about the y = x line results from random error in both x
and y. (b) Proportional bias plus random error produces
a linear trend through the origin with slope different from
1.0. (c) Random error plus a fixed bias produces a line
with slope = 1.0 and a nonzero y intercept. (d) A general
model incorporates random error, fixed bias, and propor-
tional bias to produce a linear array of plotted data with
slope different from 1.0 and a nonzero y intercept. After
Sinclair and Bentzen (1998).

where

b0 is the y intercept, an estimate of
the fixed bias

b1 is the slope, a function of
proportional bias

e is the average random error.

The model for errors in paired analyses is even
more complicated in nature than shown in Fig. 5.16d
because the character of error in assay data can change
as a function of composition. The Thompson–
Howarth linear model for random error in analyses
from a single laboratory is described in Section 5.3.2.
In the more general situation, this simple picture is
complicated by the possible presence of bias and the
likelihood that different styles of mineralization (per-
haps different grade ranges) are subject to quite differ-
ent errors. Some of the patterns encountered in prac-
tice are shown in idealized form in Fig. 5.17.

5.8.6: Quantitative Modeling of Error

5.8.6.1: Introduction
In fitting models that quantify a systematic rela-

tion between two variables, such as a set of duplicate
analyses, it is common to (i) determine or assume the
form of the mathematical relation between the two
variables, and then (ii) adopt a method to calculate
the model parameters specific to a data set. A wide
range of mathematical models are available, and even
with a singlemodel type (e.g., linear) there are various
choices to bemade in the calculation procedures avail-
able. For example, one might adopt a linear model to
describe a relationship between duplicate analyses.
However, a number of very different linear models
could arise depending on the many different calcula-
tion methods and their implicit and explicit assump-
tions. An incorrect choice of calculation method can
lead to an inappropriate model from which incorrect
statistical inference can result. Paired analytical data
are not immune from this problem.

Regression techniques incorporating a linear
model are commonly used for the comparison of one
set of analyses (ys) with another (xs), as described by
Till (1974), Ripley and Thompson (1987), Sinclair
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Figure 5.17: Idealized examples of patterns exhibited on
scatter plots of paired quality control data incorporating
sampling and analytical errors. (a) Random error plus out-
lier. (b) Two random errors as a function of concentration,
perhaps resulting from differing analytical methods. (c) Ran-
dom error plus proportional bias at low values, only random
error at high values, perhaps resulting from errors in cali-
brating standard. (d) Difference in random error as a func-
tion of concentration, perhaps arising from disseminated
versus nugget styles of mineralization. (e) Difference in ran-
dom error as a function of concentration plus a bias in the
high-valued data group, possibly resulting from segregation
during sampling or subsampling due to differences in den-
sity. (f) Proportional bias such as might arise by incorrect
calibration of a standard that was then diluted to form stan-
dards of lower concentrations. After Sinclair and Bentzen
(1998).

and Bentzen (1998), and many others. The principal
justification for use of a linear model is the expec-
tation that, with no bias, a set of duplicate analyses
will be equivalent except for a component of random
error. Hence, the data are expected to cluster along
and about the line y = x on a graph of y versus x . If
the random difference is small, the spread away from
the y = x line is small; if the random differences are
large, the spread is large. When there is a significant
bias between the two sets, some, even most, of the
plotted values will not be centered on the y = x line.
Instead, the data may be centered, all or in part, on
another line of the form of Eq. 5.1. b0 and b1 are
called parameters of the linear model and for a spe-
cific model they are constants. Once b0 and b1 are
known, the linear equation can be solved by substitut-
ing any value of x and calculating the corresponding
value of y.

If y values are distributed normally about the line
for any value of x , and m and b are estimated by a
procedure known as least squares, then m and b are
also normally distributed (Miller and Kahn, 1962).
The advantage of these two parameters being nor-
mally distributed is that they can be used to make
statistical tests, specifically, whether bias is recog-
nizable in the data. In fact, because of the central
limit theorem, these statistical tests can be made even
if the underlying distributions are not normal, provid-
ing the amount of data is large. As the amount of data
increases (n ≥ 40) and the data distribution becomes
more symmetric, the mean values of these parameters
tend toward a normal distribution, regardless of the
nature of the data distribution.

If statistical tests form part of the evaluation of
the significance of a linear model, it is important that
the paired data cover the range of concentrations ex-
pected; otherwise, conclusions are not generally ap-
plicable.

5.8.6.2: Assumptions Inherent in a Linear
Model Determined by Least Squares

1. One of the variables, y, is normally distributed
about the trend that defines the relation with the
second variable, x .
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2. The distribution of y values has the same spread
regardless of the value of x .

3. The form of the model commonly is assumed to
be a straight line.

Consider each assumption separately.

1. y is normally distributed for every value of x

This assumption is not necessarily met other than
coincidently. The most obvious reason that data fail
this assumption is that data are not represented uni-
formly throughout the range of paired data values
combined with the fact that error can vary signifi-
cantly with range. Consequently, the distribution of
y values can be nonnormal and should be tested.
Moreover, as discussed below, assumption 2 rarely
prevails.

2. y has the same spread, regardless

of the value of x

This assumption is rarely met in a large set of du-
plicate gold analyses. One reason is that more than
one style of mineralization is represented in the data.
For example, it is evident that a nugget style (e.g.,
visible gold) of mineralization will have very differ-
ent precision than lower-grade,more evenly dispersed
mineralization (e.g, fine-grained, disseminated, non-
visible gold). Apart from these geological considera-
tions there is the well-established fact that the average
error increases as the concentration increases (e.g.,
Francois-Bongarcon, 1998; Thompson and Howarth,
1973). Consequently, it might be necessary to sub-
divide the paired data set into two or more subsets,
each of which is more closely in agreement with the
assumption.

3. Linear model

There are various sources that can complicate the
assumption of a single, simple linear model. For ex-
ample, sampling or analytical procedures can bemore
appropriate for one range of data and less appropriate
for another range, as in the case of low-grade dissem-
inated mineralization versus high-grade, nugget-type
mineralization. Consequently, the nature of errors can
be very different for the two styles of mineralization.

Moreover, errors in a single laboratory can be very
different from errors in another laboratory for part of
the data; for example, visible gold-bearing samples
might have an error that is very different than finely
dispersed gold. Such a situation could lead to two
quite different linearmodels for different and possibly
overlapping grade ranges.When the two grade ranges
overlap substantially, the two linear models could ap-
pear to form a single, curved relationship. Complexity
in the model should be expected and looked for, al-
though generally there is no basis on which to select
other than linear models.

5.8.6.3: A Practical Linear Model
In general, the linearmodel is applied to a compar-

ison of duplicate analyses (paired analytical data) of
samples. Commonly, an early set of analyses is being
compared with a later set of analyses and the two are
expected to give more or less equivalent values on
average, unless analytical or sampling problems exist
for one or both sets of data. For this reason, the rela-
tion between the two sets of analyses is expected to be
a straight line with some scatter of data about the line
because of ever-present random error. The paired data
might be generated in a variety of ways, including the
following:

1. Repeat analyses of pulps (or rejects) by the same
laboratory

2. Repeat analyses using a second analytical method
by the same or another laboratory

3. Repeat analyses by two analytical methods by one
or two laboratories

4. Analyses of two sets of samples representing the
same phenomenon.

In each of these cases there is a general expecta-
tion that the two sets of analyses will be identical, on
average, providing that no bias exists in any of the
analyses. Reality commonly does not attain this ideal
situation. Both sampling and analytical procedures
can lead to very different error patterns for different
subsets of the total data. Consequently, the subjective
process of subsetting the data might be necessary.
There are two additional reasons why subsetting of
data might be necessary: (i) the presence of outliers
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in the data, and (ii) the presence of influential samples
in the data.

Outliers are those values that differ very greatly
from the vast majority of data. As a rule, outliers are
fairly straight forward to recognize, although in some
cases their recognition is subjective. Influential values
represent a small proportion of data that do not class
as outliers but have a very strong influence on the
particular model calculated for a data set. As an ex-
ample, consider a data set consisting of 100 paired
gold analyses, 95 of which are about evenly scattered
in the range of 0–4 g Au/t. The remaining 5 values
spread between 4 and 7 g/t. The 5 high values might
dominate the linear model to the point that the model
is not representative of the other 95 values. Clearly, in
such a case it is wise to remove the 5 influential values
and calculate a model for the 95 values. The 5 values
might be described adequately by the model based on
95 values; if not, they must be compared separately.

5.8.6.4: Choice of an Estimation Method
There are four general approaches that have been

used to fit linear models to paired analytical data:

1. Weighted least squares
2. Principal axis
3. Major axis
4. Reduced major axis.

In all four cases, a general method known as least
squares is used to determine the linear model and
the result is referred to as a best-fit model. In each
case, the term best fit means that a particular error
criterion is minimized relative to the linear model that
is determined. Not all of these criteria are appropriate
for comparing replicate assay data.

The most widely available method of fitting a line
to a set of paired data, traditional least squares, is an
example of an inappropriate least-squares procedure
that, in some cases, has been incorrectly applied to the
description of paired assay data. The reason that tra-
ditional least squares is inappropriate for such data is
that the method assumes that one of the variables (x)
is perfectly known and places all the error in the sec-
ond variable (y). In reality, there are errors in both of
the variables being compared, and this must be taken
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Figure 5.18: A set of 30 duplicate copper analyses (X-ray flu-
orescence) for metal-bearing muds. Three regression lines
are shown, regression of Cu1 on Cu2, regression of Cu2 on
Cu1, and reduced major-axis regression (RMA). Cu2 data
were obtained at a different time from Cu1 data, and the
power settings on the X-ray generator were very different,
resulting in a strong proportional bias.

into account in defining the linear model. The prob-
lemwith traditional least squares is well illustrated by
an example, gold assays of duplicate samples of blast-
holes from the Silbak Premier gold mine, illustrated
in Fig. 4.18 (from Sinclair and Bentzen, 1998). Two
different lines are obtained, depending on which vari-
able is taken as y, the dependent variable. If we were
to incorrectly accept these lines and test one variable
statistically against the other, we would arrive at two
opposing conclusions for the two lines, both conclu-
sions being incorrect. For example, if AUD is taken as
y, we would conclude that bias exists and that AUD
underestimates AU by about 27 percent if AU is taken
as y, we would conclude that bias exists and that AU
underestimates AUD by about 29 percent. These two
results are dramatically in conflict and clearly show
that the traditional least-squares method is generally
inappropriate as a means of defining a best-fit linear
model for paired assay data.
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A least-squares procedure is required that pro-
duces a fair representation of the underlying trend in
a set of paired data. This is achieved best by using
a method that takes into account the different errors
that exist in the two sets of data being compared (e.g.,
Mark and Church, 1974). Because errors are rarely
known in detail in the comparison of many kinds of
variables, including assay data, several practical ap-
proaches have been offered to producing least-squares
models so that relationships between paired variables
are determined fairly.

Weighted least-squares procedures (e.g., Ripley
and Thompson, 1987) can be highly subjective
because of the manner by which the weights are
determined. In some cases they provide linear models
that lie outside the limits defined by the two traditional
least-squares procedures. Consequently, weighted-
least-squares methods are not generally acceptable
to give an unbiased treatment of paired assay data.

The major-axis solution is based on minimizing
the squared perpendicular distances from each point
to the line. This is equivalent tominimizing simultane-
ously in both the x and y directions. This procedure
is affected by differences in scale between the two
variables being compared.

The reducedmajor axis (RMA) linearmodel com-
bines a standardization of the two variables (i.e., di-
vide each value by the standard deviation of the data)
and a major-axis least-squares solution to determine
the linear model. This procedure avoids any concern
of difference in scale of the two variables (e.g., when
large biases exist between the paired variables). Dent
(1937) showed that for paired variables, themaximum
likelihood estimator of the ratio of errors when the
errors are unknown is (sy/sx )2, which is equivalent to
an RMA line through the data. In general, errors are
unknown for paired analytical data.

An RMA regression is desirable when it is im-
portant that errors in both variables be taken into
account in establishing the relation between two vari-
ables (Sinclair and Bentzen, 1998). The methodology
forRMAregression has been described in an earth sci-
ence context by Agterberg (1974), Till (1974), Miller
and Kahn (1962), and Davis (1986). Till (1974) em-
phasizes the importance of using RMA in comparing
paired (duplicate) analytical data. Detailed equations

for determining slope, intercept, and associated errors
of an RMA linear model are outlined in Chapter 4.
In general, the errors can be taken as normally dis-
tributed (cf. Miller and Kahn, 1962), and can be used
to test whether the intercept error range includes zero
(in which case the intercept cannot be distinguished
from zero) and the slope error range includes 1 (in
which case the slope cannot be distinguished from 1).
The dispersion about the RMA line can be used in
several practical comparisons, including (i) the com-
parison of replicates of several standards by one labo-
ratorywith replicates of the same standards by another
laboratory, and (ii) the comparison of intralaboratory
paired analyses. An example is provided in Fig. 4.18,
in which a single linear model (RMA) has been fitted
to the data. However, two subsets of data are shown
on the figure with different symbols, and each subset
has its own characteristic dispersion pattern relatived
to the linear model. In such cases, linear models can
be determined independently for each subset of data,
thus providing more insight into the character of er-
rors in the data set.

Commonly, the application of RMA analysis is
straightforward, as is the case for Fig. 5.18 involving
two sets of copper analyses (i.e., duplicate values
on the same samples by the same analytical method
[XRF] but at different times [and, as discovered after
the analyses were obtained, with different power set-
tings for the X-ray generator]). The result is a large
proportional bias and a substantial difference between
RMA and traditional least-squares solutions for the
linear models. Scatter plots and fitted RMA models
for two sets of data summarized inTable 5.7 are shown
in Figs. 5.19 and 5.20. These diagrams show compar-
isons of check assays on reject samples at an operating
mine for two different years, 1983 and 1986. The
RMA statistics in both cases indicate that the y
intercept cannot be distinguished from zero and
that the slopes are, at most, imperceptibly different
from 1. The correlation coefficients (0.962 and 0.991,
respectively) do not represent an adequate measure
of the relative quality of the two sets of data because
with equal reproducibility, the correlation coefficients
depend to some extent on the range of the assay data.
In this case, the ranges of the two diagrams differ by
more than an order of magnitude. A better way to
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Table 5.7 Parameters of reduced major axis models for several types of paired gold data for the Silbak
Premier mine

Comparison type Units n r sl a i nta sd
b

Pulp/reject two labs oz/t 126 0.962 0.947 (0.023) −0.001 (0.001) 0.0047
Pulp/reject two labs oz/t 395 0.989 0.752 (0.006) 0.034 (0.008)

393 0.991 1.019 (0.007) −0.008 (0.003) 0.011
350 0.955 0.987 (0.016) −0.002 (0.001)

a Figure in brackets is error as one standard deviation.
b sd is the dispersion about the reduced-major-axis line.

compare relative quality is to use the dispersion about
the line (Eq. 4.27). For these two diagrams, the dis-
persions are 0.017 for 1983 data and 0.083 for 1986
data (i.e., the 1986 comparison is substantially worse
than that of 1983).

In compairing duplicate analyses it is common
practice in the mineral industry to determine the av-
erage of absolute differences of paired duplicate as-
says, whether those duplicates be pulps, rejects, or
samples. Even where the average difference is close
to zero (i.e., positive and negative differences closely
compenaste) it is useful to know the average abso-
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Figure 5.19: RMA line fitted to duplicate Au analyses, Sil-
bak Premier gold mine, northern British Columbia, 1983
data. Au1 are the mine analyses of split drill core; Au2 are
reject analyses by an independent laboratory.

lute difference between paired values. Where there
is a substantial number of pairs (>40), the distribu-
tion of real differences generally approaches a normal
distribution. In such a case, the average absolute dif-
ference can be estimated as 0.798sd where sd is the
standard deviation of differences. The standard de-
viation of differences can be determined directly or,
where bias is not significant, can be estimated from
the dispersion about the reduced major-axis line as
follows:

s2d = S2rma/2 = (
S2x + S2y

)/
2
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Figure 5.20: RMA line fitted to duplicate Au analyses, Sil-
bak Premier gold mine, northern British Columbia, 1986
data. Au1 are the mine analyses of split drill core; Au2
are reject analyses by an independent laboratory. Note the
contrast in scale compared with Fig. 5.19.
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If x and y are the same lab the resulting value of s2d is
an estimate of the precision of the laboratory. If x and
y are different labs, the resulting value of sd2 is the
average precision of the two laboratories.

When differences are shown to exist between two
variables, the procedure for determining a functional
relation (as outlined previously) does not in itself in-
dicate which of the two data sets being compared is
correct or if either is correct. RMA establishes a fair
measure of the difference (relative bias) between two
sets of data. In order to determine the relative correct-
ness of one or the other, it is essential to have addi-
tional information, for example, (i) measurements of
standards included with one or both sets of data and
analyzed under the same conditions, and (ii) when
information is not available on acceptable standards,
it may be possible to use replicate analyses of the
same samples by one or more additional laboratories
to provide insight into which of the two sets of data
is more likely to be correct.

5.9: IMPROVING THE UNDERSTANDING
OF VALUE CONTINUITY

Autocorrelation functions (Section 4.7) are required
for some procedures in mineral inventory estima-
tion or simply to quantify value continuity. In Sec-
tion 5.4.1, the point was made that sampling patterns
early in the exploration of a deposit can be designed
to improve confidence in a three-dimensional model
of autocorrelation. Diamond-drill sampling schemes
provide continuity information preferentially along
drill holes, and spacing between holes may not be ad-
equate tomeasure continuity satisfactorily in the other
two dimensions. Sampling patterns and the continu-
ity estimated from them must be reviewed and new
sampling designed to meet such a deficiency.

Sampling should be closely tied to geology and
coded systematically so that data can be easily cate-
gorized into domains if the need arises. For example,
individual samples should not cross major lithologic
boundaries, veins and wallrock should be sampled
separately to ascertain the detailed control of metal
distribution, and so on. Sampling grid dimensions
may have to be adjusted depending on the variability
of geologic and mineralization parameters. Even at

early stages of exploration, local, close-spaced sam-
ples should be taken along lines in various orienta-
tions to evaluate local continuity and to be integrate
into the complementary, detailed geologic informa-
tion. Journel and Huijbregts (1978) recommend that
within a larger sampling field, local crosses of closely
spaced data be collected to provide some insight into
local (short-range) continuity. Closely spaced infor-
mation also can be obtained in either appropriately
chosen areas of stripping and trenching or exploratory
underground working.

In addition, quality of data has a significant impact
on experimentally determined autocorrelation func-
tions and the ease with which experimental data can
be fitted with a model. In particular, large random er-
rors lead to a high nugget effect and erratic variations
in experimental data points, in some cases of suffi-
cient magnitude that interpreting a model is dubious.
Figure 5.21 illustrates two semivariograms for the
Ortiz gold deposit, New Mexico (Springett, 1983),
one based on production blastholes (notorious for
large errors) and the other based on confirmatory
crosscut samples. Note that the production blasthole
data produces a much larger intercept (nugget effect)
than the confirmatory samples (0.17 versus 0.02). In
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Figure 5.21: Different semivariogram (autocorrelation)
models for different sample types, Ortiz Gold Mine, New
Mexico. Circles are experimental data; smooth curves are
fitted models. Note greater fluctuations and higher nugget
effect (y intercept) for the blasthole samples versus the
crosscut (drill round= ca. 20 tons) samples. Redrawn from
Springett (1983).
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addition, the experimental points forming the blast-
hole semivariogram are relatively erratic.

Following this strategy reduces one of the com-
mon problems encountered in applying geostatistics
at a prefeasibility stage of exploration, that is, the
common scarcity of closely spaced data with which
to define both the nugget effect and the short-range
grade continuity in a confident manner. Of course, if
more than one domain has been recognized, control
of short-range continuity is required for each sepa-
rate domain. In many practical cases a deposit can be
divided into several domains, each of which is charac-
terized by its own distinctive semivariogram model.
This arises because differences in genesis, lithology,
or structure produced differences in the local char-
acter of mineralization. The concept of domains is
implicit in a discussion by Srivastava (1987) of con-
ditional probability as control for grade estimation;
geologic data are emphasized as an essential source
of conditioning information.

5.10: A GENERALIZED APPROACH TO
OPEN-PIT-MINE GRADE CONTROL

The potential for improved profits in large, open-pit
operations from adequate and well-designed sam-
pling methods is large, probably larger than any other
productivity improvement approach. For example, in
a 10-million-ton per year copper mine, better selec-
tion that leads to an improvement in average grade
from 0.4 percent Cu to 0.404 percent Cu increases
gross annual revenue by more than $1 million (1995
prices in US$).

5.10.1: Initial Investigations

Prior to the development of a grade control program,
samples are taken (generally in the form of diamond-
drill core) and a test pit may have been excavated
and sampled. Sampling of broken material from a
test pit is relatively straightforward if all material is
passed through a pilot mill, but can be difficult and
biased otherwise. In the sampling of both drill core
and broken material, potential for bias exists when
there are clusters of small rich veinlets, preferred ori-
entations of veinlets, strong differences in hardness

of gangue and ore minerals is a feature of the ore, and
so on. The distribution of grade should be examined
and data must be checked for bias, preferably with
the aid of a computer-based graphic display system.
When data abundance permits, samples of different
supports should not be mixed at this stage if their
dispersions (variances) are significantly different. A
probability graph of grades or composite grades (of
common support) serves to identify the form of the
histogram and recognize the possibility of multiple
populations in the data, perhaps leading to the recog-
nition of separate domains of mineralization. When
such domains are recognized, each should be investi-
gated independently with regard to characteristics of
original grades or grades of composites.

5.10.2: Development of a Sampling Program

Initial production planning in open pits normally
is based on exploration diamond-drill-hole data
supplemented by smaller amounts of data from other
sources (e.g., surface trenches, limited underground
workings). Raymond and Armstrong (1988) provide
an informative account of an inherent bias in diamond
drilling, demonstrated first by comparing diamond-
drill-core grades with average grades of 521 100-ton
rounds obtained from developing a decline in the
Valley copper porphyry deposit. Two diamond-drill
holes were drilled in advance of the decline and
were sampled in increments corresponding to decline
rounds. Grades shown in Fig. 5.22 for a portion of
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Figure 5.22: Comparison of sampling results by two meth-
ods along a decline in the Valley Copper deposit. Dashed
sawtooth curve indicates grades for axial, diamond-drill
core obtained in advance of the drive; solid sawtooth curve
is result of bulk sampling obtained as the decline was
driven. Redrawn from Raymond and Armstrong (1988).
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the decline; reveal a consistent underestimation of
Cu grade by diamond-drill hole, estimated at 0.044%
± 0.013% (95% confidence). With the advantage
of 17 months of test production data, Raymond and
Armstrong (1988) go on to demonstrate a roughly
equivalent bias for 114 diamond-drill-hole bench
composites that correspond with the volume of ore
produced during the test period. Unfortunately, no
explanation is offered as to the cause of these biases.
At the Brenda Mo–Cu deposit, a similar problem
arose because soft material was preferentially washed
out of the drill core by the drilling water.

Sampling programs in open-pit operations gen-
erally are constrained by details of the production
system; within this framework there is variable room
for flexibility. Blasthole patterns, for example, are de-
signed to break ground efficiently; hence, blasthole
sample spacing is not a parameter that can be changed
easily, if at all. However, the detailed procedure used
to sample blasthole cuttings is an important variable
and lack of attention to quality of sampling and assay-
ing can lead to significant bias or large random errors
(cf. Raymond and Armstrong, 1988).

Sampling generally is conducted by the blasthole
driller or helper; a common procedure involves the
use of a piece of pipe or tube that is shoved into the
cuttings pile at a predetermined number (generally
4 to 12) of roughly evenly distributed sites to ob-
tain a scoop of cuttings at each site. The sample is
the mixture of all such scoops. Random sampling er-
rors can be large if sample volume is too small (cf.
Giroux and Sinclair, 1986). Analytical error is com-
monly small compared with sampling error; for ex-
ample, Johnson and Blackwell (1986) show that at
the Brenda porphyry Cu–Momine the analytical error
is less than one-tenth the variability introduced by
sampling. Because the cuttings pile is stratified, with
the last material drilled on top, very different grades
can exist throughout the pile. If all strata in the pile
are not sampled, bias can result. The cuttings from a
blasthole 60 ft deep and 121

4 in in diameter totals about
four tons. Twelve systematically positioned scoops
from this material provide a sample that is reduced in
a riffle at the sample site to perhaps 2 lb in the case of
a copper deposit and 5 to 10 lb in the case of a gold
deposit.

Alternative methods of obtaining grade informa-
tion can depend on a variety of equipment. Equipment
available for sampling includes diamond and reverse
circulation drills, mechanical sampling machines for
blasthole cuttings, hand drills for channel sampling,
X-ray and other drill-hole probes, and various surface
scanners. Specialized equipment is costly and may
require operation by technical personnel; such equip-
ment can be justified only if selectivity is improved
sufficiently compared with other procedures. Where
production drilling equipment is used to provide cut-
tings, sample bias can result if values concentrate in
certain size fractions and these fractions are partly
lost as dust or washed out by drilling fluid. To test
for this possibility, several samples should be sepa-
rated into size fractions for individual assay. Many
operations use electric/hydraulic rotary drills that re-
quire a minimal amount of water for dust supression,
and the drill cuttings available are representative of all
size fractions. This is not the case for drilling in wet
ground. Water forced out of the hole washes better-
grade fines (ground sulphides) away from the cuttings
pile, reducing the grade of the remaining material.

The increasing demand of environmental control
on drills can provide additional problems vis-à-vis
sampling. In many cases, blasthole drills are designed
to leave the coarse cuttings near the hole collar and to
store the fines in a dust collector, which automatically
dumpsfines (the consistencyofflour) nearbywhen the
collector is full, not necessarily at the completion of
a hole. The density of the fines is low and the volume
large; proportionate sampling of the coarse cuttings
and fines is necessary when grade is not uniformly
distributed among size fractions.

5.10.3: Sampling Personnel
and Sample Record

Samples can be collected by personnel hired espe-
cially for the purpose, but this can result in no samples
being taken on weekends in an effort to avoid shift
differential payments. The logical person to take the
sample is the driller or drill oiler, when available. Poor
sampling practice can result from poor supervision
and management. Impressing the driller with the sig-
nificance and importance of the sample and the effect
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of poor sampling on grade control and profitability is
a useful approach to quality control.

Samples must be tagged and numbered unam-
biguously using numbered metal tags. Pairs of tags
can be supplied to the driller who keeps a log of the
blast number and hole number from a survey plan, the
matching tag number, the drill number, and name of
the drill oiler. One tag is attached to a hole marker
for later reference by the hole dewatering and explo-
sive loading personnel. The other tag is included with
the sample. The mine survey crew maintains the tag
system and records all necessary information; the op-
erations shift supervisors are responsible for timely
delivery of samples to the assay laboratory. Long-term
success in sampling and grade control is only possible
with good supervision and supportive management.

5.10.4: Implementation of Grade Control

The result of a grade control program is the clear de-
marcation in the pit of the separation between ore and
waste.When possible, ore andwaste should be blasted
separately. In many cases several grades of stockpile
material must be distinguished, perhaps for leaching
or processing near the end of mine life. Plans show-
ing the blasts should be color coded to specific mate-
rial; similar colored flagging and string can be used
in the pit. Despite the concept of a selection mining
unit (SMU), the ore/waste contact cannot be so sim-
plistically defined in practice. For example, a single
waste block surrounded by ore will almost certainly
be included with ore for logistical reasons. “Dog-leg”
ore/waste contacts are confusing to production per-
sonnel and should be replaced by smoother contours
to avoid unnecessary loss of quality of grade control.

Personal computers are now in routine use at most
mine sites. Networking of computers for assay labo-
ratory, grade control, geology, and engineering is now
common and provides highly efficient data transfer.
Timely receipt of assay results and grade interpola-
tions is essential to efficient, open-pit operations, par-
ticularly when two- or three-row, free-face blasting
of less than 100 blastholes is the practice. Grade
interpolation is increasingly being done by one or
another form of kriging. Most common is ordinary

kriging; indicator and multiple indicator kriging are
useful in special cases, and conditional simulations
are widely used, especially in more erratic deposits.
The results should be displayed on a plan of appro-
priate scale, currently generally computer generated,
and as a grade–tonnage curve for each blast. At most
operations the cutoff grade is changed as required to
respond to changes in metal prices, availability of ore,
and to minimize deviations from long-term plans. At
large, modern, open-pit operations, drills are moni-
tored using global positioning systems (GPS) and the
driller includes a tag indicating the coordinates of the
hole as well as the blast and bench with the sample,
eliminating the need for computer-aided matching of
sample tags and locations.

5.10.5: Mineral Inventory: Mine–Mill
Grade Comparisons

Direct comparison of mine and mill grades is mean-
ingless in the short term of a few days for conven-
tional mills or several weeks in leaching operations.
The conventional mill separates and stockpiles coarse
material, which is mixed and milled days later, but
immediately processes the fines, which are generally
of better grade. Daily comparisons of mine and mill
head grades on time plots can be helpful in indicat-
ing that particular low- or high-grade material has
been processed, but only in qualitative form. Over a
one-month period (possibly longer), themine andmill
estimates should balance, but it is themill figure that is
accountable. The mine figure is used for comparative
purposes as an indication of the success of the grade
control system.

Mines operate on the basis of short-term grade
control, which depletes the mineral inventory. At reg-
ular intervals of several months to a year, the vol-
ume mined must be removed from inventory and the
contained grades and tonnages compared with actual
production. If the figures do not balance, the various
components of the reconciliation must be examined
with the possibility that themineral inventorymethod-
ology and the grade control procedures must be re-
assessed. Bear in mind, however, that many factors
including technologic changes permitting a change
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in mill throughput and significant changes in cutoff
grade due to changes in metal prices can result in
substantial differences between estimates and even-
tual output.

5.11: SUMMARY

Data acquisition procedures may not be of adequate
quality to properly represent a mineral deposit or, in
particular cases, to properly define the geologic and
value continuities on which mineral inventory esti-
mates depend. For high-quality, resource/reserve esti-
mation, high quality of the database can bemaintained
by systematic critical evaluation of

(i) Sample acquisition (including three-dimen-
sional aspects of deposit sampling patterns)

(ii) Sample reduction and assaying procedures
(iii) Geologic data acquisition, interpretation, and

modeling.

Sampling patterns and methods, sample reduction
schemes, and assaying procedures must be designed
and tested for the local geologic substrate. A regular
program of duplicate and check sampling and analy-
ses serves as a continuing measure of quality control.
Attention to these matters reduces the nugget effect
and improves the quality, and therefore the ease of in-
terpretation, of experimental semivariograms, as well
as improving the quality of estimation.

Detailed geologicmapping and three-dimensional
deposit reconstruction is essential and must be inte-
grated fully into models of continuity of value mea-
sures (e.g., grade, thickeness) based on well-designed
sampling patterns. Many deposits can be divided into
two or more geologic domains (lithologic, stuctural,
genetic), each of which is characterized by its own
statistical distribution of grades and grade continuity
model. In such cases, the indifferent application of
a single “average” continuity model (semivariogram)
to determine mineral inventory can lead to substantial
“hidden” errors unrelated to errors calculated during
block estimation.

Improved sampling and geologic procedures con-
tribute directly to improved metal recovery and in-

come. Data quality can be set in a broader perspec-
tive such as total quality or continuous improvement
management methods that are being adopted by in-
creasing numbers of mining companies. The essential
element of these philosophies, whatever the name, is
a continuous process of review and change that is ori-
ented to an overall improvement in profitibility. For
deposit/reserve estimation, the systematic scrutiny in-
herent in thesemethods applies to all stages, fromdata
acquisition and editing to mine planning and produc-
tion control. To be effective, such a review process
must be carried out in a systematic manner.

5.12: PRACTICAL CONSIDERATIONS

1. Basic assay data can become extraordinarily
abundant as exploration, development, and pro-
duction proceed. A computer-based storage and
retrieval system for data is essential and should
be implemented early in the exploration of a de-
posit.

2. Program design should attempt to provide as
much data of uniform support as is practical.

3. The design of a sampling program should include
consideration of a planned systematic increase
in the spatial density of data as evaluation pro-
gresses.

4. Sampling methods in use elsewhere should not be
adopted blindly at a deposit without considera-
tions of alternative methods or the possibility of
improving results by modification of the existing
method. Sampling experiments can be designed
to meet this need.

5. A sampling protocol should be designed for min-
eralized material of each well-defined type, using
Gy’s sampling equation and sampling diagram
with an appropriate safety line.

6. Data should be requested from the analytical lab-
oratory coded as to analytical batches, includ-
ing the various quality control samples (blanks
and standards) that have been analyzed as part
of each batch. As data are received, all control
sample values should be monitored for possi-
ble contamination and problems with analytical
quality.
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7. An analytical method should be suitable for the
analytical goal. Even for an individual method,
there is room for choice (e.g., in gold analyses by
fire assay, concern may arise as to whether one
assay ton is sufficient material on which to base
an assay).

8. A quality control system involving duplicate sam-
pling should be implemented at the outset of a
sampling and assaying project. Details of the sys-
tem vary depending on circumstances, but should
include, as appropriate, duplicate samples (per-
haps 1 in every 30 to 60 samples to monitor to-
tal sampling and analytical variances), duplicate
pulps (perhaps 1 in every 20 samples to moni-
tor subsampling and analytical errors of the an-
alytical laboratory), and duplicate rejects (per-
haps every 30 to 40 samples to monitor error in
the first stage of sampling/subsampling). Some of
the duplicate pulps and rejects should be analyzed
by reputable independent laboratories as a check
against bias. A few samples from a project, rep-
resentative of the important analytical range of
values, should be analyzed at intervals as project
“standards” to monitor possible bias in the labo-
ratory. All of these duplicate analyses should be
reported and coded in such a way that they can be
monitored graphically, regularly, and with ease.
These quality control procedures are in addition
to those implemented by the analytical laboratory
and should not be identifiable by the laboratory.
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5.14: EXERCISES

1. The following sampling protocol for a gold ore
(after Davis et al., 1989) can be plotted graphi-
cally, either manually or using GYSAMPLE soft-
ware (which can be downloaded through pub-
lisher’s website). A 3- to 5-kg sample of blast-
hole cuttings was dried and crushed to 95 precent
−2 mm. A 1-kg split is pulverized to 100 µ, and
500 g is taken for assay. Of the 500 g split, 50 g
were used for fire assay. Construct and evaluate
the sampling diagram. Compare your interpreta-
tion with the conclusion of Davis et al. (obtained
by independent experimentation) that “assay re-
peatability in the Colosseum ores would be en-
hanced by a particle size reduction before the ini-
tial sample split” (1989, p. 829).

2. Plot and comment on the adequacy of the fol-
lowing subsampling protocol for the Mt. Hope
molybenum prospect (Schwarz et al., 1984): each
3-m segment of drill core is split and one-half
(approximately 10,000 g) is bagged; this sample
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Figure 5.23: Square and triangular grid patterns (cf. Annels, 1991) arranged such that the central point in each case is the
same distance from all data in the first surrounding aureole.

is crushed to 2 mesh (jaw crusher) and further
crushed to 10 mesh (cone crusher). The cone-
crushed product is reduced to about 1/8th volume
(about 1,200 g) with a riffle splitter. The split is
pulverized to 80 mesh, rolled, and further split to
produce two 100-g subsamples. One of the 100-g
subsamples is further pulverized to 200 mesh and
a 25-g split is taken for commercial assay. Metric
equivalents ofmesh sizes are given inAppendix 2.

3. The data file J&L.eas (which can be downloaded
through the publisher’s website) contains 55
quadruplicate samples, each set of quadruplicate
samples representing coarsely crushed material
from one drill round (ca. 30 short tons). Each set
of quadruplicate samples were cut as material
passed into a sampling tower, and all four subsam-
ples were passed through the same subsampling
protocol and analyzed in the sameway for five ele-
ments: Au, Ag, As, Zn, and Pb. Evaluate the qual-
ity of the assay data using the program ERRORZ,
available through the publisher’s website.

4. Annels (1991, p. 61) discusses the comparative
efficiencies of square and offset (triangular)

grids for drilling patterns and concludes in part
that an “offset grid is . . . more efficient in that
drillholes are further apart . . . 29.9% fewer holes
to cover the same area with the same degree of
confidence.” Evaluate the comment “with the
same degree of confidence” by discussing the
estimation of a central point in each of the basic
arrays using a single aureole of data. Assume the
patterns and dimensions of Fig. 5.23.

5. The data set sludge.eas contains 84 half-core
assays for gold (oz/t) as well as corresponding
weighted core/sludge assays. Compare the two
sets of data using regression analysis. Comment
on the results in light of the limitations/advantages
of sludge assays.

6. Compare the Cu analyses in Table 5.3 by each
of the two sampling methods (tube and channel)
with the best estimate. Recall that the Ag data
indicates a significant improvement in metal re-
covery by the channel sampling results compared
with the tube sampling results (see Section 5.5.2).
Do the Cu data support the conclusion based on
Ag analyses? Data in file equitybh.eas.



6
Exploratory Data Evaluation

Possibilities that had escaped the notice of previous operators may become obvious when historical information
is analyzed systematically. (McKinstry, 1948, p. 436)

Chapter 6 introduces the need for a thorough data
analysis as a prelude to amineral inventory study.
Orderly preparation of data and close attention to
data editing are essential precursors to data eval-
uation. Composites are introduced and discussed
in some detail because they commonly form the
basis of mineral inventory estimation. Finally, a
highly structured approach to data evaluation is
recommended, and is illustrated in terms of uni-
variate, bivariate, and multivariate procedures.
Generally, a range of computer software is nec-
essary for thorough and efficient data analysis;
however, use of computers should not preclude
a fundamental understanding of the methods im-
plicit in their use!

6.1: INTRODUCTION

Data evaluation forms an essential part of every
mineral inventory estimate and involves a thorough
organization and understanding of the data that are
the basis of a resource/reserve estimate. The ultimate
purpose of exploratory data evaluation in mineral in-
ventory work is to improve the quality of estimation;
specific aims include the following:

(i) Error recognition

(ii) To provide a comprehensive knowledge of the
statistical and spatial characteristics of all vari-
ables of interest for resource/reserve estimation

(iii) To document and understand the interrelations
among the variables of interest

(iv) To recognize any systematic spatial variation of
variables such as grade and thickness of miner-
alized zones

(v) To recognize and define distinctive geologic do-
mains that must be evaluated independently for
mineral inventory estimation

(vi) To identify and understand outliers
(vii) To evaluate similarity/dissimilarity of various

types of raw data, especially samples of different
supports.

These aims are not mutually exclusive, but each
can have its own impact on resource/reserve estima-
tion. Error, of course, must be minimized. Quantifi-
cation of various types of errors has been discussed
in detail in Chapters 2 and 5. Here, concern is with
gross human and mechanical errors, such as incorrect
coordinates and errors in transcribing data. Individual
variables can have characteristics that lead to differ-
ent decisions for each variable during the course of
estimation. Similarly, interrelations of variablesmight
contribute to the ease (or difficulty) of estimating sev-
eral variables. Identifiable trends can lead to the defi-
nition of two or more domains, each of which might

146
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Figure 6.1: Simple flow diagram showing a general organization and content for exploratory data evaluation related to mineral
inventory estimation.

be estimated independently of the others. “Outlier”
grades, a persistent problem, require detailed evalu-
ation because they have an impact on reserves much
out of proportion to their abundance; this topic is re-
served for Chapter 7.

Data organization and evaluation can involve as
much as 50 percent of the time necessary to conduct
a mineral inventory estimation. The principal aspects
of a data evaluation system designed to meet the pre-
viously mentioned aims include:

(i) File design and data input
(ii) Data editing
(iii) Quantification of data quality
(iv) Grouping of data by geologic domain, sample

support, and so on

(v) Univariate statistical analysis (e.g., histograms,
probability graphs)

(vi) Bivariate statistical analysis (e.g., correlation,
linear regression)

(vii) Spatial patterns and trends.

An orderly procedure to the evaluation is essen-
tial (Fig. 6.1) and it is useful if such a system pro-
gresses from simple techniques to more complicated
techniques, as required. This evaluation is facilitated
by a well-organized structure to the data; therefore,
an early emphasis on file design and data editing is
recommended. Some specific aims of data evalua-
tion are to define the probability density functions
of important variables and obtain insight into their
spatial characteristics. Quality control procedures are
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a sufficiently important aspect of data treatment to
warrant a separate discussion.

6.2: FILE DESIGN AND DATA INPUT

In many cases, large quantities of data are involved
in mineral inventory estimation, and ease of stor-
age, retrieval, and handling are essential; disorganized
storage and retrieval procedures can drastically af-
fect the efficiency and cost of obtaining a mineral in-
ventory estimate. Assay data, however essential, must
be accompanied by appropriate geologic (rock type,
character of mineralization, alteration, etc.) and lo-
cation (three-dimensional coordinates) information.
Specific geologic characteristics to be recorded are a
function of the geologic type of deposit being evalu-
ated. Information can be maintained within a single
database management system or in a variety of files
linked by an identity number, commonly sample num-
ber, drill hole number, and the like.

It is convenient to begin systematic collection
and organization of data early in the exploration/
evaluation history of amineral deposit. Even at the de-
tailed exploration stage, enormous quantities of data
are generated, and failure to develop a computer-
based system of data storage and retrieval can lead
to errors and loss of some information at later stages
of evaluation.

Today there is little excuse for not using computer-
based filing systems for the handling of assay and re-
lated information (cf. Blackwell and Sinclair, 1992).
Numerous commercial database management sys-
tems are available, some of them designed espe-
cially for themineral industry, withmodules designed
explicitly for mineral inventory estimation by a vari-
ety of commonly used procedures. Of course, each of
these systems has particular limitations, and it is wise
to examine their capabilities thoroughly in advance of
purchase or use so as to ensure they meet the needs
of the project. Although these systems have become
relatively complex, most are accompanied by user’s
manuals, and their purchase typically provides access
to technical advice through a troubleshooting phone
contact.

One aspect of data organization not fully appreci-
ated by many mineral inventory practitioners is the

Diamond-drill hole

Blasthole
cutting

For  r = 8.2 cm
Cuttings mass = 63 kg/m

Channel
15 kg/m

Chip
3 kg/m

Half-drill core
    AQ - 0.8 kg/m
    NQ - 2.7 kg/m

Figure 6.2: The concept of sample support. Size, shape,
and orientation all contribute to the support of a sample.
Samples of different orientations, different dimensions,
and different masses thus have different supports, and
therefore can have different dispersions (standard devia-
tions). Representative masses of several common types
of samples are illustrated.

importance of data support (see Chapter 1). Sup-
port is the size, shape, and orientation of samples
(Figure 6.2). In many practical situations, the vari-
ability of assays of one support differs substantially
from the variability of assays of a second support. It
is easy to imagine that a set of small chip samples
along an underground drift has much more variability
than a set of very large samples (each totaling all the
material from a drill round in the drift) taken from
the same length of underground opening. This fact
is one of the principal justifications for using com-
posites of uniform support when samples of smaller,
perhaps variable, supports have been taken in the first
instance.

Two examples illustrate the importance of ore
character on support; hence, the importance of ore
classification as a basis for grouping samples. In a
bedded deposit such as many iron formation and
shale-hosted Pb–Zn deposits, contiguous linear sam-
ples (e.g., drill core or channel samples) taken parallel
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to bedding are more similar on average than are con-
tiguous samples taken across bedding. Similarly, in
a sheeted vein zone, samples taken perpendicular to
the veins have an extremely high variability if sam-
ple length is less than the average spacing between
veins (because some samples can be zero grade) in
contrast to samples whose lengths are greater than
the vein spacing (all such samples must contain some
vein material). These two examples make the case for
the importance of support in an intuitively obvious
way; the first case emphasizes the importance of ori-
entation of samples, and the second demonstrates the
importance of lengths of samples.

6.3: DATA EDITING

It is essential that data be checked thoroughly once
a database has been constructed and, subsequently,
as new data are added. A variety of procedures can
be used, but most important is a systematic approach
so that significant errors are spotted early and can be
corrected or avoided. With small data sets, it may
be adequate to check sample locations and values
against original documents, including geologic maps
and cross sections, surveyed sample location maps,
and tabulations of data as received from the analyst.
When large data sets are involved, such procedures are
not efficient and a variety of computer-based, graphic-
output procedures are commonly used to test visually
for outliers and other problems.

(i) Sample locations can be output on plans or
sections for comparison with original docu-
ments. Errors in locations of drill holes and
hole deviation can impinge significantly on re-
source/reserve estimation and, unfortunately, are
common.

(ii) Geologic coding of samples can be checked by
output ofmaps (symbols for different sample cat-
egories) of appropriate scale for comparisonwith
master maps and cross sections containing the
original information.

(iii) Outlier samples commonly can be recognized
using a variety of simple graphic output that
is an inherent part of data analysis procedures,
including histograms, probability plots, scatter-

grams, and triangular diagrams. Isolated highs
(and lows) on a contoured diagram of a variable
may also indicate the possibility of an outlier that
requires explanation. Some of these techniques
are introduced elsewhere in this chapter.

The graphic and statistical techniques for outlier
recognition do not necessarily imply that the data so
recognized are incorrect; the methods simply identify
the samples that might represent errors and for which
an explanation is important. In addition to these proce-
dures, a formal evaluation of data quality is essential.
Outliers are discussed in detail in Chapter 7.

6.3.1: Composites

Raw data for a mineral inventory estimation generally
are obtained from a variety of supports (Figure 6.2);
hence, they are commonly combined in such a way
as to produce composites of approximately uniform
support. Composites are combinations (mixtures) of
either samples or analytical data. In some cases, sev-
eral individual samples or representative parts of in-
dividual samples are combined physically in order to
form a single representative sample for purposes of
certain kinds of testing. Material for mill or bench
tests of various ore types is commonly obtained in
this manner. For example, early in the evaluation his-
tory of a deposit, it is common practice to combine
core from a group of diamond-drill holes in order to
conduct initial milling tests. In some cases, physical
mixing of samples is used as a cost-saving procedure
with regard to analytical costs.

For mineral inventory purposes, however, com-
positing generally involves the combining of existing
data values (i.e., compositing is a numerical proce-
dure that involves the calculation of weighted av-
erage grades over larger volumes than the original
samples). Commonly, such compositing is linear in
nature, involving the calculation ofweighted averages
of contiguous samples over a uniform length greater
than a single sample length. A substantial smoothing
effect (reduction in dispersion of grades) results as
illustrated in Fig. 6.3 because compositing is equiva-
lent to an increase in support.
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Figure 6.3: Idealized example of the formation of compos-
ite values from smaller subsamples along a linear sample
(e.g., a drill hole). Note the decrease in dispersion of val-
ues as the composites become longer. This is an example
of a more general geostatistical equation that relates the
semivariogram and dispersion variances for any two sam-
ple supports (see Section 8.9).

Data are composited to standard lengths as a basis
for mineral inventory studies to

(i) reduce the number of samples. If there are many
thousands of samples, numbers of values can be
substantially reduced (two- to four-fold), thus
speeding data handling and increasing efficiency
of various computer programs involving data
searches (cf. Raymond, 1982).

(ii) bring data to a common support. For example, in
their geostatistical study of the Golden Sunlight
gold deposit Sinclair et al. (1983) combine drill
core samples of various lengths to a common
length of approximately 10 ft. Raymond (1982)
combined 1.5- and 2.5-m sample assays at the
Mt. Isa copper deposit to produce 10-m compos-
ite grades for use in obtaining mineral inventory
estimates.

(iii) reduce the effect of isolated high-grade sam-
ples and thus reduce the erratic character of ex-
perimental semivariograms and attendant diffi-
culty in semivariogrammodeling (Sinclair et al.,
1983). This procedure also somewhat reduces
the problem of overestimating high-grade blocks
that can result from isolated high-grade samples.

(iv) produce bench composites (i.e., composites
whose lengths extend from the top of a bench
to the base). Such composites are particularly
useful when two-dimensional estimation proce-
dures are used for benches. The production of
bench composites from raw data, which them-
selves are not bound by bench floors, normally
involves a component of artificial smoothing of
the data. As an example, consider a 5-m long
sample, only 1 m of which occurs in the bench
interval of a composite. The 5-m sample grade
is assigned to the 1-m portion and weighted into
the bench composite. The repetition of this pro-
cedure introduces a slight artificial smoothing
to bench composites, in addition to the inherent
smoothing involved in the compositing process
(see previously and Fig. 6.3). To avoid this ar-
tificial smoothing, composites should not be re-
stricted to a bench interval; in which case, block
estimates for a bench should be made by three-
dimensional rather than two-dimensional esti-
mation procedures. Note that the summation of
grade times length and length values should be
the same before and after compositing.

(v) reduce the likelihood of assigning peculiar
weights by the kriging procedure (see Chap-
ter 13).

Rendu (1986) notes that several matters need to be
considered to ensure the most effective compositing
results, as follows:

(i) definition of geologic domains within which
compositing is to be done.

(ii) categorization of boundaries between geologic
domains as sharp or gradational (fuzzy). Com-
posites should not cross sharp boundaries, but
can extend into gradational contact zones.

(iii) the choice of composite length for large deposits
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is controlled by bench height or the smallest di-
mension of the selective mining unit. For tabular
deposits, composite length might be limited by
the distance between footwall and hanging wall
and whether they are sharp or gradational.

(iv) When the forgoing decisions have been made,
the following information should be calculated
and recorded for each composite: coordinates of
the top and bottom of each composite, coordi-
nates of the center of each composite (because
composites are generally considered to be points
in mineral inventory estimation), weighted av-
erage grades, length of composite (because of
boundary limitations, they are not all the desired
length), and important geologic characteristics.

Detailed attention to the compositing procedure
is essential because composites generally replace raw
data as the basis for mineral inventory estimation. As
a rule, composites from a given geologic domain are
used in making mineral inventory estimates of that
domain only. A question arises as to how to deal with
segments of lost core; a common operating procedure
is to form a composite only if information is available
for at least half of the composite length. A similar
procedure can be used for the variable lengths at the
end of a drill hole. Where exploration drill holes are
stopped in high-grade ground, a good practice is to
form a composite from the bottom of the hole toward
the collar. This procedure provides a sounder database
within the high-grade zone.

In general, if both the data and the composites are
unbiased, the average grades of all composites should
be centred on the same mean value as determined for
the smaller components (raw data) from which the
composites are constructed. Minor departures of the
two means are to be expected because small amounts
of data might be ignored in the compositing proce-
dure. In some cases, however, composites are filtered
to produce the database for resource/reserve estima-
tion, and the data and composite mean values can be
very different. Lavigne (1991) summarizes a prelimi-
narymineral inventory study of theLacKnife graphite
deposit in which he shows that selected 4-m compos-
ites have a significantly lower Cg (carbon as graphite)

grade than do the original 1-m samples (14.91 percent
vs. 17.10 percent). The reason for this discrepancy is
that a filtering of the composites was done for estima-
tion purposes; only composites above 4 percent Cg
were accepted in the database. Numerous “isolated”
values greater than 4 percent were incorporated into
composites with average grades below this threshold
and thus were lost for estimation purposes when the
filter was applied.

In certain cases, especially for tabular bodies
crossed by lines of contiguous samples (e.g., drill
holes crossing roughly tabular bodies, for which the
margins are not clearly defined geologically), it might
be desireable to produce a composite of nonuniform
length whose length is constrained by a minimum
length (e.g., minimum mining width), a maximum
length, and might include a mining locus (e.g., the
center of a vein). A program to achieve some or all of
these goals is discussed by Diering (1992), who de-
scribes a procedure that optimizes the composite by
maximizing eithermonetary benefit or tonnagewithin
constraints such as those listed previously. The pro-
cedure uses a seed value, or a location along a lin-
ear sample, that is constrained to be included in the
eventual composite. The method has useful applica-
tion when distances between adjacent composites are
short and there is a reasonable expectation of physical
continuity between neighboring, optimized compos-
ites. However, in many practical situations involving
irregular, gradational variations in grade, it would be
dangerous to assume a physical continuity between
widely spaced optimized composites (e.g., in the case
of widely spaced drilling through variably mineral-
ized, shear, or alteration zones).

6.4: UNIVARIATE PROCEDURES
FOR DATA EVALUATION

Statistical parameters are useful in summarizing data
and as a basis for comparisons of various data sub-
groups. Means and dispersions can be used for this
purpose and a variety of graphic or classic statistical
approaches (hypothesis tests) can be used to make
such comparisons. Statistical tests might include χ2

tests (perhaps to test formally whether a histogram
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can be assumed to represent a normal distribution),
t-tests (to compare mean values of two data sets
representing different geologic domains), and F-tests
(to compare variances obtained by two laboratories
for analyses of the same standards). Procedures for
these and other tests are provided in many introduc-
tory statistical texts.

6.4.1: Histograms

Histograms are a simple and familiar method of dis-
playing information about numeric variables. Box
plots are a simpler but less informative alterna-
tive. Three histograms of ore grades are shown in
Figure 4.2, illustrating negatively skewed, symmetric,
and positively skewed data. It is evident that his-
tograms are useful in determining the form of a dis-
tribution, spread of values and range of greatest con-
centration of values, and the presence of multiple
subpopulations. Unfortunately, this information can
be clouded unless histograms are prepared carefully.
From a practical point of view, histogram shape may
suggest certain approaches to the estimation proce-
dure (e.g., Raymond, 1982); for example, a lognor-
mal sample distribution suggests that a proportional
effect must be taken into account in the development
of a semivariogram model.

6.4.2: Raw (Naive) versus
Unbiased Histograms

Exploration data commonly are concentrated in zones
of relatively high grade; therefore, the histogram of
raw grades is biased (see Section 4.3). It is necessary
to remove the effects of clustering in order to produce
an unbiased histogram that (i) removes misconcep-
tions of mean grade, (ii) shows the true form of the
distribution, and (iii) serves as a basis for constructing
grade-tonnage curves.Declustering refers to methods
used to minimize the effects of such biased spatial
distribution.

The principal problem in declustering is to decide
on the cell size to use in the determination of weights.
This problem is solved, in some cases, by determin-
ing the unbiased mean of declustered data for a range

of cell sizes and accepting the cell size that produces
a minimum (or maximum) unbiased mean value (see
Section 4.3). An example for the Virginia zone, Cop-
per Mountain porphyry district, is shown in Fig. 6.4.
Figure 6.4c is a plot of the unbiased mean versus var-
ious sizes of blocks used for declustering. A substan-
tial difference exists in means for the two histograms
(0.075 vs. 0.098 g/t Au). The unbiased histogram is
now available for use in establishing the true form
of the data distribution and, in combination with the
volume-variance relation, to develop aglobal resource
estimate for the zone (see Chapter 11).

6.4.3: Continuous Distributions

Continuous distributions are commonly used to de-
scribe data, and it may be useful to fit such a distri-
bution (e.g., normal, lognormal) to a histogram. The
fitting procedure is relatively simple and is described
in Chapter 4 (Eq. 4.12) and in many introductory sta-
tistical texts; an example is shown in Fig. 4.2b.

Variables of interest in mineral inventory com-
monly do not fit a normal distribution, but in
some cases, approximate a lognormal distribution or
mixtures of lognormally distributed subpopulations.
Some skewed distributions can be forced to fit a log-
normal distribution by the addition of a constant to
each raw data item (cf. Krige, 1960). This improve-
ment in lognormal fit arises where there is a surplus of
low values in the original data relative to an ideal log-
normal distribution. This surplus can be real or can be
a result of nonrepresentativity of the data. As a gen-
eral practice, unbiased histograms (or cumulative his-
tograms) should be used as a basis for characterizing
the form of a distribution. In particular, the additive
constant of a three-parameter lognormal distribution
should be estimated using the nonbiased data. This
can be done easily by plotting the nonbiased cumu-
lative data as a probability plot. Then the additive
constant k can be estimated from Eq. 4.22.

In many cases, a simple transformation such as
an additive constant is inappropriate because it masks
the presence ofmore than one lognormally distributed
subpopulation, each of which may have its own
geologic and spatial characteristics, and thus may
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Figure 6.4: (a) Histogram of 5,352 Au assays (ppm) of 10-ft lengths of diamond-drill core, Virginia porphyry zone, Princeton,
British Columbia. (b) Unbiased histogram of 5,352 Au values obtained by the cell declustering method. (c) Plot of weighted-
mean Au grade versus block size used to produce the weighted mean. Any block size greater than about 200 ft2 produces
a reasonably unbiased histogram. The arrow shows the size used to obtain the histogram of (b).

require separate treatment for resource/reserve esti-
mation purposes.

6.4.4: Probability Graphs

Background information concerning graphic manip-
ulations using probability graphs is given by Sinclair
(1974, 1976, 1991). A cumulative normal (or lognor-

mal) distribution plots as a series of points (either in-
dividual values or the cumulative data of a cumulative
histogram) that define a straight line on equal interval
(or log) probability graph paper (e.g., Zn; Fig. 6.5).
The literature is full of misinterpretations or misrep-
resentations of this statement; too commonly, several
straight-line segments of a single plot are each inter-
preted incorrectly to represent normal (or lognormal)
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Figure 6.5: Probability graphs (cumulative curves) of metal
abundances in residual soils over the Daisy Creek strata-
bound copper prospect, western Montana (Sinclair, 1991),
cumulated from high to low values. The straight line is a log-
normal population approximating the Zn data (stars), and
the curved line approximating the Cu data (filled circles) has
the form of a bimodal distribution (i.e., a mixture of two log-
normal subpopulations). The arrow points to an inflection
in the Cu curve at the 25th percentile.

distributions. A normal (or lognormal) distribution
plotted over a fraction of the probability range on
the appropriate probability paper is strongly curved.
A case in point is the widespread interpretation of a
log probability plot that can be approximated by three
“linear” segments to represent three lognormal popu-
lations; Sinclair (1974, 1976) shows that such curved
patterns are the natural outcome of mixing two log-
normal populations (e.g., Cu; Fig. 6.5). Here, several
examples suffice to demonstrate the several uses of
probability graphs in mineral inventory estimation.

6.4.5: Form of a Distribution

As an example of the use of a probability graph in ana-
lyzing the form of a distribution, consider the example

ofFig. 4.13 for 1,000goldvalues fromaSouthAfrican
gold mine. Cumulative classes of raw data (e.g., the
equivalent of a cumulative histogram) are plotted as
open circles to which a smooth, concave-downward
curve has been fitted. The continuous straight line is
a perfect lognormal population with the same param-
eters (mean and standard deviation) as the raw data.
Clearly, the raw data depart substantially from log-
normality. However, with the determination of a con-
stant (K = 55) using Eq. 4.22, and the addition of this
constant to all raw values, the plotted cumulative data
(black dots) very closely define a straight line, and the
transformed variable closely approaches a lognormal
distribution.

Commonly, cumulative plots have the form of
Cu in Fig. 6.5 and can be interpreted as mixtures of
two lognormal subpopulations. Proportions of the two
subpopulations are given by an inflection point on the
cumulative curve (cf. Sinclair, 1976). In the case ofCu
in Fig. 6.5, the inflection point is at the 25th percentile,
indicating 25 percent of an upper lognormal subpop-
ulation and 75 percent of a lower subpopulation. This
information is essential in partitioning the curve into
its two components, as described in Chapter 7.

6.4.6: Multiple Populations

The presence of multiple populations in a data set to
be used formineral inventory estimation is generally a
function of the geology of the deposit. When present,
multiple populations must be examined in detail be-
cause of the likelihood that each geologic population
also represents a distinct continuity environment, a
possibility that is too commonly ignored in practice.
The amount of data in a particular subpopulation is
not necessarily a controlling factor in defining that dis-
tinctive populations exist, a topic discussed at greater
length in Chapter 7.

Consider the case ofAu assays for theNickel Plate
skarn deposit (South Pit) as shown in Fig. 6.6 for
one of three sulphide-bearing layers (Sinclair et al.,
1994). In this case, the upper subpopulation repre-
sents a small proportion of the total data and individ-
ual items occur as isolated values in a field of lower-
grade mineralization (i.e., the upper population data
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Figure 6.6: Probability graph (cumulative curve) of 365 gold assays, middle sulphide-bearing layer, Bulldog Pit, Nickel Plate
Mine (Sinclair and Vallée, 1994). Black dots are cumulative raw data fitted by a smooth (bimodal) curve. Straight lines are the
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the two central dashed lines collapse to a single value equivalent to a threshold of 0.5 oz/t (−0.7 expressed as a log value)
separating the two partitioned subpopulations. The partitioning procedure is described in Chapter 7 and by Sinclair (1976).

are distributed irregularly throughout the mineralized
layer). Two lognormal populations, perhaps with dif-
fering continuity, are indicated. Therefore, the two
populations must be evaluated separately in terms of
their contributions to tonnage and grade in a finalmin-
eral inventory estimate.

6.5: BIVARIATE PROCEDURES
FOR DATA EVALUATION

6.5.1: Correlation

Simple, linear-correlation coefficients range from
−1 to +1, depending on whether the two variables
whose similarity is being examined are well or poorly
correlated (Fig. 4.14). High absolute values of corre-
lation coefficients indicate a close approach to a linear
trend of the two variables on a binary plot; a value near
zero indicates the absence of such a linear trend. An

example (Fig. 6.7) is provided by a plot of Au versus
Ag (r = 0.81) from a data set for 10-ft diamond-drill-
core samples from a part of the Aurora epithermal
Au deposit, Nevada (Poliquin, 1994). For all practi-
cal purposes, this linear trend passes through the ori-
gin, indicating a remarkably uniform ratio of Au/Ag.
With smoothing of data (in block estimation for ex-
ample) the correlation would become even better and
the grade of by-product Ag can be determined di-
rectly from the measured Au content and the known
Au/Ag ratio. Such a strong relation in small samples
is even more pronounced in much larger blocks, and
indicates that estimated Au values for blocks can be
used to estimate the corresponding Ag abundances.

When variables havemore or less symmetric (nor-
mal) distributions, either naturally or by transfor-
mation, a correlation coefficient can be tested for
“significant difference from zero” at a selected level
of statistical significance (seeKrumbein andGraybill,
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scissa) for assay data from the Humboldt vein, Aurora gold
deposit, Nevada. Both variables in oz/st. The fitted straight
line has an equation: Ag = 2.68 (Au)−0.03. Thus, gold
assays provide an estimate for accompanying silver grade.
Redrawn from Poliquin (1994).

1965). In this way, attention can be focussed on the
significant correlation coefficients.

In addition to concerns about the effect of out-
liers and nonlinear trends, there are other concerns
that affect the interpretation of calculated values of
the correlation coefficient; in particular, the incorpo-
ration of ratios and percentages among the variables
considered. In the case of percentage data, the data
are closed – that is, they must sum to 100 percent –
as opposed to open data, which have no such con-
straint (e.g., Krumbein and Graybill, 1965). The dif-
ficulty with percentage data can be appreciated with
a simple system of three variables; as one variable in-
creases in relative amount, the sum of the other two
must decrease. Therefore, correlations are forced by
the arbitrary procedures of reporting information as
percentages. The problem decreases as the number of
components increases and if components of relatively
low percentages are considered. Similarly, ratios con-
tain built-in correlationswhen they are comparedwith
one of the components of the ratio (e.g., Miller and
Kahn, 1962). When possible, ratios and percentage

data should be avoided in correlation studieswith very
few variables involved.

When there are many variables, their interrela-
tions can be investigated in a matrix of all possible
correlation coeficients and in various types of correla-
tion diagrams. An example of a correlation matrix is
given in Table 6.1 (see also Fig. 6.9) for 33 run-of-
mine chip samples (each sample is a continuous se-
ries of chips across a polymetallic vein) spaced about
2- to 3-m apart along a drift that exposes both metal-
bearing and barren vein material (No. 18 vein, Keno
Hill Camp, Yukon). The order of the variables has
been rearranged so groups of highly correlated vari-
ables are readily apparent.Absolute values of rgreater
than .339 are significant at the 0.05 level of signifi-
cance (critical value of r from tables in Krumbein
and Graybill, 1965). Grouping of significantly cor-
related variables (see Table 6.1 and Fig. 6.8) facili-
tates interpretation of their mineralogic implications
(see Sinclair and Tessari, 1981; Tessari and Sinclair,
1980). Group I is principally galena and a variety of
closely associated, less-abundant, silver-bearing min-
erals, including tetrahedrite and mathildite; Group II
is sphalerite;Group III is carbonate;Group IV is pyrite
and siderite; and Group VI is arsenopyrite. Interpre-
tation of Group V is uncertain, but it appears to be
related to wallrock components, and thus may rep-
resent sample dilution. An additional advantage of
grouping data so that highly correlated variables are
adjacent to each other is that within- and between-
group correlations become apparent and give an in-
dication of possible zoning patterns, as discussed in
Section 6.5.2.

Correlation coefficients can be used in some cases
to develop ideas relating to relative spatial distribu-
tion patterns of several variables (e.g., metal zon-
ing). The Keno Hill data in Table 6.1 is a case in
point (Sinclair and Tessari, 1981; Tessari and Sinclair,
1980). High positive correlation coefficients indicate
that the paired variables are more or less superim-
posed spatially; high negative correlation coefficients
indicate that paired variables are more-or-less dis-
joint. Intermediate values of correlation coefficients
are ambiguous with respect to spatial distribution.
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Figure 6.8: Correlation diagram for the data of Table 6.1 for assays from the Keno No. 18 vein, Keno Hill Camp, Yukon
Territory (redrawn from Sinclair and Tessari, 1981). Variables are represented by circles; intracorrelated variables are grouped
in numbered squares that relate to mineralogy (see text).

6.5.2: Graphic Display of Correlation
Coefficients

Graphic displays of correlation information also can
be informative. Correlation diagrams (e.g., Krumbein
and Graybill, 1965) assign a circle to each variable;
circles of highly correlated variables are clustered
and members of each pair of highly correlated vari-
ables are joined by a line indicating the correlation
coefficient. Such diagrams are constructed most con-
veniently by beginning a cluster of highly correlated
variables with the highest correlation coefficient and
successively adding the next lowest values to the

emerging diagram. Correlation coefficients for the
No. 18 vein (Keno Hill, Yukon) give the correlation
matrix of Table 6.1, shown as a correlation diagram
in Fig. 6.8. Another widely used means of displaying
correlations in a multivariate data set that also aids
in grouping variables into intracorrelated groups is
the dendrograph (McCammon, 1968). The data of
Table 6.1 and Fig. 6.8 are shown as a dendrograph in
Fig. 6.9.

These graphic techniques combined with an or-
derly evaluation of a correlation matrix provide in-
sight into groups of correlated elements and are use-
ful in developing attributes of an ore deposit model.



EXP LORA TOR Y DA TA E VA LUA T I ON 159

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Between-Group Correlation

W
ith

in
-G

ro
up

 C
o

rre
la

tio
n

Zn
Cd
Hg

Cu

Mn

Bi

Sb
Pb
Ag

F
Ba

B

V

Ni

Sr

Ca

Fe

As
Mg

Sphalerite

Tetrahedrite

Galena

Group V

Carbonates

Siderite

Pyrite
Arsenopyrite

N = 33

Figure 6.9: Dendrogram for the correlation coefficients of
Table 6.1, Keno No. 18 vein, Keno Hill Camp, Yukon Terri-
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Fig. 6.8.

However, the two graphic methods will not necessar-
ily end up with exactly the same groupings of vari-
ables, as is evident in a comparison of Figs. 6.8 and
6.9. This arises because of the averaging of correla-
tion coefficients that is necessary in the construction
of the dendrograph. In a large multielement data set,
such differences are minimal and generally do not af-
fect the overall interpretation.

6.5.3: Scatter Diagrams and
Regression Analysis

Scatter (binary) diagrams are one of the simplest, and
yet most useful, graphic procedures for evaluating
data. They serve as a rapid check for outliers, either us-
ing duplicate analytical data or examining correlated
variables; they are excellent for identifying cluster-

ing of data and systematic variations between pairs
of variables, regardless of whether the relations are
linear, quadratic, exponential, or otherwise.

Whenmany variables are under study, binary plots
of all possible pairs of amultivariate data set are a sim-
ple and effective means of evaluating outliers, recog-
nizing strongly correlated pairs of variables, examin-
ing paired data in error analysis, and recognizing the
possiblity of more than one bivariate subpopulation,
each with its characteristic correlation. It is particu-
larly useful in mineral inventory studies to examine
binary plots of by-products and co-products versus
the principal metal(s) under investigation. An exam-
ple for the Humboldt epithermal gold vein (Aurora
Mine), Mineral County, Nevada (Fig. 6.7), permits
direct estimation of Ag grades from Au assay by the
following relation:

Ag(oz/t) = 2.68 × Au(oz/t) − 0.03.

In this case, the y intercept is so low as to be insignifi-
cant, and theAu/Ag ratio alone can be used to estimate
the Ag content without analyzing all samples for Ag.

Linear trends are also indicated by high values of
correlation coefficients, but such coefficients can be
affected by the presence of nonlinear trends as well as
the presence of outliers. Consequently, examination
of scatter diagrams is a safer means of identifying
outliers. Rapid procedures for viewing all possible
scatter diagrams are essential for very large sets of
multivariate data; many sophisticated software pack-
ages provide this facility to one degree or another. The
P-RES program (Bentzen and Sinclair, 1993) offers
such a capability.

Generally, it is not safe to assume a linear trend
between two variables without a close examination of
the scatter plot. An example in Fig. 6.10 illustrates a
quadratic model of sulphur grade versus density for
massive copper–nickel ores of the Sudbury District.
In the case of nickel versus density (Fig. 4.18), it is
questionable if a quadratic trend adds any informa-
tion of consequence to the linear model. However, for
sulphur versus density it is clear that a linear trend
would be inappropriate; instead, the relation is well
described by a quadratic trend.
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Figure 6.10: Scatter plot of sample density (D) versus sulphur content (percent) for massive Cu–Ni samples of the Sudbury
Mining Camp (redrawn from Bevan, 1993). A well-defined curvilinear pattern is approximated by a quadratic trend with
equation D (g/cc) = 2.99+ 0.0283S + 0.000675S2.

6.6: SPATIAL CHARACTER OF DATA

6.6.1: Introduction

Knowledge of the spatial character of data is im-
plicit in some mineral inventory estimation proce-
dures. Here, concern is with preliminary methods for
early recognition of systematic spatial distribution
patterns (e.g., metal zoning), systematic trends and
distinctive geologic domains recognizedby their char-
acteristic statistical distributions of metals. The prin-
cipal approaches to evaluating the spatial character
of data at an early stage of data evaluation include
(1) contouring variables in plan and section; (2) the
use of symbol maps to examine for preferred spatial
distributions of specific abundance levels of a metal;
(3)moving averagemaps; and (4) grade profiles. Post-
ings of data (plans or sectionswith values shown) are a
useful beginning, particularly when data sites are also
coded by symbols that correspond to various geologic
attributes (e.g., rock type, alteration intensity).

Moving window statistics are a useful means
of examining spatial variations (e.g., Isaaks and

Srivastava, 1989). Problems can arise in determining
the appropriate size of window for which statistics are
determined, overlap of windows (imposing smooth-
ing), window shape (rectangular, circular), number of
data points per window to give adequate estimates
of parameters, and so on. In general, the local mean
and standard deviations are mapped for all windows
and spatial variations in the two parameters are exam-
ined. Clustering of either parameter is an indication
of either a trend or the presence of different geologic
domains. A plot of the window means and standard
deviations also can be used for recognizing the pres-
ence of a systematic relation (e.g., proportional ef-
fect) that might be important in a subsequent study of
autocorrelation.

6.6.2: Contoured Plans and Profiles

Where variables are gradational in nature and there
is reason to be confident that this gradational charac-
ter exists between control points, useful information
can be obtained from contour plots of both plans and
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Figure 6.11: Idealized patterns of contoured maps. (a)
Isotropy indicated by contours with no pronounced pre-
ferred orientation. (b) Planar trend defined by regularly
spaced, straight contours. (c) Separate domains indicated
by abrupt change in style of contours. Modified from Journel
(1987).

sections. In particular, contours indicate trends, di-
rections of preferred elongation (isotropy versus
anisotropy to the spatial distribution), and indications
of the need for more than one domain (Fig. 6.11).
Contouring is most commonly done with computer
software and the detailed procedures can be hidden
from the user; it is important to have a clear under-
standing of the contouring criteria contained within
a given software package. In the general case, data
are irregularly distributed spatially. Most contouring
routines use some kind of interpolation criterion with

which to construct a regular grid of values that can
be contoured relatively easily (e.g., by simple linear
interpolation). The grid spacing has a pronounced ef-
fect on smoothing, and the spacing appropriate for
one part of a data field may not be appropriate for
another. The grid spacing should be roughly equiva-
lent to the average data spacing; as the grid spacing
gets progressively larger, the amount of smoothing in-
creases and, conversely, with smaller grid spacing, a
level of detail is implied that does not exist in the data.
Each node of the grid is estimated by a local data set,
commonly selected by octant search, with some limit
to the amount of data per octant and a minimum num-
ber of values required. Once local data are defined,
an interpolation algorithm must be implemented to
determine the estimate for the node, for example, an
inverse distance weighting procedure such as defined
in Section 1.5.4. A variety of smoothing procedures
can also be imposed on the final contoured product
for esthetic purposes. For interpretation purposes, it is
useful to have a contoured plot show a posting of con-
trol values because the smoothing involved in contour-
ing commonly results in raw data not being honored
by the contours. If an inverse weighting algorithm is
used for interpolation, it is important to recognize the
following:

(i) The choice of power is of an arbitrary nature
(e.g., 1/d , 1/d2, 1/d3).

(ii) The minimum number of data required for node
estimation controls the extent beyond the data
for which node estimates are determined.

(iii) High powers of d in the denominator of the
weighting algorithm (e.g., 1/d3, 1/d4) create less
smoothing than do low values. Very high values
of the exponent approximate a nearest-neighbor
interpolator.

Contoured plans or profiles are commonly used in
both developing and operating mines as a means of
mine planning and grade control, respectively. Such
applications should be avoided or viewed with ex-
treme caution where control data are widely spaced.
Figure 6.12 compares high Cu and Au values for one
bench interval of the Virginia porphyry copper de-
posit; the two patterns are very similar, a reflection of
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Figure 6.12: Contoured values of Cu (lower) and Au (upper) assays for a 20-ft bench, Virginia porphyry Cu–Au deposit,
southern British Columbia (Postolski, unpublished data, 1995). Squares are sample locations from vertical drill holes;
rectangles indicate samples from inclined drill holes. Contour values for both metals are: solid contour = mean value;
dashed contour = mean + 0.75 std. dev; dotted contour = mean + 1.5 std. dev. The similar contour patterns for the two
variables indicate they are strongly correlated.

the high correlation coefficient (r = 0.61) between
the two variables. The implication of this information
is that the grades of Cu and Au will vary sympatheti-
cally during production.

6.7: MULTIVARIATE DATA ANALYSIS

Exploration and evaluation programs generate vast
amounts of multivariate data with which to attempt
to model the geologic–geochemical environment that
comprises a mineral deposit. Most of the foregoing
data evaluation procedures involve either single vari-
ables or simple graphical approaches to examining
two or three variables. Modern data-gathering tech-

niques, including new cheap analytical procedures,
commonly lead to the quantification of many tens
of variables for individual sample sites. This inun-
dation of data has led to attempts at using a wide
range of multivariate data-interpretation procedures
in an effort to: (i) recognize fundamental groupings
of variables that behave similarly; (ii) reduce the
time involved in data handling and interpretation to a
manageable level; and, at the same time, (iii) retain
any information important to the geology and grade-
distribution pattern of the deposit.

Multivariate techniques used in the context of
mineral inventory studies include applications of
multiple regression, cluster analysis, discriminant



EXP LORA TOR Y DA TA E VA LUA T I ON 163

analysis, and factor analysis. These methods have not
been widely adopted in exploratory data analysis as
a prelude to mineral inventory estimation and it is
not our purpose to review or discuss these mathemat-
ically sophisticated procedures in detail. The inter-
ested reader is referred to a variety of readily available
texts, including Koch and Link (1970) and Miller and
Kahn (1962). These procedures are mathematically
complex. In some cases, use of these procedures im-
parts a certain artificial tone to the analysis because
of the following:

(i) Some of the variables considered (e.g., length of
major fractures, distance to a particular geologic
feature) are of a peculiar nature.

(ii) Data transforms are needed in order to bring
some variables to a semblance of a symmetric
distribution.

(iii) The assumptions involved may be highly ideal-
istic (e.g., normality of axes in n-dimensional
space may produce axes that are uninterpretable,
i.e., complex variables that consist of weighted
contributions of several variables).

(iv) Many complex variables that result from mul-
tivariate analyses commonly correspond with
a basic geologic grouping that is known in
advance.

Here, two simple examples, triangular diagrams
andmultiple regression, are used to demonstrate some
of the potential applications of data-analysis proce-
dures involving more than two variables.

6.7.1: Triangular Diagrams

Triangular graphs are used routinely to display rel-
ative compositions of samples in terms of three
variables. Indications of absolute abundance levels
generally are lost, whereas information on relative
abundances is retained. In cases in which metal abun-
dances differ by several orders ofmagnitude, it is com-
mon practice to multiply one or two of the elements
by an appropriate factor so that plotted points spread
over much of the triangular field. This procedure re-
sults in a drastic distortion of the ratio scales that are
implicit in such diagrams. For example, a line drawn

from vertex A to the midpoint of the opposite side BC
of a triangular diagram normally represents a B:C ra-
tio of 1. However, if B has been multiplied by 10 and
C by 10,000, this centrally located line represents a
true ratio of B/C = 0.001. Finally, it is important to
bear in mind that relative errors in ratios are larger
than errors of the individual elements that comprise
them. For example, a relative error of 10 percent in
each of the members of a ratio leads to a relative error
of about 14 percent in the ratio (assuming independent
variables and random error).

Triangular diagrams are useful in recognizing
clustering of data in both two and three dimensions.
An example (Fig. 6.13) taken from a multivariate
data set for the Snip Gold Mine in northern British
Columbia (cf. Rhys and Godwin, 1992) shows a well-
defined pattern. Linear trends that extend from a ver-
tex of a triangular diagram indicate a constant ratio
of the two elements forming the other two vertices.
Clustering of data about a point indicates that the rel-
ative proportions of all three variables are uniform.
Separate concentrations of data on a triangular dia-
gram may aid in the recognition of multiple domains
for purposes of mineral inventory estimation. Figure
6.13 is a Au–Ag–Pb triangular diagram for the Snip
mesothermal gold deposit (Rhys and Godwin, 1992),

Au

Ag Pb

Figure 6.13: Triangular plot of Au (g/mt), Ag (g/mt), and Pb
(percent), Snip mesothermal gold deposit, northern British
Columbia. Gold and silver are strongly correlated for very
high Pb content but are essentially uncorrelated otherwise.
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Figure 6.14: Triangular plot of chemical analyses of ura-
nium (ppmU-Ch) versus two borehole radiometric logging
estimates for 46 verification samples of a pitchblende-
bearing quartz vein. On average, the two drill-hole logging
techniques grossly overestimate relative to the chemical
results. Moreover, the TA logging results consistently over-
estimate relative to the TF logging estimates.

for which two suchmetal associations are evident. For
relatively high Pb contents, there is a concentration of
data along a line with an Ag/Au ratio (both variables
in ppm) of about 0.4. When Pb is less than about
90 percent of the three elements, the ratio Ag/(Au +
Pb) is roughly constant, at less than 0.1. Increasing
Au values are thus seen to coincide with decreasing
Pb content and a decreasing Au/Ag ratio.

Figure 6.14 compares three methods of uranium
analysis for 46 samples. The plot clearly demonstrates
that, on average, both radiometric methods (TA and
TF) overestimate substantially relative to chemical
analyses.Moreover, the TAmethod, on average, over-
estimates by about 5 percent relative to theTFmethod.

6.7.2: Multiple Regression

Godwin and Sinclair (1979) describe a detailedmulti-
ple regression study of 20 of themore than 40 explora-
tion-generated variables available for each of the
125 cells of an exploration grid (each cell is 400 ×
400 ft2) over the Casino Cu–Mo porphyry deposit,
Yukon Territory, Canada (Fig. 6.15). The variables
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Figure 6.15: Exploration grid (400× 400 ft1) over the
Casino porphyry deposit, Yukon Territory, Canada. Dots are
drill holes used to construct a multiple regression model
for Cu abundance; Xs are drill holes used to verify the
model. Contours are for hypogene Cu grades estimated by
the model at grid centers. Contours of estimated values
are 0.4 percent Cu (solid) and 0.2 percent Cu (dash–dot).
Modified from Godwin and Sinclair (1979).

used, derived from geologic, geophysical, and geo-
chemical surveys over the property (Table 6.2), were
transformed to produce variables with similar relative
values and dispersions (i.e., to approach homoscedas-
ticity). A variety of multiple regression models were
then obtained using a training set of information for
35 well-informed cells with centrally located, vertical
diamond-drill holes. For example, one model relates
the average Cu grade of hypogene mineralization
(averaged over drill-core lengths that generally ex-
ceeded 200 ft) to a subset of the transformed variable
of Table 6.2. The model, based on 35 control drill
holes, was verified by estimating grades in an addi-
tional 18drill holes (Fig. 6.15); grades estimatedusing
the model were remarkably close to reality. Then,
the model was used to estimate potential average Cu
grades for all 125 cells; the resultswere assigned to the
corresponding cell center and were contoured to pro-
vide a guide for future exploration drilling (Fig. 6.15).
A complex model such as this must be recognized as
a working hypothesis. To attach too much faith would
be foolish; the initial quality of many of the variables
is relatively poor, and the data transforms introduce
some difficulty in interpretation. The procedures,
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Table 6.2 Selected variables for casino porphyry
Cu–Mo grid, used to establish a multivariate model
for the local value of hypogene Cu grade

Dependent variable
Hypogene grade, Cu (%)

Independent variables
Rock geochemical Cu, cell average (ppm)

Mo, cell average (ppm)
Pb, cell average (ppm)
Zn, cell average (ppm)

Geophysical Ground magnetic, avgerage cell
value (gamma)

Ground magnetic, range in
cell (gamma)

Resistivity, average cell value
(ohm-m)

Resistivity, range in cell (ohm-m)
Distance, ground mag high to cell
center (ft)

Distance, main airborne mag low
to cell center (ft)

Distance, secondary airborne mag
low to cell center (ft)

Airborne mag value at cell center
(gamma)

Airborne mag range in cell (gamma)
Lithologic Area of cell underlain by quartz

monzontie (%)
Area of cell underlain by Patton
dacite (%)

Areas of cell underlain by
breccia (%)

Alteration Area of cell underlain by phyllic
alteration (%)

Area of cell underlain by potassic
alteration (%)

Area of cell underlain by visible
hematite or magnetite

Area of cell underlain by rocks with
visible tourmaline and magnetite
or hematite

however, provide an objective and quantitative means
of establishing relative importance (weights) of
geologic variables (the coefficients of the multiple
regression model) in contrast to the highly subjective
and nonreproducible weights that are commonly
used. Such methods cannot be used directly for re-
serve estimation, but they can contribute to decisions
regarding value continuity and limits to domains.

6.8: PRACTICAL CONSIDERATIONS

1. Expect that a substantial portion of work directed
toward a mineral inventory estimation will be
attributed to data organization and evaluation,
perhaps 25 to 50 percent over the duration of the
project.

2. A computer-based data-management system is es-
sential and should be incorporated into any min-
eral evaluation programat the start of the program.
A variety of software then can be applied to data
evaluation with efficiency.

3. When rawdata are to a common support, theymay
provide a satisfactory base fromwhich to proceed
in amineral inventory study.When composites are
constructed, close attentionmust be paid to choice
of composite length and the rules established for
determining composite values.

4. Data (perhaps composites) should be evaluated
with an orderly or structured approach that em-
phasizes simple methods first, and increasingly
complicatedmethods only as the study progresses
and results warrant.

5. Specific studies should be directed toward (i) char-
acterizing probability density functions, (ii) doc-
umenting interrelations of important variables,
(iii) recognizing separate data domains and evalu-
ating data separately from each domain, (iv) docu-
menting spatial distribution patterns of important
variables (including localization of high grades),
and (v) understanding outliers. It is important to
understand the aims of each stage in the evaluation
process.

6. Interpretation in the course of applying data-
evaluation procedures is facilitated by a consid-
eration of geology.
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6.10: EXERCISES

1. Calculate the values of 10-m composites for each
of the following two drill holes:

ddh # 1 Grade ddh # 2 Grade
From (m) To (m) (% Cu) From (m) To (m) (g Au/mt)

27 28.5 .74 157 159 1.3
28.5 31.5 .60 159 161 3.3
31.5 41.3 .11 161 163 2.2
41.3 43 .44 163 165 4.0
43 45 .16 165 167 4.9
45 47 .51 167 169 1.7
47 49.5 .46 169 171 5.9
49.5 53 .23 171 173 1.5
53 = end of hole 173 = end of hole

ddh= diamond-drill hole.

2. Simulate a single drill hole consisting of 30 suc-
cessive samples of 1 m, to each of which an assay
value has been attributed. For this purpose, it is
adequate to select values using random number
tables. Construct 2-m, 5-m, and 10-m compos-
ites from this simulated data set. Comment on
the means and standard deviations for the various
data/composite lengths.

3. Develop a general algorithm for the formation
of bench composites from vertical, exploration,
and diamond-drill-core assays. Allow for variable
length of core assays, variable starting elevation
for a bench, variable bench height, and lost core.

4. Plot the data of Table 4.4 on both arithmetic
and logarithmic probability paper. Interpret the
results.



7
Outliers

How to deal with erratic high samples is one of the knottiest problems in ore estimation. (McKinstry, 1948, p. 49).

This chapter is concerned with the difficult prob-
lem of recognizing and classifying outliers and
determining if or how to incorporate them into
a mineral inventory estimation. A conceptual
model of multiple populations is introduced, and
probability graphs are recommended as a useful
tool for identifying thresholds separating pop-
ulations. These thresholds provide a means of
isolating outlier populations and examining their
spatial characteristics.

7.1: INTRODUCTION

An outlier is an observation that appears to be in-
consistent with the vast majority of data values. In a
mineral inventory context, concern is directed espe-
cially toward outliers that are high relative to most
data. The following are among the problems outliers
can cause:

(i) Introduction of substantial variability in esti-
mates of various statistical parameters includ-
ing the mean, variance, and covariance. Hence,
they have an impact on autocorrelation measures
such as the experimental semivariogram relative
to what would be obtained otherwise.

(ii) An outlier value that is approximately central to
a block being estimated can result in an abnor-

mally high mean value being assigned to the
block, thus leading to a problem of overestima-
tion of both high-grade tonnage and the grade of
that tonnage.

(iii) In block estimation procedures such as kriging, if
an outlier value coincideswith a negativeweight,
the resulting kriged estimate can be seriously in-
correct, and may even be negative in extreme
cases.

These difficulties have been recognized for some
time, and a variety of approaches have evolved for
dealing with outliers in the course of a mineral inven-
tory estimation, including the following:

(i) All outlier values receive special treatment,
which can include a variety of alternatives, such
as reanalyzing (if possible) or cutting (decreas-
ing) to some predetermined upper limit based on
experience (arbitrary) or using an empirical cut-
tingmethod tied to the histogram (95th percentile
of data) or statistical parameters (mean plus two
standard deviations), that experience has shown
to be acceptable (see also Parrish, 1997).

(ii) Treatment of outliers inmany geostatistical stud-
ies involves omission of the outliers during es-
timation of the semivariogram, but use of the
outliers in subsequent ordinary kriging.

(iii) In some cases, so-called outliers represent a
separate geologic population in the data that

167
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may coincide with an identifiable physical
domain, which, for estimation purposes, can
be considered independently of the principal
domain.

In general, extraordinarily high values should be
viewed with scepticism during mineral deposit eval-
uation. These high values may arise because of errors
or may reflect distinct geologic subenvironments or
domains within a mineral deposit. Effort must be di-
rected to examining these high values and their geo-
logic context as soon as is feasible after identification
in order to distinguish errors from “real” values and
investigate the characteristics of the real values and
how they will be integrated into mineral inventory
estimates.

Treatment of real outliers in resource/reserve es-
timation is a perplexing problem to which there is
no generally accepted solution at the present time.
The specific concern is that very high values not be
assigned too much weight, or they contribute to an
apparent tonnage of high-grade ore that does not ex-
ist. Experience over many decades has shown that a
small proportion (of the order of 1 percent or less)
of gold grades that are very high (perhaps one to two
orders of magnitude higher than the average of re-
maining samples) can lead to serious overestimation
of average grade (and possibly tonnage) above the
cutoff grade. This is particularly so if the very high
grade values are treated in the same manner as are
lower-grade values during resource/reserve estima-
tion. Commonly, outlier populations are geologically
distinctive and have very limited physical (geologic)
continuity relative to lower-grade values; therefore, to
assume that high grades can be extended into neigh-
boring rock the same distance as low-grade samples
are extended could lead to a significant overestimation
of resource/reserves.

7.2: CUTTING (CAPPING) OUTLIER VALUES

[C]utting is a little like democracy – it’s a lousy
system but it works. (Clow, 1991, p. 34).

7.2.1: The Ordinary Case

Cutting or capping of outlier values is a widespread
practice in themining industry. In brief, cutting lowers
grades to a critical threshold so that the gold lost by
reducing the outlier grades is regained by extending
the cut grades (still high grades) in the samemanner as
low grades are extended for making block estimates.
The cutting threshold is determined by trial and error.
The philosophy of the practice can be illustrated by a
simple, two-dimensional example (Fig. 7.1) on which
a block is to be estimated by a central drill hole that
includesfive samples centeredwithin the block.These
five values are composed of four values that average
2 g Au/t and one value with a grade of 70 g Au/t. The
average of the five samples is

g1 = [(4 × 2) + (1 × 70)]/5 = 15.6 g Au/t

and this value represents one possible estimate
(polygonal) of the block. However, suppose we know
from a detailed geologic study of the deposit that out-
lier gold values higher than 30 g/t have a recognizable
geologic form with an average physical continuity of
2 m in the two principal directions. Given the various
measurements for the two-dimensional block of

10 m

20 m

ddh

2-m × 2-m outlier
(70 g/t Au)

Figure 7.1: Diagram illustrating a small, two-dimensional
outlier (i.e., short distance of physical continuity) assaying
70 g Au/t in a field of much lower grades circa 2 g /t. The
physical dimensions of the outlier (2 m × 2 m) are small
compared with a block to be estimated (20 m × 10 m).
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Fig. 7.1, it is possible to produce another block esti-
mate that is weighted according to the likely areas of
the two grade values. In particular, the 70 g/t values
would have a weight of (2 × 2)/(20 × 10) = 0.02,
whereas the 2-m average would have a weight of
[(20×10)− 2×2)]/(20×10)= 0.98. These weights
produce a true block grade, g2, as follows:

g2 = (0.02× 70) + (0.98× 2) = 3.36 g Au/t.

Consider now the arbitrary decision to cut outlier
grades to some predetermined value; for the sake of
example, assume that value to be 35 g/t. In this case,
the polygonal estimate of the block grade becomes

g3 = [(4 × 2) + (1 × 35)]/5 = 8.6 g Au/t.

The arbitrary decision to cut outliers to 35 g/t
has offset some of the overestimation problem, but
in this idealized example, the cutting limit (factor)
still leads to overestimation. If the value of the block
were known, then it would be possible to work back-
ward and find an appropriate value to which the out-
lier should be cut in order to give the block a correct
estimate. For example, on the assumption that g2 as
shown in a previous equation is the best estimate of
the block, the following relation can be used to deter-
mine the correct cutting factor (F) in this idealized
and simple case:

3.36 = [(4 × 2) + (1 × F)]/5

giving

F = 8.8 g Au/t.

In other words, all outlier values should be cut to a
value of 8.8 g/t, a value that can be incorporated into
the specific block-estimation procedure (polygonal in
this case) as if it had the same continuity as the lower
grades.

Of course, in practice, the true grade of individual
blocks is not known. Instead, average production is
comparedwith estimates based on various cutting fac-
tors until a value of F is obtained that gives a reason-
able comparison of estimates with production. This
emphasizes the principal difficulty with the practice
of cutting: choice of a cutting factor is little more

than a guess prior to actual production. An additional
problem is that determination of a cutting factor can
be based on only a limited part of a deposit; what is
optimal for one part might not be appropriate else-
where in the deposit. Despite these limitations, even
when reference to production is not possible, cutting
of high grades remains a common practice because of
the seriousness of the potential overestimation.

Cutting (capping) of grades is generally undesir-
able because its arbitrary nature can lead to large un-
certainties in grade and tonnage estimates. The proce-
dure can be avoided in a variety of ways, as becomes
apparent here and in subsequent chapters.

7.2.2: Outliers and Negative Weights

Some geostatistical procedures of resource/reserve
estimation can result in negative weights being as-
signed to one or more of a group of data selected to
estimate a block grade (see Chapter 10). Consider the
scenario of five separate grades being used to esti-
mate a block, with four grades averaging 2 g Au/t
and the fifth grade having a value of 100 g Au/t
and located within the block to be estimated. For
the sake of discussion, the block is assumed to be
10 × 20 × 20m (4,000m3) and the outlier is assumed
to be 2 × 2 × 1 m (4 m3). Hence, the true grade of
the block is 2(4,000 − 4)/4,000 + 100 × 4/4,000 =
1.998 + 0.1 = 2.098 g Au/t.

Now, assume several different weighting factors
for the outlier in calculating the block grade.

Outlier weight = +0.01
Block grade = (0.99 × 2.0) + (0.01 × 100)

= 1.98 + 1.00 = 2.98
42 percent overestimation

Outlier weight = −0.01
Block grade = (1.01 × 2.0) − (0.01 × 100)

= 2.02 − 1.00 = 1.02
42 percent underestimation

Outlier weight = −0.03
Block grade = (1.03 × 2.0) − (0.03 × 100)

= 2.06 − 3.00 = −0.94
Impossible.
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The lesson of this simple calculation is that even
very small weights attached to outliers can lead to
significant biases in block grade estimation: positive
weights commonly lead to overestimation and neg-
ative weights to underestimation. Clearly, in re-
source/reserve estimation, outliers cannot be treated
in the sameway as themore abundant range of values.

7.3: A CONCEPTUAL MODEL
FOR OUTLIERS

It is useful to examine outliers as part of a more gen-
eral model of data distribution in which the distri-
bution (histogram or probability density function) is
viewed as consisting potentially of multiple popula-
tions, each with its own geologic (including grade)
characteristics. In particular, well-defined subpopula-
tions commonly can be shown to represent different
geologic domains (cf. McKinstry, 1948) character-
ized by different geologic attributes. Such a data in-
terpretation model is shown schematically in Fig. 7.2
(after Sinclair, 1991), in which outliers are seen to

t2t1 t

(a) (b)

(c) (d)

t t    t≈1 2

A

B

A

B
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B B

Figure 7.2: Conceptual model for two populations, includ-
ing the general concept of outliers (Sinclair, 1991). (a) Two
subpopulations with no effective overlap of values sepa-
rated by a single threshold. (b) Two subpopulations with
slight overlap of values with two thresholds that for prac-
tical purposes can be expressed as an average threshold.
(c) Substantial overlap of two subpopulations in which a
single threshold is not an efficient separator. (d) The tradi-
tional concept of an outlier in mineral inventory use as a
few high values (high subpopulation) relative to the bulk of
the data (low subpopulation).

be a subpopulation represented by a few values in a
multimodal data set (bimodal in the illustration).

This conceptual model attaches no origin to the
subpopulations. An outlier subpopulation can be the
result of errors entirely, or can consist of real values
that differ markedly from the bulk of the data. It is one
of the objects of a thorough data evaluation to identify
all outliers and classify each of them as errors or as
members of a recognizable geologic subpopulation.
This aim is assisted immeasurably if outlier values
are recognized early during the exploration phase of
a property and real (geologic) outliers are examined
in detail and characterized geologically.

A thorough discussion of multiple populations
is provided by Zhu and Journel (1991), who de-
velop a formalmathematicalmodel formixed popula-
tions and discuss at length the impact that combining
populations can have on estimation of parameters
using a mixed distribution. Zhu and Journel (1991,
p. 670) state, “Traditional models which ignore the
mixture (of two populations) are shown to be mis-
leading and even totally inadequate in the presence of
extreme conditioning data” (p. 670) and “Mixture of
populations might be seen as the norm rather than the
exception in real-world practice” (p. 670).

7.4: IDENTIFICATION OF OUTLIERS

Because outliers represent either errors or real anoma-
lies in the character of the material analyzed, data-
checking procedures must be designed to recognize
errors early and at all stages of data handling. Sound
sampling and subsampling procedures minimize a
wide range of material handling errors that can mask
true values. Similarly, a rigorous systematic approach
to obtaining data and monitoring data quality mini-
mizes errors. Verification of data is essential to iden-
tify various mechanical errors that can arise in data
handling and recording.

7.4.1: Graphic Identification of Outliers

A variety of standard plotting procedures, including
histograms, probability plots, and scatter diagrams,
(x vs. y) are useful in pinpointing abnormally high
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Figure 7.3: Histogram of 1,035 Mo assays, 1972 drilling,
main zone, Huckleberry porphyry copper deposit, central
British Columbia (after Craig, 1994). Note the difficulty in
selecting a threshold with confidence that identifies outlier
values that are not simply a part of the upper tail of a
lognormal distribution.

values that can be checked against original data (e.g.,
assay sheets, drill logs). Reference to Fig. 7.2 indi-
cates the possibility of using histograms for outlier
recognition; an example and the problem with their
use is illustrated in Fig. 7.3. Probability graphs are
generally far more useful than histograms for outlier
recognition (e.g., Fig. 6.6).

Figure 7.4 is a plot of Ag versus Au assays for
335 samples from the Shasta epithermal gold deposit
(Nowak et al., 1991) illustrating the advantage of bi-
nary plots in outlier recognition. Initially, three of the
Ag values were recorded incorrectly, one order of
magnitude too low. These three values were identi-
fied on a plot comparable to Fig. 7.4 and the original
assay sheets were rechecked and provided the correct
values with which to correct the database. In this case,
outliers were recognized because of departures from
a very strong correlation between Au and Ag in the
Shasta deposit. These outliers would not have been
recognizable with univariate graphic schemes such as
histograms or probability plots because the few incor-
rect values are within the range of other values.

Other empirical graphic approaches are also use-
ful for the identification of outliers, including semivar-
iogram clouds and h scattergrams (cf. Journel, 1987),
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Figure 7.4: A scatter plot of Au versus Ag assays for 335
samples, Shasta gold deposit, northern British Columbia.
Three outliers, shown in their incorrect locations, were cor-
rected from assay sheets. The outliers were easily recog-
nized because they departed markedly from the linear trend
of Au versus Ag, characteristic of most of the data.

that have become routine tools of geostatisticians and
are discussed in Chapter 9. Generally speaking, out-
lier recognition methods based on semivariograms
should not be necessary. A structured data-evaluation
program as recommended inChapter 6 should charac-
terize data distributions and isolate outliers as separate
populations long before the stage of semivariogram
modeling.

7.4.2: Automated Outlier Identification

A variety of rules can be implemented by computer to
check for likely outliers, rules that commonly make
use of the standard deviation of a data set or the dis-
persion of data about a trend. For example, data that
aremore than three standard deviations from themean
value might be classed as outliers. In some cases, the
mean plus two standard deviations might be used as
a threshold to separate outliers from ordinary data.
Such rules have the advantage that they can be au-
tomated for checking very large databases and easily
lead to recognition of a small amount of data that can
be checked/verified. However, such rules are not per-
fect, as shown in Fig. 7.4 (error outliers are too low to
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be recognized by high thresholds), and because they
are arbitrary. Eventually, in the course of recognizing
outliers, it is wise to examine density distributions for
grade as well as referring to sample location plots.

7.5: MULTIPLE GEOLOGIC POPULATIONS

The geologic category of outliers includes those ge-
ologically significant high values surrounded by a
clearly lower population. This commonly encoun-
tered situation generally reflects two distinctive styles
ofmineralization: (i) disseminated versus (ii) veinlets,
in the case of Au in some preciousmetal deposits. The
possible need to recognize separate domains, within
each of which estimation is done independently,
has long been recognized by geostatisticians (e.g.,
Journel, 1985). However, common practice has been
to include assays for both types of mineralization
as the same regionalized variable, without serious
thought being given to the fact that each might have a
totally different characteristic autocorrelation (value
continuity). Consider the overestimation problem that
could arise if the greater continuity of widely dissem-
inated Au were attributed to a single outlier Au value
that reflected a local vein, centimeters in thickness
and of abnormally high grade. Extending this local
high-grade Au value over a large volume would lead
to a local overestimation of both high-grade tonnage
and the average grade of that high-grade tonnage.
Unfortunately, despite awareness of the problem, it
continues to be treated subjectively in practice, con-
tributing to an all too common overestimation of
recoverable grade and tonnage in many precious
metal deposits. Different grade subpopulations might
be characterized by very different autocorrelation
characteristics; consequently, subpopulationsmust be
identified, examined as to value continuity, and, if nec-
essary, considered separately in the evaluation process
(e.g., Champigny and Sinclair, 1984).

As an example of the effect of mixtures of popula-
tions, consider the simple example presented by Pan
(1995) as shown inFig. 7.5. In this example, a compar-
ison is made of a block estimate with all data more or
less the same order of magnitude (#1 = 0.06) versus
a similar geometric array in which the value at #1

Block
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0.09
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Figure 7.5: An example of the effect of multiple popu-
lations on block estimation. Ordinary kriging weights for
the samples are: #1 = 0.3,#2 = 0.02,#3 = 0.22,#4 =
0.12,#5 = 0.15,#6 = 0.07, and #7 = 0.12; they provide
a block estimate of 0.047 oz/t (cf. Pan, 1995). If sample #1
is replaced with a value of 0.6, the block estimate becomes
0.209, a more than 300 percent increase.

has been replaced by a much higher value (one order
of magnitude higher). The presence of two subpopu-
lations in the data seems likely, and there is no rea-
son to expect that they both have the same continuity.
An example of this problem is described by Sinclair
et al. (1993) for the Nickel Plate skarn Au deposit,
southern British Columbia. In this case, two grade
populations can be identified on a probability plot
of the assay data (Fig. 6.6) and an optimum thresh-
old selected (cf. Sinclair, 1976). Manual inspection of
drill-hole grade profiles verifies the presence of two
grade-related types of continuity.

7.6: PROBABILITY PLOTS

This simple graphic technique introduced in
Chapters 4 and 6 has found wide application in the
recognition and characterization of multiple popula-
tions in applied geochemistry (Sinclair, 1974, 1976,
1991) and has been used on occasion to deal with
multiple subpopulations in mineral inventory studies
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(e.g., Sinclair et al., 1993). Examples are discussed
in detail by Champigny and Sinclair (1984) for the
Cinola Au deposit, British Columbia, and by Noble
and Ranta (1984) for porphyry–molybdenum de-
posits. The probability plots for gold data from the
Sunnyside, Colorado, and Jerritt Canyon and Sleeper
mines in Nevada (Parker, 1991) appear to be com-
parable examples. Consideration of multiple popula-
tions such as indicated in the forgoing examples re-
quires an understanding of partitioning of probability
graphs (i.e., a procedure to extract individual subpop-
ulations from the cumulative curve of a mixture of
subpopulations).

7.6.1: Partitioning Procedure

There is a lengthy mining literature showing that
metal grades are rarely normally distributed, but more
commonly approach a lognormal distribution. If this
is true for geologically homogeneous ores – that is,
ores characterized by a single formofmineralization –
then the presence of two distinct types of mineral-
ization might be expected to give rise to a mixture
of two lognormally distributed subpopulations, one
for each mineralization type. An example is Cu val-
ues for the Eagle vein, where Sinclair (1976) demon-
strates substantively different lognormal populations
for hypogene sulphide assays and grades of leached
and oxidizedmaterial Fig. 7.6. Suchmixtures produce
curved patterns on probability graph paper, as shown
in Figs. 7.6 to 7.8. In practice, similar patterns are
commonly interpreted to consist of two overlapping
subpopulations; the central part of the curve contains
an inflection point (change in direction of curvature)
indicating the possible presence of two lognormal
subpopulations. In theory, there is one more subpop-
ulation than there are inflection points; however, sam-
pling and analytical error generally limit the recogni-
tion ofmore than three or four subpopulations in a data
set.

Partitioning is the term applied to procedures to
separate the cumulative curve of a mixture of subpop-
ulations into the component subpopulations. In prac-
tice, partitioning is normally done using a computer
program (e.g., Stanley, 1987).Amanual procedure for
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Figure 7.6: (a) Probability plot of Cu assays for 91 samples
taken along the 7325 level, Eagle copper vein, at approx-
imately 6-ft intervals. Redrawn from Sinclair (1976). Raw
data are shown as dots to which a smooth curve has been
hand-fitted. This smooth curve has been partitioned into the
two component populations A and B; circles are the parti-
tioning points and the straight lines (fitted by eye) are the
estimated lognormal subpopulations that fit the partitioning
points. Triangles are calculated perfect mixtures of the ideal
subpopulations, A and B; the model describes the raw data
very satisfactorily. Most of A subpopulation is higher than
5.4 percent Cu; most of B subpopulation is less than 3.4
percent Cu; very few values lie between these two thresh-
olds. (b) The 91 values coded as to subpopulation (i.e.,
relative to the two thresholds) showing preferential spatial
locations of the subpopulations.

this partitioning is summarized from Sinclair (1976),
and the procedure described is for the simple case of
two subpopulations. More complicated cases are dis-
cussed by Sinclair (1976). The following steps should
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Figure 7.7: Probability plot for 1897 2-m samples of BX
half-core, Cinola deposit, Queen Charlotte Islands, British
Columbia (Champigny and Sinclair, 1984). Dots are raw
data; smooth curve is a hand-fitted bimodal model; circles
are construction points involved in partitioning the two log-
normal subpopulations (straight lines). A threshold of 0.22
oz Au/st separates the upper subpopulation (3 percent)
from the lower subpopulation (97 percent).

be read in reference to Figs. 7.6 to 7.10:

(i) Sort data items in order of decreasing value.
(ii) Determine cumulative percentages of the items

individually or in groups of uniform class
interval.

(iii) Plot the cumulative values on probability paper
(see black dots on Figs. 7.6 to 7.10).

(iv) Draw a smooth curve or line through the plot-
ted points to describe the trend of the plotted
data. In the case of a straight line, the mean
can be read at the 50th percentile and the stan-
dard deviation can be estimated, for example,
as (P84 − P16)/2 or /(P97.5 − P2.5)/4.

(v) In the case of a curved trend that can be inter-
preted as a bimodal distribution (e.g., Figs. 7.6
to 7.10), note the inflection point (change of di-
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Figure 7.8: Example of the partitioning method for a bi-
modal probability plot. Dots are cumulative data and the
sygmoidal curve is a hand-drawn model fitting the data, with
an inflexion point shown the arrowhead. Circles are con-
struction points that define the partitioned subpopulations,
A and B. An example is the dashed line (drawn through a
dot representing combined data) that is partitioned to give
the circle on the solid line representing population A. The
values 66 and 58 represent a range within which a single
threshold can be selected in order to distinguish the A and
B subpopulations efficiently. See text for details.

rection of curvature) in the smoothmodel hand-
fitted to the data.

(vi) Every point Pm on this smooth model has a
contribution from each of the two component
subpopulations (e.g., the dashed horizontal line
in the middle of Fig. 7.8) and can be described
by the equation

Pm = faPa + fbPb

where Pm is the probability of the mixture, fa is
the inflection point as a proportion of the data,
Pa is the probability (cumulative percent) of
subpopulation A, fb = (1 − fa), and Pb is the
probability of subpopulation B. This equation
contains two unknowns, Pa and Pb.
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Figure 7.9: Probability graph for 336 simulated U3O8
values for eight diamond-drill holes (data from Rivoirard,
1987). The raw data (dots) are approximated by a smooth
curve (bimodal model) that has been partitioned into up-
per (A = 17 percent) and lower (B = 83 percent) lognormal
subpopulations, separated by a threshold of about two. Cir-
cles are partitioning values used to derive the two ideal
subpopulations. Note that values have been cumulated
from low to high, a variation common in technical literature.

(vii) If we call the upper subpopulation A and apply
the formula to several points on the curve, Pb is
effectively zero, and the equation can be solved
for several Pm–Pa pairs.

(viii) Thus, several points on the A subpopulation
have been determined (shown as open circles
in Fig. 7.6) and a straight line can be drawn
through them to provide an estimate of the
entire subpopulation A.

(ix) Because Pa is now known for all values of Pm,
the equation can be solved for several values
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Figure 7.10: Lognormal probability plot for gold accumula-
tion in an epithermal gold deposit, the Sunnyside Mine,
Colorado (modified from Parker, 1991). Dots are cumulative
data values that have been fitted by a smooth, hand-drawn,
bimodal curve. The bimodal curve has been partitioned
into the high-grade and low-grade subpopulations that are
shown as straight lines through construction points (cir-
cles). A threshold of 20 separates the two subpopulations.
This model appears to simplify reality; the lower subpopu-
lation is a simplification of what appears to be several sub-
populations. Note that values have been cumulated from
low to high, a variation common in technical literature.

of Pb, and the B subpopulation can be approx-
imated by a straight line through a plot of the
estimated values.

(x) The equation can now be used to calculate a
range of Pm values using the estimated sub-
populations A and B to verify that the extrapo-
lated lines are satisfactory subpopulations with
which to model the mixture (the curved line).

(xi) Thresholds can now be estimated at the upper
2.5th percentile of the B subpopulation and the
lower 97.5th percentile of the A subpopulation.
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For practical purposes, these two thresholds
commonly collapse to a single value (the
average).

It is important to understand the partitioning
procedure, but the manual method is tedious and
time-consuming. Personal computer software is read-
ily available to assist the partitioning process, for
example, PROBPLOT (Stanley, 1987) and P-RES
(Bentzen and Sinclair, 1993) which can be down-
loaded through the publisher’s website.

7.7: EXAMPLES

Published literature on the topic of outliers has con-
centrated on the problem of isolated values. In their
geostatistical study of the Cinola (Spegona) gold de-
posit, Queen Charlotte Islands, British Columbia,
Champigny and Sinclair (1984) recognized the occur-
rence of a small percentage of high values (Fig. 7.7)
that seemed to be distributed erratically over the
large mineralized field. They recognized the very
different continuities of the two subpopulations and
estimated the impact of each separately on the
block model (100 × 100 × 8 m3) adopted for their
study.

Rivoirard (1987) describes a case history of var-
iography in an uranium deposit. Extreme variations
in sill levels of experimental semivariograms are the
product of a strongly postively skewed data distribu-
tion of U3O8 grades. His study is a classic description
of the problem that arises in using a single absolute
semivariogram model for values spanning more than
two orders of magnitude (mean = 1.1, s = 3.6, CV =
s/m = 3.3) in which two subpopulations make up the
data. Rivoirard demonstrates that log transformed
data provide more stable experimental semivario-
grams on which to base a structural model, although
there is no underlying reason why the two subpop-
ulations should have the same underlying grade-
continuitymodel. Cressie’s (1985) work suggests that
a relative semivariogramwould provide a similar ben-
efit and is more acceptable because it avoids logtrans-
forming the data and subsequent uncertainty with

the “back-transformed” kriging estimates. An alter-
nate interpretation can be considered in the light of
the general model for outliers presented here – con-
sider Rivoirard’s simulated data from the perspective
of possible multiple populations, particularly in view
of his descriptions that “the histogram is very skew”
(p. 2) and “the distribution cannot be considered
lognormal” (p. 2).

A probability plot of the published data (n = 336)
for eight drill holes shown in Fig. 7.9 suggests the
presence of multiple subpopulations – specifically,
two lognormal subpopulations. On this assumption,
the plot has been partitioned using the procedures de-
scribed in Section 7.6.1. High- and low-grade pop-
ulations are shown on the graph, and a threshold of
about two can be selected according to the method of
Sinclair (1976). This threshold can be used to “iso-
late” or identify values of the high subpopulation
along individual drill holes (Appendix in Rivoirard,
1987), and these identified values can be examined
for their spatial characteristics (e.g., average length
of groups of contiguous “high” samples). In this
case, the average high-grade structure is 3.5 sample
lengths (std. dev. = 2.7), that is, 3.5× 1.5 = 5.25
m, a composite length that is much less than the
range of the various semivariograms illustrated by
Rivoirard (1987). This procedure allows location of
boundaries between high- and low-grade domains.
Hence, each domain can be examined independently
for its continuity model. If comparable sampling ex-
ists in different orientations through the two subpopu-
lations, they can be characterized in other directions in
space. With sufficient data, this can lead to the devel-
opment of an average three-dimensional model (el-
lipsoid) representing the high-grade subpopulation.
Moreover, domains can be defined in three dimen-
sions; therefore, three-dimensional continuity models
for each of the domains can be investigated indepen-
dently.

Parker (1991) considers the need for a new ap-
proach to outlier recognition and uses probabil-
ity plots as a means of identifying the presence
of multiple subpopulations. He discusses three ex-
amples involving data for precious-metal deposits
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(Sunnyside, Colorado; Jerritt Canyon, Nevada; and
Sleeper, Nevada), each of which can be interpreted to
consist of two lognormal grade subpopulations. Data
for the Sunnyside Mine are reproduced in Fig. 7.10,
where they have been approximated by a smooth,
hand-drawn curve that has been partitioned into two
lognormal subpopulations as described previously. A
threshold of 20 separates the two subpopulations ef-
ficiently and would serve as a basis for examining the
spatial distribution of the two subpopulations. The
two other examples discussed by Parker (1991) can
be treated in an identical manner.

Of course, multiple subpopulations are not re-
stricted to data containing small proportions of a high-
valued subpopulation. Amore general example of the
application of probability graphs to an understanding
of multiple populations and their implications to re-
source/reserve estimation is provided by a set of 91
samples taken across the Eagle copper vein at approx-
imately 6-ft intervals along an exploratory drift. The
probability graph for these data is shown in Fig. 7.6a
(from Sinclair, 1976). Ignoring the low end of the dis-
tribution, it is possible to interpret the remainder as
a mixture of two lognormal populations that over-
lap slightly. Moreover, effective thresholds can be
selected to identify most values within each of the
two populations; thresholds are 3.4 percent Cu and
5.4 percent Cu, and the interval between is the main
range of overlap. Individual samples are coded as to
population (high or low grade) or as being in the
range of overlap, on Fig. 7.6b; a preferred spatial
distribution is apparent. The high population defines
those parts of the vein where fresh copper sulphides
occur; the low population occurs where the vein has
been highly fractured, oxidized, and partly leached of
copper. The few samples in the range of overlap are
distributed erratically within both of the identifiable
populations. In this case, the probability graph has
been useful in establishing fundamentally different
geologic domains that are important in establishing a
mineral inventory. Sinclair and Deraisme (1974) un-
dertook such a study of the Eagle vein and ignored
the oxidized and leached part of the vein when estab-
lishing resources.

7.8: STRUCTURED APPROACH
TO MULTIPLE POPULATIONS

When multiple populations (here bimodality is as-
sumed) are identified a useful systematic approach to
their evaluation is as follows:

(i) Using methods of Section 7.6.1, partition the
subpopulations and define a threshold that dis-
tinguishes efficiently between the high and low
subpopulations.

(ii) Examine grade profiles along drill holes,
trenches, and so on in various directions to de-
velop a clear three-dimensional image of the
structure of the outlier subpopulation. In partic-
ular, it is important to define the dimensions of
outlier clusters.

(iii) From Step (ii), an average image or geometry of
the outlier subpopulation can be developed three
dimensionally. In a simple but uncommon case,
outliers are grouped together in a well-defined
volume. More commonly, individual values or
small clusters of outliers occur in various loca-
tions and in seemingly irregular patterns within
a much larger volume.

(iv) The distribution of outlier clusters in three di-
mensions must be examined relative to the to-
tal deposit volume in order to define, if possi-
ble, a more confined volume (the outlier zone)
within which outliers occur and where they must
be considered with respect to mineral inventory
estimation (Fig. 7.11). This outlier zone can be
a single zone of tightly grouped outliers or a
zone containing many dispersed outliers or clus-
ters of outliers within a field of lower-valued
data.

(v) Within the outlier zone, outliers can be consid-
ered in a variety of ways as outlined in some of
the forgoing examples. In general, however, it is
essential that both outliers and themore abundant
typical data be examined separately for continu-
ity. As a consequence of different continuities,
outlier and typical mineralization probably re-
quire independent contributions to mineral in-
ventory estimation.
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Figure 7.11: Hypothetical plan illustrating the concept of a
large, mineralized zone of low gold grades (sum or areas 1
and 2) on which a late, vein stage of mineralization with pre-
ferred orientation has been superimposed as a restricted
zone (area 2). The late veins are characterized by sporadic
geologic outlier values. Different grade continuity models
are to be expected in two such domains. Similarly, different
resource/reserve estimation procedures might be required
for the two distinctive phases of mineralization.

7.9: INCORPORATION OF OUTLIERS INTO
RESOURCE/RESERVE ESTIMATES

A description of cutting (capping) in Section 7.2 indi-
cates how outliers have been dealt with traditionally
(i.e., by reducing their value and then incorporating
the reduced value in the normal procedure for re-
source/reserve estimation). The practical difficulty
with this approach is that it is arbitrary and uncer-
tain, and can lead to substantial errors. An alternative
procedure is illustrated in Fig. 7.1 when geologic in-
vestigations have led to an appreciation of the general
physical form of outliers so that reasonable weights
can be attached to them during block estimation. This
procedure is recommended for improving local block
estimates, but must be preceded by thorough geologic
characterization of outliers, preferably beginning dur-
ing exploration of the deposit. Too often, dealing with
outliers is left to engineers, far removed in space
and time from the geologists who mapped the de-
posit. Consequently, these engineers are then faced

with arbitrary decisions and assumptions about out-
liers, instead of basing their treatment on geologic
knowledge.

Geostatisticians have developed several proce-
dures for dealing with grade populations that extend
over one to three orders of magnitude and contain
outliers, including restricted kriging and multiple-
indicator kriging. Both of these estimation methods
have been demonstrated to be useful in a number of
cases, and bothwarrant consideration. Further discus-
sion of these topics is found in subsequent chapters.

This discussion of the identification of outliers has
been emphasized as part of a thorough data evalua-
tion. Clearly, the presence of outliers has a dramatic
impact on procedures to be used in mineral inventory
estimation. Although it is not the aim of this book to
develop details of methodology in mineral inventory
procedures themselves, it is important to realize that
the abundance and spatial distribution of outliers have
a serious impact on estimation methodology. Obvi-
ously, outliers that can be recognized as errors should
be omitted from the estimation process. Rare, isolated
values that are real present a problem in estimation be-
cause it is unlikely that they have the same continuity
characteristics as the bulk of the data; therefore, they
must be treated differently. Rare outliers might be
ignored during estimation; more abundant, clustered
outliers may define a sufficiently large domain so that
a value continuity model can be defined with con-
fidence. Intermediate situations demand innovation
and common sense in their treatment. Indicator krig-
ing is perhaps themost widely usedmethod of dealing
with the outlier (and multiple domain) problem from
the point of view of estimation. The procedure is not
particularly effective if the outlier domain is an ab-
normally small percentage of the mineral deposit and
outlier values occur as widely scattered individuals,
apparently randomly positioned.

7.10: PRACTICAL CONSIDERATIONS

1. Outliers are an important focus for data eval-
uation. They should be evaluated with an or-
derly or structured approach as they are encoun-
tered in a data gathering (exploration) program,
and errors must be distinguished from geologic
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outliers. Data should be vetted by a variety of
computer-based and graphic techniques during
and after the data-gathering process to produce
a high-quality data set for resource/reserve
estimation.

2. Geologic outliers must be characterized by min-
eralization type and spatial distribution, each an
important feature in determining how outlier val-
ues will be incorporated into a mineral inventory
estimation program. It is particularly important to
realize that firsthand descriptive, spatial, and per-
haps genetic understanding of outliers is easiest
when assay sheets, core, samples, outcrops, and
so on are immediately and easily available to ge-
ologists who have a firsthand familiarity with the
deposit, rather than much later, when such pro-
fessionals might be absent from or only indirectly
associated with a mineral inventory estimation
team.

3. During exploration, effort must be directed to the
problemof characterizing outlier populations spa-
tially (i.e., in three dimensions). Such characteri-
zation should include an understanding of the di-
mensions of bodies that give rise to outlier values
and the distribution of these bodies in space. It is
generally too late for such an undertaking when a
feasibility study is in progress.

4. Many standard graphic methods of analyzing data
have the advantage that outliers can be recognized
easily. Binary plots and probability graphs are two
particularly useful procedures; a thorough famil-
iarity with the use of probability plots in recogniz-
ing and partitioningmultiple populations provides
a practical basis for evaluating and classifying
outliers.
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7.12: EXERCISES

1. Construct an idealized scenario in which a 20 ×
20×10 m3 block in a porphyry copper deposit is
to be estimated by five blasthole samples with val-
ues 0.25, 0.35, 0.3, 1.90, and0.3.Assume that high
values in general have been found by geologic in-
vestigations to represent 1-m-wide vertical veins
that cut the block in a direction parallel to one of
the sides and have an extent in the plane of the
vein, equivalent to about half the cross-sectional
area of the block side. (a) What is the true grade
of the block if the high value is outside the block
and the other values have equal weight? (b) What
is the true grade of the block if the high-valued
structure is entirely within the block and the other
four samples have equal weight? (c) What is the
estimated grade of the block if the high value has
a weight of −0.04 and other samples have equal
weight?

2. The following cumulative data represent 1,081
uranium grades greater than 0.1 percent U, for
an unconformity-type uranium deposit in north-
ern Saskatchewan (data from Isaaks, 1984) with a
mean of 4.87 percent U and a standard deviation
of 7.84. Plot the data on log probability paper and
interpret.

U (wt%) Cum. freq. (%)

0.2 22
0.3 34
0.5 46
1.0 54
1.5 60
2.5 69
5.0 75
10.0 82
15.0 90
20.0 94

3. The following cumulative gold data (grade vs.
cumulative percent) are for an epithermal gold
deposit (cf. Stone and Dunn, 1994). Plot the data
on log probability paper and interpret.
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Au (g/t) Cum. (%) Au (g/t) Cum. (%) Au (g/t) Cum. (%)

0.1 30.8 2.1 94.3 4.1 98.0
0.2 47.0 2.2 94.9 4.2 98.2
0.3 59.6 2.3 94.9 4.3 98.5
0.4 68.5 2.4 95.1 4.4 98.8
0.5 74.4 2.5 95.4 4.5 99.0
0.6 77.4 2.6 96.0 4.6 99.0
0.7 80.2 2.7 96.2 4.7 99.0
0.8 82.0 2.8 96.2 4.8 99.0
0.9 84.8 2.9 96.2 4.9 99.0
1.0 86.9 3.0 96.2 5.0 99.5
1.1 89.0 3.1 96.9 .
1.2 89.5 3.2 96.9 .
1.3 90.4 3.3 97.2 .
1.4 90.9 3.4 97.2 .
1.5 91.4 3.5 97.5 .
1.6 91.8 3.6 97.5 6.8 100.0
1.7 92.1 3.7 97.7
1.8 92.7 3.8 97.7
1.9 92.7 3.9 98.0
2.0 93.7 4.0 98.0



8
An Introduction to Geostatistics

Geostatistics is of real potential if it is reconciled with the geology of the deposit. (King et al., 1982, p. 18)

This chapter provides a general introduction to
geostatistics from the conceptual point of view.
The underlying idea of error in the estimation of
the mean grade of a point or block, based on an
array of samples, is considered. This error can
be thought of as resulting from the extension of
sample grades to a block (or point) and is referred
to as an estimation error. Estimation variance
(error) is distinguished from dispersion variance
(spread of data).Auxiliary functions, expressions
for estimation variance for particular geometric
arrays of data relative to a point/block being es-
timated, are introduced.

8.1: INTRODUCTION

Mineral inventory estimation has, until the advent
of geostatistics in the late 1950s, been an empirical,
applied science in which the estimator’s experience
and judgment have been of fundamental importance.
During the first half of the twentieth century, a vari-
ety of subjective methodologies were developed that,
if applied cautiously, produced a reasonable recon-
ciliation of estimates with production, particularly
for tabular deposits, investigated and mined through
underground workings. The trend to larger-scale,
near-surface deposits, investigated largely by drilling
and surface stripping, with limited underground

examination, led to the necessity of more “interpre-
tation” as to the occurrence of ore, and in developing
mineral inventory estimates. Because of expansion in
the use of drilling rather than much more costly un-
derground workings to explore and evaluate mineral
deposits, the subject of mineral inventory estimation
became much more interpretive. This increasing re-
liance on interpretation coincided with the advent of
computers in the estimation process, leading to the
widescale implementation of automated, mineral in-
ventory estimation procedures. Unfortunately, new,
automated procedures that could be applied rapidly
also contributed to errors from misapplication. As a
consequence, empirical (subjective) methods of min-
eral inventory estimationwere prone to serious errors,
and an underlying theory of resource/reserve estima-
tion became even more desirable than in the past.

Consider a simple rectangular block to be esti-
mated by a centrally located sample value. It is appar-
ent that were the sample reassayed, a different value
might result for reasons of sampling and/or analyti-
cal errors. It is also clear that had the sample been
displaced only slightly from its position, a substan-
tially different assay value might have been obtained
as a result of real, short-range, geologic variations in
grade. This simple example illustrates the inherent
error that exists where the value of one sample is at-
tributed to a point or extended to a block (i.e., when
the value is used as an estimator of the point or block).
The error in this particular case can be expressed as a

181
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variance

e2 = (Z∗ − Z )2

where Z is the true value of the block and Z∗ is the
estimated value. Of course, the same concept of error
applies however many data are used for determining
Z∗ and whatever their locations in space relative to
the block being estimated. When many blocks are
estimated, the average extension/estimation error is
given by

e2 =
∑

(Z∗
i − Zi )

2/n.

This extension error cannot be determined explicitly
without additional information, because the true block
grades Zi are unknown.

There are many examples of the excessive errors
that can result from uncertain or inadequate method-
ology in reserve estimation; some recent cases are
documented by King et al. (1982), Knoll (1989), and
others. Even when traditional methods have produced
more or less acceptable estimates, they have suffered
from inefficient use of the available data and little
quantitative appreciation of the errors involved in esti-
mation. The general concept of estimation error is fun-
damental to an appreciation of mineral inventory esti-
mates by any method. It is evident that a block grade
cannot be determined exactly from a limited number
of contained/nearby sample grades; some level of
error is involved and a quantification of that error is
highly desirable.

Geostatistics, originally developed with reference
to mineral resource/reserve estimation, is defined as
“applications of the theory of regionalized variables”
(Matheron, 1971, p. 5). It is a statistical approach
to estimation that uses the presence of some degree
of spatial dependence for grade variables in min-
eral deposits. Spatial dependence means that two
nearby samples are likely to be similar in grade (not
identical, but relatively close in value); in a high-
grade zone, they are both likely to be high grade,
whereas in a low-grade zone they are both likely to be
low grade. Clearly, spatial dependence implies that
any two nearby grades (within the range of depen-
dence) cannot be considered two random draws from
a grade distribution representing the entire deposit.

Furthermore, a natural outcome of nearby samples be-
ing correlated is that samples closest to a block being
estimated should be given more weight than samples
further away.

The concepts of geostatistics can be applied much
more widely than the early applications to mining,
but here attention is limited to uses in the field of
mineral inventory estimation. Matheron (1971) de-
veloped the basis for geostatistics in the mineral in-
dustry during the 1950s and 1960s, although other
attempts had been made to apply statistical concepts
to resource/reserve estimation (e.g., Krige, 1951;
Sichel, 1952; Swanson, 1945). Most of the early geo-
statistical literature appeared in French and was not
widely read outside the French-speaking world, thus
delaying a broad acceptance of geostatistical method-
ology until the 1970s. Since then, the theoretical base
and applications have expanded widely, although the
subject is not without its detractors (see Chapter 17).

Geostatistical theory is important because it pro-
vides a basis for optimizing estimates according to
well-accepted criteria (e.g., least squares) and pro-
duces a quality measure (error variance) of those
estimates. Traditional estimation methods, includ-
ing polygonal, inverse-distance weighting, and other
techniques, are empirical, and even if based on
experience in other deposits, major problems can
arise in their application to a new deposit; quanti-
tative indication of the quality of empirical estimates
must await reconciliation during production. Com-
monly, such reconciliations require large volumes of
ore and cannot be obtained conveniently for small
blocks.

Of course, geostatistical estimates are not neces-
sarily demonstrably better than estimates made by a
more subjective method. All mineral inventory stud-
ies involve assumptions and approximations, whether
implicit or explicit. Any estimation procedure can
produce incorrect results because of poor applica-
tion of the procedure, inappropriateness of the pro-
cedure, or a change in the geologic model resulting
from new information obtained as exploration of a
deposit progresses.

Large quantities of data are necessary for mak-
ing detailed local estimates with a high level of
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confidence; relatively fewer data are needed for global
estimation. It is difficult to quantify “large” and
“fewer” in this context because they are functions
of the variability that characterizes each individual
deposit. In general, forethought to data collection
starting at the exploration stage can optimize (i.e.,
minimize) the data needed for a geostatistical re-
source/reserve estimate. Early planning with regard
to data distribution is particularly important in con-
tributing to a confident, three-dimensional character-
ization of grade continuity of the variable(s) under
study. Data on a regular grid are not essential, but a
high proportion of quasi-regular data is useful.

8.2: SOME BENEFITS OF A
GEOSTATISTICAL APPROACH TO
MINERAL INVENTORY ESTIMATION

All mineral inventory estimation methods make use
of concepts such as (1) zone of influence of a sample,
(2) influence of data geometry on estimation (includ-
ing the effect of clustered data), and (3) the use of
different types of samples with different support for
the estimation process. Geostatistics provides a quan-
titative approach to all of these topics, in contrast to
subjective decisions that are necessary in empirical
approaches to mineral inventory estimation. Exam-
ples are shown in Fig. 8.1.

The autocorrelation function of a grade variable
quantifies the concept of radius of influence of a
sample (cf. Readdy, 1986). Figure 8.1c demonstrates
that assays for pairs of nearby samples have a small,
squared difference, and that the squared difference in-
creases as the sample spacing increases up to a sample
separation “a” (commonly referred to as the range).
For sample spacings greater than this range, themean-
squared difference of paired data is essentially con-
stant. The range a has been equated to the radius of
influence of a sample (e.g., Matheron, 1971).

Grade data commonly exhibit both a randomcom-
ponent and a structured component. An autocorrela-
tion function (e.g., Fig. 8.1c) is a practical means of
quantifying these two components. For example, the
intercept at the origin of Fig. 8.1c, C0, reflects the
random or so-called nugget component of a variable,

whereas the range a quantifies the average dimension
of the structured component.

Figure 8.1a illustrates two different data arrays
relative to a block to be estimated. One array in-
volves extrapolation; the other involves interpolation.
In both cases, the three data have approximately the
same weight by most automatic interpolation meth-
ods applied to a homogeneous geologic environment.
Intuition tells us that the estimate based on interpola-
tion is better than the estimate based on extrapolation;
the geostatistical estimation procedure of kriging per-
mits the average errors in the two cases to be quanti-
fied. Similarly, kriging takes into account the relative
quality of estimates when there are differences in the
number of data (Fig. 8.1d).

The problem of conditional bias, introduced in
Section 4.8, is the situation in which limited data,
on average, overestimate high grades and underesti-
mate low grades. Kriging, although not necessarily
correcting this problem in its entirety, does minimize
conditional bias.

Perhaps most importantly from a geologic point
of view, the autocorrelation function (Fig. 8.1c) can
be determined in various directions, and anisotropies
(i.e., different ranges in different directions) of the
spatial structure of grades can be quantified. Such
anisotropies commonly have a geologic explanation
and can be integrated easily into the kriging estima-
tion procedure.

More detailed insight into the forgoing advan-
tages of a geostatistical approach to mineral inven-
tory estimation appear in subsequent chapters. It is
important at this stage, however, to have a conceptual
appreciation of the use of geostatistical procedures.

8.3: RANDOM FUNCTION

A random function is a probabalistic description of the
spatial distribution of a variable. It is a useful means
by which to consider geostatistics because it incorpo-
rates the concepts of both random and structured com-
ponents to the spatial variability of a variable, such as
grade. Moreover, random functions can be applied to
estimation problems of the type encountered in min-
eral inventory estimation. In describing the general
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Figure 8.1: Idealized examples illustrating the importance of geostatistics. (a) Two blocks, each to be estimated by three
samples; estimation by extrapolation (left) and estimation by interpolation (right) are distinguished in geostatistical estima-
tion. (b) Two grade profiles shown relative to the mean value m have the same histogram shown schematically. The upper
profile is distributed randomly about m, whereas the lower profile incorporates a structured data arrangement (i.e., a general
trend) in space with a relatively small component of random variability about that structure. Geostatistical estimation takes
advantage of the structured nature of data. (c) A semivariogram [γ (h) vs. lag] illustrating the average similarity of nearby
sample pairs [low values of γ (h) at low values of lag], the systematic increase in γ (h) as sample spacing increases, and the
leveling of variability beyond a sample spacing a. C0 is a random component of variability constant for all sample spacings;
the average range of influence of a sample is lag (i.e., sample spacing) equals a. Note that γ (h) is half the mean squared
difference in grades that are separated by distance h. (d) Two blocks, one of which is to be estimated by relatively few data
(left) and the other by more abundant data (right). In addition to providing block estimates, geostatistics quantifies the error
of estimation. This error reflects both the number and array of data relative to the block being estimated.
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concept of a random function, it is convenient to do
so by comparison with a random variable.

A randomvariable is one that takes a certain range
of values, the relative frequencies of which can be
described by a probability density function (cf. his-
togram). One sample randomly drawn from the pop-
ulation is a single realization of the variable. Two
randomly drawn samples have uncorrelated grades
and in this sense can be contrasted with two grades
drawn from a more structured, regionalized variable.
In the case of a regionalized variable, it is a useful
concept to consider all the available sample data as
being one realization (sample) of the random function
that characterizes the data three dimensionally. This
realization incorporates both the randomness and the
structural features present in the data and, in fact, the
random function can be defined by a quantification
of this randomness and structure using an autocorre-
lation function, such as the semivariogram illustrated
in Fig. 8.1c. In the case of a two-dimensional field
of ore samples, a complex mathematical surface can
be imagined to describe the topography of the grade
values. This complex surface is one realization of the
random function and can be characterized by its au-
tocorrelation features.

8.4: STATIONARITY

What does stationarity mean? It means, simply,
that the mean and variance of values do not de-
pend on location. Now how could an ore deposit
possibly be thus when it proceeds from margins
without mineralization or below economic cut-
off, hopefully to a central, richly endowed re-
gion? (Philip and Watson, 1986, p. 96).

The concept of stationarity can be difficult to grasp
but for purposes here bears a close relation to the
term homogeneity used by geologists to character-
ize domains of similar geologic characteristics such
as styles of mineralization (see Fig. 3.4). A field
(domain) of data is said to be stationary if the same
population is being sampled everywhere in that field;
implicitly, no trend exists in the data. Thus, for ev-
ery location xi in domain D, the expected value of

Z (xi ) is m, the mean value of the domain. Second-
order stationarity requires that the mean is stationary
and the covariance between sample points exists and
is given by Eq. 8.3. For resource/reserve estimation,
these extreme forms of stationarity are not required.
In practice, quasi-stationarity generally is a sufficient
condition [i.e., Z (x) is locally stationary]. Moreover,
this local stationarity need only apply to the differ-
ences between pairs of data and can be visualized as
a series of overlapping small (local) volumes, each of
which is stationary andwhich together define the total
volume/field. The concept of quasi-stationarity (i.e.,
local stationarity) is consistent with the concept of
high-grade and low-grade zones being spatially sep-
arate in a mineral deposit.

8.5: GEOSTATISTICAL CONCEPTS
AND TERMINOLOGY

Geostatistics is couched inmathematical terminology,
particularly associated with expectations and random
functions. A fairly widely used set of symbols has
evolved that is adhered to here.

The expected value of a regionalized variable,
Z (x) (read “Z at location x”), is the mean, denoted
here by m:

E{Z (x)} = m.

Variance of a regionalized variable is given by

Var{Z (x)} = E{[Z (x) − m(x)]2}. (8.1)

Covariance of a regionalized variable is given by

C(x1, x2) = E{[Z (x1) − m(x1)][Z (x2)

−m(x2)]}. (8.2)

This covariance expression is equivalent to Eq. 4.10,
where x equals x1 and y equals x2, to give C(x1, x2)
equals C(x, y) equals sxy . In Eq. 8.2, however, x1
and x2 represent two spatially distinct positions of the
same variable. Hence,m(x1) equalsm(x2), and for an
autocorrelated variable and a stationary field of data,
Eq. 8.2 reduces to

C(x1, x2) = C(h) = E{Z (x1) · Z (x2)} − m2

(8.3)
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where h is the vectoral distance from x1 to x2. More-
over, where h is zero, x1 and x2 are identical, and
Eq. 8.3 becomes equivalent to the variance (Eq. 8.1).

8.6: THE VARIOGRAM/SEMIVARIOGRAM

The variogram, 2γ (x1, x2), the fundamental tool of
geostatistics, is defined as

2γ (x1, x2) = Var{Z (x1) − Z (x2)}
= E{[Z (x1) − Z (x2)]

2} = 2γ (h)

(8.4)

where h is the vector from x1 to x2. Half of the vari-
ogram becomes the semivariogram (gamma h):

γ (x1, x2) = γ (h) = semivariogram

= (E{[Z (x1) − Z (x2)]
2})/2. (8.5)

As originally defined, the term semivariogram refers
to half the variogram. Recent widespread use has
evolved to the point that the term variogram is now
widely used for what is really the semivariogram.
Here we retain the original meaning of the terms and
use semivariogram throughout the text.

The semivariogram can be replaced by covari-
ances. The relation between the two is given by

γ (h) = C(0) − C(h) (8.6)

where C(0) is the covariance for a lag of zero (equiv-
alent to the variance). Equation 8.8 can be demon-
strated by substituting each of the terms in the right
side of Eq. 8.7 by corresponding expectations in
Eqs. 8.1 and 8.4 to reproduce Eq. 8.5. Because C(0)
is a constant parameter (i.e., the variance) for a given
data set, the close interdependence of γ (h) and C(h)
becomes apparent. Thus, in geostatistics many calcu-
lations can be done using equations in terms of semi-
variogram values or equivalent equations in terms of
covariances.

Figure 8.1c is a useful conceptual image of a semi-
variogram showing a systematic variation in γ (h) as
a function of lag, the distance between two sites. Note
(1) the so-called nugget effect, C0 (i.e., the intercept
for zero lag), characterizes the random component of
the data; (2) the systematically increasing values of

γ (h), until lag a (range); and (3) γ (α) is the sill of
the semivariogram [i.e., the constant value of γ (h)
for lags greater than the range]. Note that γ (α) equals
C0 + C1.

Quantifying the similarity patterns (spatial char-
acteristics) of grade or other regionalized variables
pertaining to a mineral deposit normally is preceded
by a critical examination of the geology of the de-
posit and a thorough data analysis. These studies pro-
vide the information base on which a knowledge of
both geologic and value continuity is obtained. A de-
tailed structural study of a regionalized variable is
aimed at quantifying the spatial characteristics of the
variable in a statistical sense. Such a quantification
also defines average value continuity and provides the
basis for a wide range of geostatistical calculations
concerned with mineral inventory estimation. The
semivariogram is the principal measure of similarity
(i.e., autocorrelation) used for geostatistical purposes
in this text, although, as indicated previously, other
autocorrelation functions (e.g., covariogram, correlo-
gram) would be equally as good. Autocorrelation
studies in geostatistics are often referred to as var-
iography because of this traditional emphasis on the
variogram (or the semivariogram).

8.7: ESTIMATION VARIANCE/EXTENSION
VARIANCE

It is now possible to examine further the concept of
estimation variance referred to in Section 8.1. In par-
ticular, an understanding of the semivariogram leads
directly to a further appreciation of the concept of ex-
tension variance. The semivariogram is half the mean
squared difference between two values, xi and xi+h ,
separated by a distance h. If one of those values (xi )
is known and the other (xi+h) is unknown, the known
value can be assigned to the unknown site and the
average error associated with this extension of grade
is, by definition, the 2γ (h) value for the distance be-
tween the two points. Hence, the semivariogram is a
quantification of error when an uninformed location
is estimated by an informed location.

Amore generalized concept of the estimation vari-
ance is given by once again considering the expression
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for error

σ 2
e = E{(Zi − Z∗

i )
2}

where Zi represents true values of the body being
estimated and Z∗

i represents the estimates. Journel
and Huijbregts (1978) show that this expression can
be expanded and expressed in terms of average semi-
variogram values as follows:

σ 2
e = 2γ̄ (V, v) − γ̄ (V, V ) − γ̄ (v, v) (8.7)

where

V and v are large and small volumes,
respectively (e.g., SMU and
sample)

γ̄ (V, v) is the average semivariogram
value when the two ends of vector
h describe all possible positions
in V and v , respectively

γ̄ (V, V ) is the average
semivariogram value when the
two ends of vector h describe all
possible positions in V

γ̄ (v, v) is the average semivariogram
value when the two ends of vector
h describe all possible positions
in v .

The estimation variance is a function of several
semivariogram values and, hence, is seen to depend
on (i) the distance between V and v , (ii) the sizes of
V and v , (iii) the quantity and spatial arrangement of
information in v , and (iv) the semivariogram model.
The fundamental nature of the semivariogram is ev-
ident and quantificaiton of the semivariogram model
leads directly to quantification of estimation variance.
Extension variance is a term that also has been applied
to this situation; extending the value of sample v to a
larger volume V results in an extension error. A prac-
tical example is the use of a centrally located blasthole
assay to represent the grade of the surrounding block.

A simple example of the application of Eq. 8.7
is illustrated by Fig. 8.2. In this case, the aim is to
produce two estimates; first, determine the error to be
attributed to a point estimate at the block center using

20 m

1 2

3 4

s

s

2

1

Figure 8.2: Estimation of a point (x ) and a two-dimensional
block by two samples s1 and s2. Distances can be sub-
stituted in a model for the semivariogram to calculate var-
ious γ (h) values so that the estimation variance can be
calculated for both the point and block estimates. Details
are given in the text, and γ (h) values are summarized in
Table 8.1. In this case, the block is discretized by only four
points in order to estimate the average gamma value within
the block (i.e., the F function). The semivariogram model
adopted is a linear model, γ (h) equals 0.1h.

the point samples s1 and s2 and the semivariogram
model γ (h) equals 0.1h. Then, with the same data
and semivariogram model, determine the error for an
estimation of the blockmean. For the purpose of these
calculations, the block is approximated (discretized)
by the four points+1 · · · +4. All the necessary gamma
values are summarized in Table 8.1. Substitution in
Eq. 8.9 for the point estimation problem gives

e2 = 2 × 2.47 − 2.03 − 0.0 = 2.90.

Substitution in Eq. 8.7 for the block estimation prob-
lem gives

e2 = 2 × 2.50 − 2.03 − 0.85 = 2.12.

Apart from illustrating the methodology of solving
Eq. 8.7, this example also illustrates two important
points that reappear:

(i) For a constant set of data, the estimation variance
decreases as the volume to be estimated increases
provided the block dimensions do not extend be-
yond the data array.
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Table 8.1 Semivariogram values for estimations of
Fig. 8.2 described in the text

Pair d γ (h) γ (h)−

s1 − x 20.8 2.08
s2 − x 28.5 2.85 2.475
s1 − s1 0 0
s1 − s2 40.5 4.05 2.025
s1 − +1 18 1.8
s1 − +2 27 2.7
s1 − +3 15 1.5
s1 − +4 25 2.5
s2 − +1 35.4 3.54
s2 − +2 29 2.9
s2 − +3 29 2.9
s2 − +4 21.2 2.12 2.50
+1 − +1 0 0
+1 − +2 10 1.0
+1 − +3 10 1.0
+1 − +4 14.1 1.41 0.85

(ii) It is common practice to determine the within-
block average semivariogram value by discretiz-
ing the block by an array of points.

8.8: AUXILIARY FUNCTIONS

Auxiliary functions are a group of specialized func-
tions that traditionally have been used for rapid man-
ual determination of average semivariogram values
for certain simple data configurations relative to the
block or point to be estimated (their use requires that
a mathematical equation be known for a semivari-
ogram as discussed in Section 9.2.2). For example,
the so-called chi function χ (L; l) is the mean value
of the semivariogram when one end of the vector de-
scribes side L of an L × l rectangle and the other end
of the vector describes the entire rectangle. Use of
auxiliary functions arose relatively early in the evolu-
tion of geostatistical practice when access to efficient
computing facilities was much more limited than to-
day. Values of commonly used auxiliary functions can
be read from published graphs that are based on the
standardized spherical model with sill and range both
equal to 1 (i.e., C1 equals 1 and a equals 1) and no
nugget effect. Thus, any spherical model can make
use of graphs of the auxiliary function if distances

are considered as a proportion of the range (h/a)
and the values obtained from the graphs are multi-
plied by the true C of the model. For the chi function
mentioned previously, the sides of the L × l rectan-
gle would be represented as L/a and l/a. Published
graphs ofmany auxiliary functions relate to any spher-
ical model in a manner analogous to that by which a
standard normal distribution relates to any normal dis-
tribution. Of course, graphs of auxiliary functions can
be developed for any semivariogram model.

Auxiliary functions were developed for highly
regular arrays of data relative to a line, area, or vol-
ume being estimated. The functions provide the aver-
age gamma value for very specific geometric arrays.
These average gamma values can then be incorpo-
rated manually into standard geostatistical formula to
determine the estimation variance for a particular ar-
ray of data relative to the entity to be estimated. The
historical use of auxiliary functions is described in
detail by Journel and Huijbregts (1978). The need for
auxiliary functions has decreased in part because ideal
data arrays are uncommon in practice, but largely be-
cause of ready access to extensive computing power.
Today, it is more common to approximate parts of a
mineral deposit by a grid of regular smaller blocks,
and obtain both a grade estimate and an error esti-
mate for each block using computer-based calcula-
tions. Consequently, most auxiliary functions are no
longer used.

One function that remains important in present-
day practice is the so-called F function, the average
value of the semivariogram when the two ends of
the vector (lag) take all possible positions within a
block. This concept is illustrated schematically in two
dimensions in Fig, 8.3 where a block is discretized by
an array of closely spaced points. It is easy to see that
an acceptable estimate of the average gamma value
within a block can be obtained numerically by aver-
aging all the discrete values that result from taking all
possible pairs of point into account. The concept is
illustrated in the worked example in Section 8.5. This
discretized approach is incorporated in most modern
software, when required. In addition, graphs of the
F function are available in several widely used texts
(e.g., David, 1977; Journel andHuijbregts, 1978). The
F function is involved in the determination of the
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Figure 8.3: A realistic approximation of a block for pur-
poses of numerically estimating the F function for the
block. The array of dots approximates the infinity of points
that define the block. An average gamma value can be de-
termined by averaging the individual values obtained for
each possible pair of points.

error resulting from the kriging estimation procedure
(Chapter 10) and is an important component of the
concept of change of support (e.g., procedures de-
scribed later for estimating the distribution of block
grades from a known distribution of sample grades).
A chart giving standardized values of the F function
for small volumes is reproduced in Fig. 8.4. In this
case, the regular volumes are defined by lengths in
three dimensions, each length being defined as a ra-
tio of the true length (li ) over the range (al) of the
semivariogram (i.e., li/ai ).

8.9: DISPERSION VARIANCE

Dispersion variance is ameasure of the spread of data.
In general, the dispersion of a regionalized variable is
less in small volumes than in large volumes. This fact
stems from the characteristic shown by the semivari-
ogram – that closely spaced samples are, on average,
more similar in grade than are widely spaced sam-
ples. In other words, dispersion variance is a function
of support. If we consider small samples to have sup-
port v , then their grades have a dispersion in a large
block of volume V given by

D2(v, V ) = γ̄ (V, V ) − γ̄ (v, v) (8.8)

where D2(v, V ) is the dispersion variance of sample
grades (volume v) in a larger volume V ; γ (V, V ) is

the mean semivariogram value where the two ends of
vector h take all possible positions; in V, and γ (v, v)
is the mean semivariogram value where the two ends
of vector h take all possible positions in v.Note that the
two average gamma terms in Eq. 8.8 are F functions.
Dispersion variances are additive; therefore

D2(s/M) = D2(s/B) + D2(B/M) (8.9)

where s represents small volumes (e.g., samples), B
represents the intermediate volumes (e.g., blocks),
and M represents a large volume (e.g., a mineral de-
posit). Equation 8.9 is known as Krige’s relation
after D. G. Krige, who first demonstrated it experi-
mentally for data from South African gold deposits.
The equation states that the variance of sample grades
in a deposit can be considered as two components
(i.e., the variance of sample grades in blocks plus the
variance of block grades in the deposit). For practical
purposes it is useful to represent Eq. 8.9 slightly dif-
ferently, recognizing that D2(s/B) is the F function;
hence

D2(B/M) = D2(s/M) − γ̄ (B, B). (8.10)

In this form (Eq. 8.10), the relation is known as the
volume–variance relation. This is a particularly useful
equation because it indicates that if both the semivari-
ogram and the dispersion of sample grades are known,
it is possible to determine the dispersion of block
grades for any size of block. Hence, it is possible to
construct a grade–tonnage curve for any appropriate
size of selective mining unit, although an assumption
regarding the form of the histogram of block grades
is required (a topic considered further in Chapter 12).

8.10: A STRUCTURED APPROACH
TO GEOSTATISTICAL MINERAL
INVENTORY ESTIMATION

A geostatistical mineral inventory begins with exten-
sive evaluation of geology, assays, and supporting
chemical and physical data on which the inventory
is based (cf. Table 1.5). The purely geostatistical
component normally begins with variography, the
determination of semivariogram (or other autocor-
relation) models for the variables under study. The
semivariogram model describes the autocorrelation
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Figure 8.4: A graph of the F function for a three-dimensional block whose sides are l/a, l/a, and h/a, where l and h are
absolute dimensions of the block, a is the range of a spherical semivariogram (in the same units as l and a) with zero nugget
effect, and sill equals 1.0. Redrawn from Parker (1979). Also available in David (1977) and Journel and Huijbregts (1978).

character of a regionalized variable; that is, the
semivariogram (or variogram) expressed as a math-
ematical model describes, on average, how similar in
value two samples are as a function of their separation
in space. This semivariogram model is then used as
the basis for global or local resource estimation using
kriging or the volume–variance relation. Kriging is
a least squares procedure (with certain constraints)
that provides minimum estimation variance when a
particular set of data are used to make a specific point
or block estimate. Additional studies can include an
evaluation of the effects of additional data on error,
the estimation of recoverable reserves, and consider-
ations of the effects of internal dilution. Conditional
simulation of the spatial distribution of grade can
also be undertaken.

8.10.1: Applications of Geostatistics
in Mineral Inventory Estimation

Applications of geostatistics in the mineral industry
are wide ranging and include the following (cf. Blais
and Carlier, 1968):

(i) Optimizing the precision of individual grade
estimation

(ii) Kriging (optimal weighting) of a data array for
estimation of points, blocks, or panels for global
or local estimation

(iii) Calculation of the error of estimation of grade
of a given block of ore, regardless of size

(iv) Design of optimum drilling patterns
(v) Calculation of the error of estimation of the vol-

ume or tonnage of an orebody
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(vi) Conditional simulations for mill design, mine
planning, and value continuity characterization

(vii) Optimal contouring with irregular data arrays.

8.10.2: Why Geostatistics?

As mentioned in the Introduction, geostatistics is not
without its detractors (a matter for further discussion
in Chapter 17). However, it also, suggests a number
of reasons why geostatistical estimation procedures
should be considered as one of the approaches to
be used to develop resources/reserves for a mineral
deposit (cf. Royle, 1979).

1. Geostatistics provides a theoretical base for esti-
mation; no other method can make this claim.

2. Geostatistics quantifies and uses the random
and structured components of variability that
are recognized in grade dispersion patterns for
estimation.

3. Geostatistics commonly improves on certain
traditional estimators (especially polygonal) that
have a history of serious overestimation.

4. Geostatistics can be applied successfully at an
advanced stage of exploration when a substantial
database exists.With forethought, exploration can
be planned so that appropriate data are obtained
earlier, rather than later!

5. Geostatistics is particularly amenable to grade
control, especially in open-pit operations, where
a substantial blasthole database exists.

6. Geostatistics provides the potential to optimize
data collection once sufficient information has
been obtained to develop appropriate semivari-
ogram models.

7. Geostatistics is globally unbiased, and is an

important contributor to minimizing conditional
bias.

8. Geostatistics offers the potential of conditional
simulation, a technique that permits a visualiza-
tion of grade continuity during exploration, and
can be used for mine and mill planning at more
advanced stages of evaluation.
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8.12: EXERCISES

1. Calculate the F function for a 20 × 20 × 10m3

block of ore for which the spherical semivari-
ogram model is C0 equals 0, C1 equals 0.08, and
a equals 40 m.

2. Calculate the estimation variance for a two-
dimensional block 20m × 10m using a centered
datum and a datum located at one corner of
the block. Use the semivariogram model from
Question 1.



9
Spatial (Structural) Analysis: An
Introduction to Semivariograms

It is well known that the values in veins tend to be concentrated in the form of ore shoots, which usually have
lenticular outlines in the plane of the vein. Thus we are faced with the general probability that the values in veins
have something of a zonal arrangement rather than a random distribution, and the question of how this will affect
an estimate of the grade of an orebody in a vein. (Swanson, 1945, p. 327)

The semivariogram (or variogram), the funda-
mental tool of geostatistical analysis, is one of
several commonly used measures of the spa-
tial similarity of a regionalized variable. General
procedures are explained for obtaining experi-
mental semivariograms and fitting these experi-
mental results by smooth, mathematical models
(especially the spherical model). Considerable
emphasis is placed on anisotropic models and
their relation to directional geologic features. A
variety of important topics related to the semivar-
iogram are discussed, including the proportional
effect, relative semivariograms, nested structures
and the geometric meaning of many semivari-
ogram models. Complexities in development of
semivariogram models that are treated include:
dealing with outliers, robustness of semivari-
ograms, and semivariograms in curved coordi-
nate space.

9.1: INTRODUCTION

Quantifying the similarity patterns (spatial character-
istics) of grade or other regionalized variables per-
taining to a mineral deposit normally is preceded by

a critical examination of the geology of the deposit
and a thorough data analysis. These studies provide
the information base on which a thorough study of
value continuity can be undertaken in an efficient
manner. A detailed structural study of a regionalized
variable is aimed at quantifying the spatial charac-
teristics of the variable in a statistical sense. Such a
quantification is an average model of value continu-
ity for a domain or deposit and provides the basis for
a wide range of geostatistical calculations concerned
with mineral inventory estimation. The variogram (or
semivariogram) is the principal measure of similar-
ity (i.e., a structural tool) used for geostatistical pur-
poses, although other autocorrelation functions (e.g.,
covariogram, correlogram) that are essentially equiv-
alent (see Chapter 8) may equally well be used for
calculation purposes. Autocorrelation studies in geo-
statistics are often referred to as variography because
of this traditional emphasis on the variogram (or the
semivariogram).

The variogram 2γ (h), defined in Chapter 8, is

2γ (h) = E{[Z (xi ) − Z (xi+h)]
2}

from which the semivariogram is given by

γ (h) = E{[Z (xi ) − Z (xi+h)]
2}/2

where Z (xi ) is a value of a regionalized variable at

192
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location xi and Z (xi+h) is a second value at a distance
h from the first.

In general, γ (h) is a vector and for constant h,
γ (h) can vary as a function of orientation. For ex-
ample, γ (h1) determined in direction 1 (e.g., parallel
to bedding in a stratiform deposit) can differ signif-
icantly from γ (h2) determined in a second direction
(e.g., perpendicular to bedding); that is, γ (h) can be
anisotropic. For practical purposes, γ (h) is estimated
for a set of discrete values ofh (lag intervals) and a plot
of the resulting values are approximated by a smooth
mathematical function that can be easily solved for
gamma, given any corresponding h value.

9.2: EXPERIMENTAL SEMIVARIOGRAMS

Experimental semivariograms are those determined
from a particular data set. Data available with which
to estimate a semivariogram represent one of an in-
finite of possible samples of the population (one re-
alization of the random function) under study (e.g.,
grade). Thus, a similarity measure (e.g., semivari-
ogram) based on such data also can be seen as a sam-
ple of the true structural character of the underlying
random function that defines the variable under study.
Some variability in the detailed form of the semivar-
iogram is to be expected if different subsets of data
are used to estimate the autocorrelation character of a
variable.

The concept of stationarity is introduced in
Chapter 8. A domain is stationary if measurements
from any of its parts are representative of the en-
tire domain (i.e., the same statistic is being sampled
throughout the domain). Viewed this way, stationar-
ity is a function of scale because the statistic being
considered must be measured over a discrete vol-
ume.Clearly, large-scale stationarity of themean does
not apply in the case of mineral deposits when large
and systematic differences in grade are the rule. In-
stead, recourse is made to the assumption that the
semivariogram model depends only on the distance h
between sites and not on specific geographic loca-
tions of paired samples within the field of a region-
alized variable. This means that many realizations of
γ (h) exist over the field for various values of h, thus

providing the possibility of estimating the semi-
variogram function for different sample separations
(lags). The hypothesis (that [Z (x) − Z (x + h)] is
stationary) is less restrictive than assuming station-
arity of Z (x) itself (Agterberg, 1974; Journel and
Huijbregts, 1978). The semivariogram is a function
of differences in pairs of grades separated by dis-
tance h, and thus becomes a tool for the recognition of
stationarity/nonstationarity (Fig. 9.3). The semivari-
ogram can be used to define maximum distances over
which stationarity can be assumed (i.e., to define the
limits of local or quasi-stationarity).

In general, a field of data represents one realiza-
tion (many spatially distributed samples) of a random
function from which an experimental semivariogram
can be calculated for various values of h, as follows:

γ ∗(h) =
{∑

[Z (xi ) − Z (xi+h)]
2
}
/2n.

The estimated values of γ ∗(h) are plotted versus
the corresponding values of h; the resulting plot de-
fines the experimental semivariogram. The procedure
is illustrated for an ideal, one-dimensional grid in
Fig. 9.1. In brief, the semivariogram is half the mean
squared difference of values separated by lag h.

Determination of the experimental semivariogram
is an essential first step in defining a mathematical
model for γ ∗(h). Consider a line of measurements
at regular intervals as shown in Fig. 9.1; information
is assumed to be known at regular grid intersections
spaced a distance d apart. For h = d, there are (n − 1)
pairs with which to provide an estimate, γ ∗(d); for
h = 2d , there are (n − 2) pairs to provide an esti-
mate, γ ∗(2d), and so on. Thus, the number of pairs
on which a γ ∗(h) estimate is based decreases as the
lag h increases, and there is a concomittent decrease
in the quality of the γ ∗(h) estimates. A common rule
of thumb is to accept γ ∗(h) estimates for an experi-
mental semivariogram for values of h less than L/2,
where L is the field width of the regionalized vari-
able. In practice, L is not uniform for all directions
throughout a field of data or even for a single direc-
tion, so discretion is needed when applying this rule.

It is important to realize that each value of γ ∗(h)
calculated is only an estimate, and some error is
involved in the estimation. Thus, experimental
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(n − 1) pairs

(n − 2) pairs

Lag = 1

Lag = 1

Lag = 2

Lag = 2

d =

d ± d/2

2d ± d/2

Figure 9.1: Regular (upper) and irregular (lower) one-dimensional data arrays illustrating how data are paired for the purpose of
constructing an experimental semivariogram. In the irregular array, pairs of data must be collected in groups of approximately
uniform h (separation distance) where some tolerance in h is allowed. In this example, the tolerance is h′ = h ± d/2.

semivariograms generally have a sawtooth pattern, as
shown in Fig. 9.2. Such experimental patterns com-
monly are fitted by smooth, mathematical curves that
more or less average the experimental fluctuations of
the real data. Inmany cases, particularlywhen data are
abundant, fluctuations are slight and the experimental
semivariogram near the origin closely approximates
a smooth, continuous curve.

Commonly, γ ∗(h) is an increasing function as lag
increases, at least up to a particular value of h (the
range) beyond which γ ∗(h) is a constant. This rela-

γ 
(h

)

Sample Spacing ≈

129*

Semivariogram
deteriorates
(unstable)

L/2

Figure 9.2: Hypothetical, experimental semivariogram illus-
trating general features that include: calculated, discrete,
experimental values (dots), sawtooth chararacter (by joining
dots), generally increasing γ (h) values as sample spacing
(distance) increases, and general increase in erratic char-
acter for distances greater than L/2, where L is the field
width of data used to generate the experimental values.
Number of data used to construct the experimental semi-
variogram is 129.

tion means that nearby samples are, on average, more
similar than are sample pairs with greater separation.
It is this range over which there is similarity that is
the average structure of a regionalized variable. The
lag at which γ ∗(h) becomes constant is the quantifi-
cation of the concept of range of influence of a sam-
ple (cf. Matheron, 1963), although the influence of a
sample on the surrounding volume is less for more
distant parts of the volume. From a practical view-
point, the range is a useful quantification of grade
continuity.

Several common patterns of experimental semi-
variograms are shown in idealized form in Fig. 9.3;
sawtooth patterns represent experimental semivari-
ograms and the smooth curves represent mathemati-
cal models that approximate the experimental values.
Figure 9.3a is an example for which all measure-
ment separations give the same average variability
(i.e., variability is more or less constant regardless
of sample separation, a situation that indicates a ran-
dom as opposed to a regionalized variable). If sig-
nificant autocorrelation exists for such data, it is at a
scale less than the minimum lag of the experimental
semivariogram.

Figure 9.3b shows a discontinuity (C0) at the ori-
gin, followed by a gradual increase in γ ∗(h) as the
lag increases to h = a (the range); for lags beyond
the range (h > a), the experimental values of γ ∗(h)
are roughly constant (C). Experience has shown that
this is a relatively common semivariogram shape for
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Figure 9.3: Idealized examples of various forms of exper-
imental semivariograms (sawtooth curve) and their corre-
sponding models (smooth curves). (a) Pure nugget effect,
indicating a random variable, although autocorrelation is
possible on a scale less than the minimum sample spac-
ing. (b) Common pattern showing an intercept on the y axis
and a gradual increase in γ (h) up to a sample spacing a
at which γ (h) becomes uniform. This is a very common
pattern in practice. (c) Similar to (b), except that beyond a
sample spacing s, the semivariogram becomes parabolic.
The parabolic increase in γ (h) indicates the presence of a
trend in the data that can be considered locally stationary
over field width s. (d) A hole effect, centered on point b and
indicating a cyclical character to the spatial distribution of
the variable.

regionalized variables encountered in mineral inven-
tory estimation.

Figure 9.3c shows a structure to γ ∗(h) for short
sample spacings up to spacing s, beyond which a

parabolic form is indicative of a trend. Such a pattern
indicates that a trend (drift) is present in the data, but
that local (quasi-) stationarity can be assumed over
distances up to s. The identification of trends is es-
sential because local stationarity (absence of trend
locally) is required in many geostatistical calcula-
tions used in mineral inventory estimation. In this
case, the semivariogram defines a distance over which
the variable can be assumed to be locally stationary
and represents a practical limit to a search diame-
ter for use in selecting data to be used in making an
estimate.

Figure 9.3d shows the semivariogram pattern that
results when a periodic repetition (cyclical pattern) of
a variable occurs (e.g., regular thickening and thinning
of a vein, alternating high and low grades at a roughly
regular interval). The resulting semivariogrm pattern
is characteristic of a “hole effect.”

9.2.1: Irregular Grid in One Dimension

Only rarely are data dispersed in the pattern of a per-
fectly regular grid. Thus, search of a data set for
many pairs of samples separated by the exact dis-
tance h is doomed to failure. Instead, a search is made
for all those pairs separated by h ± e. In order to
appreciate the methodology by which experimental
semivariograms are obtained from real data and the
limitations of these methods, it is useful to progress
systematically fromone- to three-dimensional data ar-
rays. Consider a one-dimensional array of assay data
(e.g., trench, drill hole, grid line) alongwhich samples
are dispersed at irregular intervals (Fig. 9.1). To accu-
mulate sufficient data with which to estimate succes-
sive points of an experimental semivariogram, paired
data are grouped as follows: for all data representing
any lag h

No. of data at lag h = n.d ± d/2 (9.1)

where h is the approximate average lag, d is a constant
distance (equivalent to a regular grid spacing), and n
has integer values 1, 2, 3. . . . Such a procedure is jus-
tified because semivariograms commonly are more or
less linear over short intervals. However, when using
this procedure, it is wise to calculate the real average
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distance between data pairs used for each point
estimate of γ (h) rather than assuming the distance
to be exactly equal to n.d; in some cases the two
distances h and n.d can differ substantially. More-
over, it is useful to know the number of pairs
used to determine each point of an experimental
semivariogram; automatic grouping procedures com-
monly lead to some points (possibly spurious) that
are based on a small number of pairs, and thus
should be ignored or minimized in developing a
semivariogram model. Both the grouping procedure
and the number of pairs used to calculate each
γ (h) value are output in most commercially avail-
able software packages for determining experimental
semivariograms.

Selection of an appropriate value for d in Eq. 9.1 is
not always obvious; an inappropriate choice can lead
to a highly erratic short range variations in γ (h). A
straightforward means of dealing with this problem is
to produce a plot of the distance between paired values
versus half the squared difference of the two values.
An example of such a plot is given in Fig. 9.4 and
clearly illustrates the ease of selecting an appropriate
unit lag value (which maximizes the use of data) for
the construction of an experimental semivariogram.
In this example, an appropriate unit lag (d) is selected
to maximize the number of pairs (n) used for a series
of lags (nd).

9.2.2: Semivariogram Models

There has been some discussion in the literature as
to why semivariogram models are necessary (e.g.,
Shurtz, 1991). The most fundamental reason is that
an autocorrelation function (e.g., the semivariogram)
quantifies the average three-dimensional continuity
of grade and defines the isotropic/anisotropic nature
of grade distribution, an essential concept regard-
less of which resource/reserve estimation method is
to be used. As indicated in Chapter 8, various geo-
statistical calculations involve use of the semivari-
ogram. In addition, resource/reserve estimation using
kriging requires semivariogram (or comparable) val-
ues in the estimation procedure. Hence, semivari-
ogram models are important for several reasons. The

200 m 400 m 200 m 400 m

200 m 400 m

Sample Spacing

a
b

c

Figure 9.4: (a) Experimental semivariogram showing erratic
character because of an injudicious choice of initial lag
(20 m). (b) Bar graph of the relative frequency (ordinate)
of paired data for various sample separation intervals (ab-
scissa). (c) Plot of the squared grade differences (ordinate)
versus sample separation (abscissa) for all data pairs. This
latter graph demonstrates that an optimal initial lag is about
100 m. Redrawn from Armstrong (1984b).

semivariogram model must be “positive definite”
in order to guarantee that positive variances result
from its application in kriging equations. A smooth
model can generally be justified also on the basis
that local experimental values are subject to sampling
error, whereas a model is more generally applicable
because it smooths out these local sampling fluctu-
ations. In general, a “sawtooth” experimental semi-
variogram is approximated by smooth mathematical
functions (models).

Several mathematical models have been used his-
torically in geostatistical applications, including lin-
ear, de Wisjian, exponential, Gaussian, and spheri-
cal (Matheron), as well as others (see Journel and
Huijbregts, 1978). Without question, the most widely
used model in mineral inventory applications is
the spherical (or Matheron) model (cf. Figs. 9.3b
and 9.6), and although that model is emphasized
here, several other commonly used models also are
described.
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Figure 9.5: A general power model for a semivariogram; p
is a constant, h is sample separation. The model becomes
a straight line if the exponent, x , is 1.0. In this case there is
no discontinuity at the origin, that is, no nugget component.

9.2.2.1: Linear Model
The linear model is a special case of a power

model of the type (Fig. 9.5)

γ (h) = C0 + p.hx

where C0 is the nugget effect; p is a constant (slope
in the linear model); h is lag; and x is the exponent of
h such that 0 ≤ x ≤ 2 (x = 1, in linear case).

For the linear case, x = 1, p is the slope of the
line, and C0 is the y intercept. The linear model does
not find much use in general application. However,
because of its simplicity in terms of calculations, it
can be used advantageously to work out simple cal-
culations manually. It is realistic in some applications
because the linear model closely approximates the
more useful spherical model (see later) for distances
up to about two-thirds the range of the sphericalmodel
(Section 9.2.2.4).

9.2.2.2: Exponential Model
The exponential semivariogrammodel is given by

γ (h) = C0 + C[1 − exp(−h/a)].

The exponential model has been used here and there
in practical applications. It suffers the minor inconve-
nience that it attains a sill only at very great distances,
although an effective sill is attained at h = a′ = 3a.

9.2.2.3: Gaussian Model
The Gaussian model is given by

γ (h) = C0 + C[1 − exp(−h2/a2)].

The Gaussian model, like the exponential model, has
found scattered use in resource estimation. Use of this
model occasionally results in estimation problems be-
cause of the high degree of continuity inherent in the
model. The sill is reached asymptotically, and a prac-
tical sill is defined by h = a′ = a.31/2. The Gaussian
model is relatively flat for low gamma values, a char-
acteristic that leads to advantages for use in estimat-
ing variables such as topography and vein thickness.
However, negative weights for some samples can re-
sult from using this model for estimation purposes.

9.2.2.4: Spherical (Matheron) Model
The spherical model (Fig. 9.6) is characterized

by two components: (i) a purely random component
referred to as the nugget effect, or C0; and (ii) a struc-
tured component in which the structure is character-
ized by the range a of an autocorrelation function. The
range is the distance over which average variability
for the stuctured component rises from zero to C1 (or
from C0 to C):

γ (h) = C0 + C1[3/2(h/a)

−1/2(h/a)3] for h < a (9.2)

γ (h) = C0 + C1 for h > a

Range

C
  0

C
1

a

(h
)

γ

Sample Spacing (h)

C = C  + C0 1

Figure 9.6: The spherical or Matheron semivariogram
model. The model is defined by the nugget effect (C0), the
sill of the structured component (C1 = γ (inf)− C0), and the
range (a).
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where C0 is the nugget effect, C1 is the sill of the
structured part of the model, a is the range (of influ-
ence), and h is sample spacing (lag). The range of a
spherical model can be viewed as the average dimen-
sion of structures randomly located in the total field of
data.

The nugget effect warrants comment. In general,
C0 represents a combination of factors including ana-
lytical variability; subsampling; sampling variability;
and, in some cases, short-range (very local), real, ge-
ologic variability. Of these sources of variability, the
combined analytical and sampling variance is easily
determinable from a program of duplicate sampling
(Chapter 5); differences between duplicate samples
normally include a component of local geologic vari-
ability that is a function of the space between dupli-
cate samples. Spatial variability that arises on a scale
greater than duplicate sample spacing but less than
the nominal sample spacing of an evaluation project
must be estimated or assumed fromother information;
in many cases, this additional spatial contribution to
the nugget effect is minor or negligible.

9.3: FITTING MODELS TO EXPERIMENTAL
SEMIVARIOGRAMS

The art of fitting models to experimental semivar-
iograms is fraught with subjective decisions. As
Dubrule (1994) points out, there is uncertainty as
to the general model to be used and in the estima-
tion of the parameters of a particular model. Because
the spherical model has foundwidespread application
in mineral inventory studies, comments here are re-
stricted to that model. One of the principal difficulties
in many practical cases is that little reliable informa-
tion exists for short sample spacings, which can lead
to low confidence in estimating the range. An added
complication is the sparsity of information on which
to base an estimate of the nugget effect. Armstrong
(1984b) notes that difficulties arise inmodeling exper-
imental semivariograms because of (i) a poor choice
of distance classes, (ii) mixed populations inadver-
tently grouped together, (iii) outliers and skewed dis-
tributions, and (iv) artifacts. Operator error leading
to artifacts is generally the result of carelessness and

a2a
3

C0 + C1 

γ 
(h

)

Sample Spacing

C0

Figure 9.7: Fitting a model to an experimental semivari-
ogram. The sill [γ (inf)] is generally easy to define even when
there is much variability. The first few points of the exper-
imental semivariogram commonly can be approximated by
a straight line, which defines the intercept with the y axis
(C0), and an intersection with the sill, which occurs at two-
thirds the range.

can be minimized by close attention to procedures
and output. Outliers and mixed populations generally
should be identified and considered separately, as sug-
gested in Chapter 7. Choice of a distance class can be
improved by examination of the data, as suggested by
Armstrong (1984b) and Fig. 9.4.

The following procedures, although idealized,
provide guidelines for maximizing confidence in a
semivariogram model fitted to real data represented
by an experimental semivariogram (Fig. 9.7):

1. The “sill”C (i.e.,C0 + C1) of a spherical semivar-
iogram is the variance of the data in the space un-
der study. In practice, this rule has limitationswith
small amounts of data, with cyclical patterns in
the data, where a trend exists in the data, or where
the range of the semivariogram is large with re-
spect to the field width. Barnes (1991) concludes,
in part: (i) for large data sets for fields more than
three times the semivariogram range, the sill of a
spherical semivariogram closely agrees with the
data variance; (ii) if data are from a fieldwhose di-
mensions are the same order as the semivariogram
ranges, the sill will be underestimated by the vari-
ance of the data; (iii) where “low-scale” trends
exist in the data, the data variance will overesti-
mate the sill of the semivariogram; and (iv) when
the sill of a model differs from the data variance,
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the model is suspect. In many practical cases,
however, the data variance can aid in estimating
the value of (C0 + C1).

2. For an experimental semivariogram with
“smooth” continuity through several points near
the origin, a straight line through those points
is an estimate of the tangent at h = 0 for the
spherical model. The tangent intersects the y axis
at the nugget effect and intersects the sill at a
value of 2a/3, to provide an estimate of the range
(Fig. 9.7).

3. When the semivariogram has a sawtooth aspect
near the origin, the tangent (at h = 0) can be esti-
mated by a “visual best-fit” line that estimates the
nugget effect and range.

4. Semivariograms should be derived separately
for each support to test for effects of regulariza-
tion (see Section 9.10). Different supports might
give rise to different semivariogram models. Or-
dinarily, models for different supports are related
in a systematic fashion (e.g., Huijbregts, 1971).

5. Semivariograms should be derived in a variety
of directions (at least four directions in two-
dimensional arrays of data) in order to test for
anisotropy (see Section 9.4.1). In practice, explo-
ration data are commonly arranged in preferen-
tial directions and it may be difficult to examine
fully the possibility of anisotropy. In such a case,
geologically important directions can be used as
guides in the development of experimental semi-
variograms and their models. For example, obvi-
ous structural or stratigraphic directions generally
are found to be important limiting cases for semi-
variogram modeling.

6. A plot of standard deviation versusmean grade for
data subsets (e.g., individual drill holes) should
be examined to test for a proportional effect (see
Section 9.5). In the simplest case, a proportional
effect can be accounted for by using a relative
semivariogram (see Section 9.5). Separate exper-
imental semivariograms for high- and low-grade
subsets of data also are indicative of the presence
of a proportional effect and the plausibility of us-
ing a relative semivariogram for modeling and es-
timation purposes.

7. When sufficient duplicate sampling data are avail-
able, it may be possible to use half the mean
squared grades of paired duplicates to estimate
a minimum nugget effect.

Models normally can be fitted to experimental
semivariograms by eye without the added complexity
of various best-fit procedures, such as those described
by Cressie (1985). In many cases, least-squares fit-
ting methods are inappropriate because they do not
allow the models to integrate exact information easily
that might be available independently (e.g., a limiting
value of the nugget effect might be known from repli-
cate sampling information, or the ranges of various
attributes might be constrained geologically).

In general, confidence in a semivariogram model
(i.e., a reasonable fit to experimental data) is essen-
tial because the model reflects the geologic character
of the domain and is used in a variety of important
calculations, especially kriging. Consequently, it is
useful to have an appreciation of the magnitude of er-
rors that can result if a semivariogram model is incor-
rect. Brooker (1986) documents kriging results using
a spherical model and a regular square data array to
illustrate the impact of errors in semivariogrammodel
on resulting kriging errors. He adopts a knownmodel,
and then investigates the effect on kriging error of
changing the parametersC0 anda byvarious amounts.
Brooker concludes that kriging is relatively robust to
errors in semivariogram modeling. For errors of up
to +25 percent of range, kriging variances change by
less than 10 percent; for errors up to +25 percent of
relative nugget effect [C0/C = C0/(C0 + C1)], larger
changes in kriging variance are possible, particularly
when the relative nugget effect is low and the range is
one to three times the data spacing. Underestimation
of the nugget effect can lead to serious underestima-
tion of kriging variance; thus, substantial attention
should be paid to determining the true nugget effect.

9.4: TWO-DIMENSIONAL SEMIVARIOGRAM
MODELS

In perfectly regular two-dimensional grids (e.g., Fig.
9.9a) it is possible to select parallel lines of data and
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Figure 9.8: Illustration of how tolerance is applied in se-
lecting pairs of data separated by distance h ± e in a two-
dimensional field of data. For any one data point (e.g., A),
there is both an angular tolerance (±) about the direction
for which a semivariogram is being determined, a distance
tolerance (e.g., ± d/2), and a band width that limits the ex-
tent of the field to which the angular tolerance applies. For
the example shown (distance h = 2d ± d/2), the shaded
area of tolerance indicates that two pairs of data would be
selected, A–B and A–C .

determine the corresponding experimental semivari-
ogram, as summarized in Eq. 9.1. Furthermore, sets of
parallel lines with various azimuths can be selected,
including the main grid directions and the principal
diagonals, and experimental semivariograms can be
determined separately for each direction. If the struc-
ture of the variable is isotropic, all of these direc-
tional, experimental semivariograms will be roughly
the same within experimental error. Where there are
anisotropies, the experimental semivariograms differ
as a function of direction. Commonly, however, this
simple ideal procedure for characterizing the exper-
imental semivariograms is not possible because data
are rarely located so regularly.

The general situation for determining experimen-
tal semivariogram values for an irregular data pat-
tern in two dimensions is illustrated in Fig. 9.8. Here,
the problem of grouping data in order to provide
estimates for various lags is seen to be more com-
plex than in the one-dimensional case. Commercial
computer programs provide the ability to change the
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Figure 9.9: (a) A regular grid showing the minimum of four
directions in which the semivariogram should be deter-
mined in order to check for isotropy/anisotropy. (b) Ide-
alized example of isotropy of four experimental semivari-
ograms determined for our grid directions. (c) Geometric
anisotropy of the semivariogram model demonstrated by
different experimental semivariograms in different direc-
tions. Nugget effect and sill are identical in all directions,
but the range changes as a function of direction. (d) Spher-
ical models representing the experimental data of (c).
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angular tolerance; large angular tolerances in general
are not desirable, particularly with relatively small
data sets, because all directions tend toward the same
model, even when substantially different models ex-
ist. Consequently, the use of large angular tolerances
can lead to the incorrect conclusion that the auto-
correlation function is similar in all directions (i.e.,
that the semivariogram is isotropic). Of course, there
are many cases in which essentially equivalent exper-
imental semivariograms can be demonstrated (sim-
ilar in range, C0, and sill) along several different
grid directions and isotropy can be accepted as illus-
trated in Fig. 9.9b. The term omnidirectional, which
is now widely used in geostatistics, should not be
confused with proven isotropy. Omnidirectional is a
term recommended for data arrays in which spac-
ing is very wide in one or two directions relative
to the other, the common situation with exploration
drill-hole sampling. In such cases, true isotropymight
not be evident at the time of model fitting, although
an isotropic model might well be assumed; the term
omnidirectional should be used in such cases and im-
plies that some uncertainty exists in the validity of an
isotropic model (cf. Journel, 1985).

9.4.1: Anisotropy

There is no particular reason why a semivariogram
in one direction will be the same as that in a second
direction. For example, it is apparent that the vari-
ability along a sedimentary bed (e.g., iron formation)
can be very different than the variability across strata.
Two-dimensional data arrays require that the semivar-
iogram model be characterized for several directions
in order for a comprehensive semivariogram model
to be established. When the experimental semivari-
ograms for four or more directions (e.g., the principal
grid directions and the two principal diagonal direc-
tions) are found to be essentially the same, an isotropic
model (uniform in all directions) can be accepted.
When the semivariogram varies with direction within
a data array, the regionalization (structure) is said to
be anisotropic (e.g., Fig. 9.9c). In general, it is not
adequate to limit directional semivariograms to only

four directions in two-dimensional space; six or eight
directions (e.g., each 22.5 degrees) provides sounder
insight into the isotropic/anisotropic character of a
variable (see Fig. 9.12).

Two types of anisotropy are recognized in min-
eral inventory applications – geometric and zonal. A
further subdivision of zonal anisotropy into subcate-
gories of sill, range, and nugget anisotropy is gener-
ally unnecessary (Zimmerman, 1993). In geometric
anisotropy, the range varies as a function of direc-
tion, but the nugget effect and sill remain constant.
A relatively simple example is illustrated in Fig. 9.9
(c and d) in which two directions show a common
range, distinctly different from the range of the other
two directions. In the more general case, of course,
all directions might give different ranges. Geometric
anisotropy is a relatively common feature in semivar-
iograms of ore grades.

A two-dimensional, geometric, anisotropic struc-
ture can be visualized ideally as an ellipse whose
variable diameters are the semivariogram ranges for
various directions, as shown in Fig. 9.10. The ellipse
is an estimate of the average structure that can be
thought of as occurring randomly thoughout the two-
dimensional field of data. Reality is approximated
only by the elliptical model; locally real structures
depart from the model in random fashion. The semi-
variogram model can be summarized in terms of the
semivariograms representing the two principal axes
of the ellipse. Because these models differ only in
their ranges, it is sufficient to define a single isotropic
model, say for the major axis of the ellipse, and then
provide a multiplier (anisotropy ratio) that changes
the range to that of the minor axis of the ellipse. For
example, if ranges for the two principal axes of the
structure are 50 m in a northeast direction and 25 m in
a northwest direction, the model can be described by
an isotropic component with a range of 50 m and an
anisotropy ratio of 0.5 to take the northwest anisotropy
into account.

In many cases, the directions of principal con-
tinuity of grade (long and short axes of the ellipse)
can be (and should be) identified in advance from the
geologic character of the mineralization. There are
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Figure 9.10: (a, b, and c) Experimental semivariograms and fitted models for three directions in a vertical section through
the Warrego gold pod. Modified from Quinlan and Leahey (1979). (d) Ranges (a1, a2, and a3) for the three directions, plotted
to a common center, permit an ellipse to be constructed that represents the average structure in the two-dimensional field
and clearly defines a geometric anisotropy.

many two-dimensional deposits for which the plane
of the structure is well defined and the orientation
of ore shoots within that plane is also known. In the
more general case of three dimensions, the continuity
model becomes an ellipsoid, the principal axes of
which also correlate with geologic features having
preferred orientation. In stockwork mineralization,
for example, one direction of fracture control

commonly predominates to some extent, and this
direction coincides with the long axis of the ellipse of
anisotropy (e.g., Sinclair and Giroux, 1984; Sinclair
and Postolski, 1999).

The second type of anisotropy, referred to as
zonal, is characteristic of bedded sequences. In this
type of anisotropy, all directions within the plane of
the bedding are characterized either by an isotropic
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Figure 9.11: Zonal anisotropy in which the sill levels of semivariograms differ significantly with change in direction. Mineralized
lenses shown on the left are parallel to stratigraphy. On the right, the experimental semivariograms show longer range and
less variability (lower sill) parallel to stratigraphy, compared with a cross-stratigraphy orientation.

semivariogram or display geometric anisotropy. In
contrast, the direction across bedding displays amuch
greater variability with shorter continuity than in di-
rections parallel to bedding; thus, the model in this
third direction has a shorter range and a higher sill
compared with directions parallel to bedding, as il-
lustrated in Fig. 9.11. For practical purposes, a zonal
anisotropy can be approximated by two spherical
components as follows:

γ ∗(h) = γ ∗(x, y, z) + γ ∗(z)

that is, a component that is isotropic (or having ge-
ometric anisotropy) in three dimensions plus a com-
ponent that depends only on direction z. Myers and
Journel (1990) show that zonal semivariogram mod-
els can lead to problems in kriging; in some cases, the
kriging equations contain noninvertible coefficient
matrices because the semivariogram models are
semidefinite rather than positive definite. This con-
dition arises in a few restrictive geometries of data for
which the kriging system is singular and probably oc-
curs rarely in practice. Nevertheless, attention should
be directed to this problem where zonal anisotropy
models of semivariogramsare used for estimationpur-
poses with highly regular grids of data.

In examining data for anisotropy, a common prac-
tice is to determine experimental semivariograms
along principal grid directions and the two principal
diagonal directions. Ranges found in these directions

can be plotted on a common center and fitted by
an ellipse to produce an idealized geometry of the
“average” anisotropic structure of the data array. In
many cases, the locations of data (drill holes, under-
ground workings) dictate the data array and may limit
the orientations for which acceptable experimental
semivariograms can be determined (e.g., Fig. 9.10).
As indicated previously, it is common that the prin-
cipal directions of anisotropy coincide with geolog-
ically defined directions, which may well have con-
trolled grids established during exploration. In other
words, exploration grid axes may be parallel or sub-
parallel to the axes of the continuity ellipse. When
true northings and eastings are the principal coordi-
nates, it would be coincidental for them to parallel
the principal directions of anisotropy. Geology can
commonly provide assistance in formulating an ef-
ficient approach to semivariogram modeling. In par-
ticular, when relatively few data are available, model
development can be controlled by knowndirections of
geologic control of mineralization (i.e., a model can
be defined along the direction of principal geologic
control and perpendicular to that direction). This pos-
sibility arises commonly in practice because of the
manner in which data are collected for deposit explo-
ration/evaluation (i.e., along the principal structural
direction and perpendicular to that direction).

When principal directions of anisotropy are not
coincident with principal grid directions, the angular
relations between the two must be known. During
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estimation, a transformation to “anisotropy coordi-
nates” is required so that estimation can be done as
an isotropic exercise. As indicated previously, the
procedure for checking for the presence of anisotropy
involves determining experimental semivariograms in
several different directions. If the results for indi-
vidual directions are not significantly different, it is
commonpractice to produce aweighted average semi-
variogram towhich an isotropicmodel can be fitted. A
particularly useful technique for gaining insight into
the possible anisotropic nature of the semivariogram
in two dimensions is to produce a semivariogram
map. Commercial and academic software is avail-
able for this procedure (e.g., Deutsch and Journel,
1998). An example of a semivariogram map is shown
in Fig. 9.12 for a two-dimensional array of data from a
disseminated gold deposit (cf. Rendu, 1984). In this
example, semivariogram values for various distance
and direction, plotted outward from a common center,
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Figure 9.12: A semivariogram map characteristic of an
anisotropic variable. Semivariogram values are determined
for various sample spacings along various directions; re-
sults are plotted relative to a common center and contoured.
Such diagrams are particularly useful in identifying the di-
rections of principal grade continuity, as in this example for
a disseminated gold deposit (redrawn from Rendu, 1984).
Directions of principal grade continuity invariably have a ge-
ologic control.

are contoured. The elliptical form of the contours in-
dicates a well-defined, anisotropic character to the de-
posit. Semivariogram maps also can be displayed as
gray-tone maps on which low γ ∗(h) values are blank
and increasing values become increasingly darker, fi-
nally becoming black for values near the sill. The use
of gray-tone representation of semivariogram maps
has the disadvantage thatwell-informed directions are
not distinguished from directions for which data are
limited or missing. In this respect, contoured maps
such as Fig. 9.12 are a fairer representation of the
state of knowledge. An additional limitation to some
software for semivariogram maps is the fact that a
common lag is used for all directions; in practice, of
course, the same lag is not necessarily optimal for all
directions.

9.5: PROPORTIONAL EFFECT AND
RELATIVE SEMIVARIOGRAMS

A proportional effect is a systematic relation between
variability of data and themeanvalue of the data. Pres-
ence of a proportional effect can be demonstrated by
examining a plot of mean value versus corresponding
standard deviation for clusters of data (e.g., individ-
ual drill holes). An example is shown in Fig. 9.13, in
which the relation can be approximated by a straight
line. Inmany early geostatistical publications, the pro-
portional effect was approximated by simple equa-
tions describing C1 and C0, of the type C = k.m2,
where k is a constant to be determined by plotting
various estimated C values versus their correspond-
ing means m. More recently, however, there has been
widespread recourse to the relative semivariogram to
approximate variations in the semivariogram model
as a function of the mean value of data to which the
model is applied.

The need for taking the relation of mean and
error into account can be demonstrated by an ide-
alized example that illustrates a commonly encoun-
tered occurrence. Suppose that a particular geometry
of data and an absolute semivariogrammodel provide
a block estimate of 0.8 percent Cuwith a kriging error
(standard deviation) of 0.4 percent Cu. In a low-grade
zone, the same geometry of samplesmight produce an
estimate for a comparable block of 0.2 percent Cu; of
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Figure 9.13: Proportional effect in which the variability of
data is a function of the mean value of the data. These data
are for the Snip mesothermal gold vein; values are in g/t. In
such cases, the sill value of the semivariogram (equivalent
to the variance of the data) also is a function of the mean
value of the data.

course, the same absolute error of 0.4 percent would
be produced and is a nonsensical result. However, if a
relative semivariogram model had been used to pro-
vide a 0.8 percent copper estimate with a kriging error
of 0.4 percent Cu (i.e., relative error of 50 percent),
the low-grade block would have an estimated error of
0.1 percent Cu (i.e., 50 percent), a much more plausi-
ble result in view of the common dependency of error
on concentration (e.g., Chapter 5).

The relative semivariogram is given by

γ ∗(h)r = γ ∗(h)/m2
h

where γ ∗(h) is the absolute semivariogram defined
in Eq. 9.2 and mh is the mean of data used to de-
termine γ ∗(h). The estimation of relative semivar-
iograms is a scaling procedure to produce uniform
variance throughout the data array. Cressie (1985)
demonstrated the general equivalence of using rela-
tive semivariograms and semivariograms of logtrans-
formed data. Recognition of situations inwhich use of
the relative semivariogram is appropriate can bemade
when linear patterns exist on plots of local values of s

versus m (i.e., standard deviation vs. mean value) as
shown in Fig. 9.13.

The detailed procedure for estimating a relative
semivariogram is important because different results
can be obtained depending on how the relative gamma
values are determined; in particular, whether a global
mean or a local mean is integrated into the calcula-
tion of Eq. 9.2. In the past, it was common practice
to simply divide γ ∗(h) values, determined as outlined
previously, by their corresponding global mean value
to obtain a global or general relative semivariogram.
David (1988) states, “Experience shows that the gen-
eral relative variogram . . . overestimates the real rel-
ative variogram. Then dispersion and estimation vari-
ances derived from it are above, and sometimes far
above, the real variances” (p. 43). Instead, the pair-
wise relative semivariogram is now used in which the
squared difference of each pair of values is divided
by the squared mean of the pair. This procedure has
the effect of reducing the impact of very large dif-
ferences. An example of a pairwise relative semivari-
ogram for gold accumulation in a gold-bearing quartz
vein is shown in Fig. 9.14. This example is for closely
spaced stope samples and illustrates a small but defi-
nite regionalization for a case that had been described
previously being pure nugget effect.

Relative semivariograms are a useful means of
comparing and contrasting relative variability and
continuity characteristics for different deposits, in-
cluding those of various types. An example fromRay-
mond (1982) is shown in Fig. 9.15, which compares
the semivariogram of the Mt. Isa stratiform Pb–Zn
deposit with those for two very different porphyry-
type deposits. Of course, such comparisons should be
made on samples of equivalent support.

9.6: NESTED STRUCTURES

In many cases it is not possible to make an adequate
approximation of an experimental semivariogram
by a single model. This situation can arise with the
presence of more than one underlying structure in the
data being considered. In other words, regionalization
maybepresent at several scales. The concept of nested
structures is illustrated in Fig. 9.16. Some nested



206 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

γ 
(h

)

Sample Spacing (ft)

1.2

1.0

0.8

0.6

0.4

0.2

0

0 10 20 30 40 50

150

30

90

0

120

60

Average
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Figure 9.16: An example of a nested structure showing how
two spherical structures (no nugget effect) combine to pro-
duce amodel (dashed curve) that fits an experimental semi-
variogram for Au grades, Warrego gold pod. Redrawn from
Quinlan and Leahey (1979).

structures relate to geometric characteristics that are
easy to visualize. Figure 9.16 illustrates the presence
of three scales of variability in metal accumulation
values (grade× thickness), a very small nugget effect,
and two separate scales of grade variability.

Nested structures commonly are indicated by
breaks in slope of an experimental semivariogram.
With limited data, the general fluctuations from point
to pointmaymask thesebreaks in slope; consequently,
a detailed semivariogrammodelmay not be attainable
with small amounts of data.

9.7: IMPROVING CONFIDENCE IN THE
MODEL FOR SHORT LAGS OF A TWO- OR
THREE-DIMENSIONAL SEMIVARIOGRAM

Often, an early goal in spatial sampling is to ob-
tain data from which the semivariogram may be
estimated. (Morris, 1991, p. 930)

A semivariogram model can be fitted to any set of
points, no matter how many data are available or how
valid the model is. Estimation of the semivariogram
model is critical for many geostatistical purposes, and
substantial effortmust be directed to consideringwhat
constitutes an acceptablemodel (i.e., amodel inwhich
the user can have confidence). Empirical guidelines

(Journel andHuijbregts, 1978) indicate that at least 30
pairs are necessary for each lag of the experimental
semivariogramand that no laggreater than L/2 should
be accepted, where L is the average width of the data
array in the direction for which the semivariogram is
being estimated. These minimum requirements com-
monly are inadequate in practice, particularly in the
case of deposits with extreme local variability (e.g.,
gold and uranium deposits).

Early in the data gathering process, one impor-
tant goal is to design an array for data collection that
includes enough closely spaced samples to provide
confidence in a semivariogram for short lags. Such in-
formation can be provided from a number of sources,
including drill holes oriented in various directions,
surface exposures, trenches, and underground work-
ings such as exploratory declines. Of course, in the
general situation, closely spaced data are desirable
in three dimensions because the semivariogram can
be anisotropic. When exploration sampling is on a
regular grid of spacing d , one part of the grid might
be drilled at much closer spacing to provide the nec-
essary information. The detail of information that is
required might not be justifiable economically until
the feasibility stage. When possible, such data should
be selected optimally (i.e., as few data as possible to
meet the need).

Idealized approaches to sampling for purposes of
defining a semivariogram model confidently are sel-
dompractical globally because, in a programof staged
data collection, geology, personnel, cost, and time are
overriding factors. However, idealized sampling con-
cepts can be used to assist in localized sampling de-
sign to provide data for establishing semivariogram
values for short lags, a factor too commonly over-
looked during exploration to the detriment of subse-
quent resource/reserve estimation. Commonly, explo-
ration programs involve drilling that produces closely
spaced samples along the drill holes and relatively
widely spaced samples in other directions. Local data
arrays can be designed to offset this problem with
respect to semivariogram modeling. For example,
in a large domain characterized by one type of
mineralization, a square surface (horizontal) sam-
pling grid that is eight samples by eight samples with
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sample spacing equivalent to spacing in vertical drill
holes might be ideal for characterizing short lags of
the semivariogram in two dimensions at least. Such a
grid would provide 56 pairs for lag 1 of a semivari-
ogram parallel to a principal grid direction, 48 pairs
for lag 2, 40 pairs for lag 3, and 32 pairs for lag 4.
Somewhat fewer pairs would be obtained for diagonal
lags. This type of sampling plan demands appropri-
ate ore exposures (e.g., an outcrop or stripped area
on the surface)with little in theway of surficial weath-
ering. The same goal can be achieved in other ways –
for example, a series of disjoint trenches that pene-
trate the weathering zone, sampling of underground
workings, or preferred orientations to selected drill
holes. Whatever approach is taken, it is most useful
if samples are more or less of the same support as the
great bulk of samples used for general semivariogram
modeling.

When the opportunity exists to develop local sam-
pling grids for the purpose of estimating short lags of
the semivariogram, consideration might be given to
triangular grids (unit cell is an equilateral triangle),
which Yfantis et al. (1987) andMorris (1991) demon-
strate to be the most efficient in covering a given area.
Moreover, triangular grids provide the most efficient
test of anisotropy in a two-dimensional plane, relative
to square grids and hexagonal grids. Itmust be empha-
sized that design elements discussed here are not to
provide samples to improve estimation, but to improve
the quality of the semivariogram so that more confi-
dence can be attached to all calculations that make
use of the semivariogram.

9.8: COMPLEXITIES IN SEMIVARIOGRAM
MODELING

9.8.1: Effect of Clustered Samples

It is not uncommon to have a 10:1 ratio of aver-
age grade in high-grade areas of orebodies compared
to low-grade areas. With a proportional effect, vari-
ance from high-grade areas could differ by 100 times
in comparison with values from low-grade areas. If
the semivariogram is calculated by simply averaging

squared differences, the resulting model mainly re-
flects the semivariogram in high-grade areas because
data generally are concentrated in high-grade zones.
Generally, this problem can be minimized by deter-
mining the relative semivariogram, particularly the
pairwise relative semivariogram.

9.8.2: Treatment of Outlier Values

Outliers should be considered and understood prior
to semivariogram modeling through detailed evalu-
ation and classification as described in Chapter 7.
In particular, it is important to recognize the cause
of outliers – Do they represent errors or fundamen-
tally different geologic populations? When outliers
represent a real geologic subpopulation, there is the
added implication that each subpopulation has its own
autocorrelation characteristics. When outliers are in-
cluded accidentally in data used for semivariogram
modeling, they can by recognized through the use
of such diagrams as variogram clouds and h scat-
tergrams (cf. Journel, 1987). Semivariogram clouds
(e.g., Fig. 9.4c) can be presented in summary form as
boxplots (e.g., Fig. 9.17) that indicate the concentra-
tions (mean, range, and mid-50-percent range) of all
individual gamma values for a given lag (h). For any
h, an average gamma value that is far removed from
the mid-50-percent range of the data on which it is
based must be influenced by at least one outlier value;
hence, the plots have been used by geostatisticians for
the recognition of outliers. In general, however, out-
lier values should not appear in such plots, but should
be recognized and dealt with independently prior to
semivariogram modeling.

An h scattergram is an x–y plot of the paired
values used for the determination of a mean gamma
value for a particular lag (h). The example shown in
Fig. 9.18 illustrates the potential of such diagrams for
identification of multiple subpopulations in the data,
as well as recognition of a small percentage of outlier
values as distinct departures from the main clustering
of values. Once again, it is imperative to be aware that
the presence of two geologic populations implies the
likelihood of two “continuity” populations.
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Figure 9.17: A “summary” of a semivariogram “cloud” dia-
gram presented as a series of boxplots (box and tail), one
for each lag. Each boxplot shows the mean, mid-50-per-
cent range (box), and the total range of values (line) used
to determine each point (i.e., value for each lag) for an ex-
perimental semivariogram. When a mean is substantially
outside the corresponding box, the presence of at least
one outlier value is indicated by data for the fifth lag. See
also Fig. 9.4c for a complete semivariogram cloud diagram
that illustrates how a few relatively large sample differences
can control the form of the semivariogram.

Outliers generally have a detrimental affect on
semivariogram modeling. In many practical cases,
the sill of a spherical semivariogram is equivalent to
the global variance of sample values. Hence, the im-
pact of outliers on the semivariogram can be appre-
ciated by considering two simple examples of mixed
populations (cf., Zhu and Journel, 1991). Parameters
of a mixed populations of two components are as

x
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x(u+h)
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Figure 9.18: Pair of points [x (u) and x (u + h)] used for the
estimation of the experimental semivariogram value for one
specific lag h is plotted as an h scattergram. Comparable
diagrams can be constructed for all lags. (a) Common form
of an h scattergram. (b) An h scattergram with complica-
tions viz. multiple subpopulations including outlier values.

follows (see Chapter 4):

Mean value,m = p ·m1 + (1 − p) ·m2

Variance, σ 2 = p · σ 2
1 + (1 − p) · σ 2

2

+ p(1 − p)(m1 − m2)
2

wherem is mean value,
∑

is standard deviation, sub-
scripts refer to populations 1 and 2, and p is the pro-
portion of population 1. Substitute two hypothetical
sets of parameters in the previous equations as fol-
lows:

Case 1 : m1 = 0.5, σ1 = 0.2;m2 = 0.52,

σ2 = 0.2; p = .7

Case 2 : m1 = 0.5, σ1 = 0.2;m2 = 10,

σ2 = 75; p = 0.99.

Case 1 exemplifies the situation in which two very
similar populations are recognized, perhaps on ge-
ologic grounds, and provide parameters of the mix-
ture (m = 0.506, σ 2 = 0.0401) that are roughly rep-
resentative of the two component populations. Case 2
imitates an outlier situation and provides parameters
of the mixture (m = 0.545, σ 2 = 0.49) that diverge
markedly from those for both of the constituent pop-
ulations. Clearly, a semivariogram with sill at 0.49
is far from representative of the sill for either of the
two populations forming the mixture. Moreover, the
added sampling variability of the mixed semivari-
ogram leads to practical difficulty in defining ranges
of the semivariogram model for the mixed popula-
tions, to the point that the range can be determined
only with great uncertainty and perhaps with a large
error that is not recognized.

9.8.3: Robustness of the Semivariogram

In geostatistical theory an assumption is made that
the semivariogram is known or can be estimated
reliably. For practical mining applications, how-
ever, this assumption is not generally safe, particu-
larly when small data sets are concerned or highly
skewed distributions are present. It seems evident
that for a fixed area (or volume), the quality of an
experimental semivariogram decreases as sample
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spacing (lag) increases. This is because the geomet-
ric limitations of the data array are approached and
there is a decrease in the number of pairs of data con-
tributing to the estimate of γ ∗(h) for large values of
h. A rule of thumb has emerged that an experimental
semivariogram should not be considered for lags ex-
ceeding half the field width of the data array in any
direction.

One practical problem in calculating an experi-
mental semivariogram is the weight given to extreme
values (so-called outliers) that generally represent a
small proportion of the data. A common practice
in geostatistical applications is to ignore outliers in
developing a semivariogram model; however, these
outliers are generally reinserted in the database for
use during the actual estimation process (e.g., David,
1977). This procedure can be inappropriate in the un-
likely situation that outliers have the same continuity
model as do the more abundant low values. As dis-
cussed previously, outliers generally can be shown to
represent a very different geologic feature than the
great bulk of the data and, therefore, to have different
continuity than the majority of data. Consequently,
the outliers must be considered separately, both for
semivariogram analysis and for estimation; to assign
them the same continuity as the abundant lower values
can result in serious grade and tonnage overestimation
(cf. Sinclair et al., 1993).

The general procedure for estimating a point on
the experimental semivariogram is to plot half the
mean-squared difference versus lag. This use of the
mean is optimal when the variable is distributed
normally; strong positive skewness leads to lack
of robustness. Omre (1984) lists distributional
deviations (e.g., strong positive skewness), sampling
deviations (e.g., biased sampling), and outlier de-
viations from normality as potential causes of lack
of optimality in semivariogram estimation. Effects
of these sources of variability can be minimized by
improving data quality (including the minimizing
of mechanical error), defining appropriate geologic
domains within which to quantify value continuity
(see Chapters 2 and 3), and using as much data as
possible for estimating semivariograms, as opposed
to using small subsets of data.

9.8.4: Semivariograms in Curved Coordinate
Systems

There are a number of geologic environments inwhich
it is advantageous to have a coordinate system that
entails at least one curved coordinate. Consider the
example of a series of curved veins at the Golden Sun-
light deposit, Montana (Roper, 1986; Sinclair et al.,
1984),where itwas convenient to approximate the ori-
entation of veins in plan by the arc of a circle whose
center was found empirically. The three-coordinate
system used in this case (Fig. 9.19) involved (i) dis-
tance along an arc, (ii) distance perpendicular to the
arc (along a radius), and (iii) vertical distance. This
procedure permitted the development of semivari-
ogrammodels with geometric anisotropy, the greatest
continuity of which paralleled the arcuate coordinate
direction. Use of the curved coordinate system facili-
tated block kriging because it maintained the correct
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Figure 9.19: (a) The horizontal trend of an arcuate vein is
approximated by the arc of a circle whose center was lo-
cated by trial and error. The arc represents the direction
of maximum continuity in the Golden Sunlight deposit; the
lesser axis of grade continuity at any location is perpendicu-
lar to the arc. (b) Explanation of how distance components
parallel to the arcuate trace are approximated. Redrawn
from Sinclair et al. (1983).
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spatial orientation of the semivariogrammodel to each
block during kriging.A comparable procedurewas at-
tempted at the Climax molybdenum deposit (Noble
andRanta, 1984),where ore gradeswere concentrated
in a cylindrical zone.

A variety of departures from a Euclidean coordi-
nate system are possible. Dagbert et al. (1984) de-
scribe two such possibilities for dealing with folded
strata.One suggestion is the “natural”’ coordinate sys-
tem, in which one coordinate is a digitized outline of
folded bedding surfaces, a second is perpendicular to
bedding, and the third is parallel to the fold axis.

9.8.5: The “Hole Effect”

Some directional experimental semivariograms rise
from the origin (or nugget value) in the form of a
spherical model and then decrease and increase alter-
nately in the form of a wave, commonly of decreas-
ing amplitude. These depressions, or “holes,” in the
sill give rise to the name hole effect. This form of
semivariogram can be generated in one, two, or three
dimensions by alternating high and low values on a
perfectly regular grid of the appropriate dimension.
For example, one could imagine a perfectly regular
three-dimensional array of ellipsoids of high values
separated in all dimensions by low values. Such an
idealized repetition of high and low values is unlikely
in practice; more probable is a hole-effect model in
one dimension that crosses a regularly repeated geo-
logic structure.

The hole-effect form of an experimental semivar-
iogram is important to recognize because of the im-
plied regular geometric repetition. This repetition is
not to be confused with the occasional local semi-
variogram that can arise when a line of sampling in-
tersects a single, well-defined structure in predomi-
nantly background values, or a long drill hole that
intersects a short, high-grade zone in a field of low
grade, for example. An example of a hole-effect ex-
perimental semivariogram and model for an indica-
tor variable is given in Fig. 9.20. Note that the lows
of the experimental semivariogram coincide with the
distance of one complete repetitive structure (and sim-
plemultiples of this structure).Moreover, the range, as
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Figure 9.20: Example of a two-dimensional semivariogram
model that is spherical in a 35-degree direction but has a
pronounced hole effect in a 125-degree direction. An an-
gular tolerance of ±22.5 degrees was used for both direc-
tions. Models are for tungsten data. Redrawn from Journel
and Froidevaux (1982).

determined from the first rise, coincides with half the
width of the structure. This idealized view provides
some insight into the geometric information contained
in a hole-effect semivariogram.

The hole-effect semivariogram model is intro-
duced by Journel and Huijbregts (1978) and con-
sidered in greater detail by Journel and Froidevaux
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(1982), who make the point that hole effects gener-
ally reflect complex anisotropies. A detailed three-
dimensional structural analysis of an Australian tung-
sten deposit is described by Journel and Froidevaux
(1978) using both indicator semivariograms and log
(WO+

3 ) semivariograms to deal with an extremely
highly skewed distribution (CV = 2.3) and a com-
plex anisotropy. Hand-contoured data (grade× thick-
ness) produce a series of regularly distributed highs
and lows strongly elongate along an approximate ax-
imuth of 30 degrees. An indicator semivariogram
across this direction is described by a hole-effect
model (Fig. 9.20) of the form

γ (hx , hy, hz) = C0 + C1{1 − e−!h′!/a. cos(hv/b)}
for h > 0

where subscripted h is the distance along the prin-
cipal coordinate directions such that true distance
h = (h2x + h2y + h2z )

1/2; h is an effective distance that
takes anisotropy into account; and hv/b controls the
frequency of the hole effect. This model is the nested
sum of an isotropic nugget effect and a dampened, di-
rectional, hole-effect model. Dampening is controlled
by the exponential component. The best-informed di-
rection (e.g., downhole semivariogram) can be used
to estimate the nugget effect and determine the pa-
rameters a and b. Complex models of this type can
improve local estimation and may be warranted, par-
ticularly when the amplitude of the hole effect is a
significant part of the sill. For global estimation, the
hole effect can be approximated by a sill of a spherical
model (cf. Journel and Froidevaux, 1978). Judicious
selection of data (maximum intersample spacing less
than the range) allows a spherical model to be used to
approximate the first rise of the semivariogram, and
this model might be adequate for local kriging and to
avoid the complexity of modeling the hole effect.

9.9: OTHER AUTOCORRELATION
FUNCTIONS

There are a variety of approaches to the study of au-
tocorrelation, among which the covariance is funda-
mental. Consider a random function with expectation
m. For eachpair of values of this regionalizedvariable,

the covariance depends on separation h, as follows:

Cov(h) = E{Z (x + h).Z (x)} − m2.

When there is stationarity, the following relations
hold:

Var{Z (x)} = E{[Z (x) − m]2} = Cov(0)

and

γ (h) = 1/2E{[Z (x + h) − Z (x)]2}
= Cov(0) − Cov(h).

The semivariogram, thus, is tied directly to the co-
variance. Moreover, there is a direct relation with the
correlation coefficient (perhaps more properly in this
case, the autocorrelation coefficient), as follows:

r (h) = Cov(h)/Cov(0)

= 1 − [γ (h)/Cov(0)].

Plots of the (auto)correlation coefficient for vari-
ous sample separations versus lag produce the correl-
ogram. In practical applications of the correlogram
r (h), in geostatistics it is common to use 1 − r (h),
which has the form of a semivariogram and to which
a semivariogram model can be fitted.

9.10: REGULARIZATION

In practice, a true point support is not attainable with
most regionalized variables. Reality necessitates that
a variable bemeasured over a discrete volume (i.e., the
sample volume). Consequently, the local variability of
the regionalized variable is smoothed relative to that
of the true point variable. This relation is simply a
demonstration of the smoothing effect of increased
support, as discussed previously (Section 6.3.1). The
general relation for the semivariogram of a variable,
based on a large support in terms of the semivariogram
based on point data is

γv (h) = γ (v, vh) − γ (v, v)

where γv (h) is the semivariogram regularized over
volume v; γ (v, vh) is the average semivariogram
value for two points defining, respectively, volumes
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Figure 9.21: An example of regularization of a semivari-
ogram. In general, if drill samples of length l are composited
(regularized) over a greater length b, there is an increase
in range of the semivariogram of (b − l ). In addition, the
regularization is accompanied by an increase in continuity
near the origin. Redrawn from Clark (1979b).

v and vh separated by distance h; and γ (v, v) is the
average semivariogram value for all pairs of points
defining volume v . This is the so-called F function for
which graphs exist (for a standard spherical model) in
many texts (e.g., Clark, 1979; Journel and Huijbregts,
1978).

Thegeneral effect of regularization of the semivar-
iogram is shown in Fig. 9.21; regularization decreases
both the nugget effect and the sill of a spherical semi-
variogram. Theoretically, the range of a regularized
semivariogram increases as the length of compositing
increases, although this is not always clear in practice.
The concept of regularization is important in com-
paring semivariogram models for data of different
supports.

9.11: PRACTICAL CONSIDERATIONS

1. A three-dimensional study of autocorrelation is
important because the development of a for-
mal model quantifies the concept of grade con-
tinuity. This gives substance to the idea of
range of influence as well as characterizing the
isotropy/anisotropy of the mineralized system.

2. Practical estimation of a three-dimensional model
for grade continuity commonly is plagued with
deficiencies in the available data. This problem

could be minimized if, during exploration, ef-
fort were directed toward obtaining close-spaced
data along lines of various orientations (i.e., along
trenches, underground workings, and drill holes
with various orientations).

3. In tabular deposits, it is important to accumu-
late informationwith relatively high density along
lines within the plane of the deposit. Ore shoots
in veins, for example, commonly have a structural
control that gives theman elongate form that could
be indicative of an anisotropy to autocorrelation.

4. When dealing with large, three-dimensional ore
bodies, it is useful to consider lines of data in var-
ious spatial orientations. A given data set gener-
ally constrains the directions in which experimen-
tal semivariograms can be obtained optimally. A
general procedure that investigates experimental
semivariograms along principal grid directions,
oblivious to the orientations of linear sampling, is
generally inadequate.

5. Developing semivariogram models appears easi-
est with modest amounts of data; this appearance
is superficial. Limited data results in excessive
variability that commonly masks important fea-
tures of a regionalization. Consequently, the more
data the better.

6. Ranges determined from experimental semivar-
iograms for various orientations can be plotted
about a common center to define a best-fit ellipse
(two dimensions) or ellipsoid (three dimensions)
that quantifies the average anisotropy of grade (if
range is uniform in all directions, grade continuity
is isotropic).

7. Geologic features invariably constrain the el-
lipsoid of continuity; the principal plane of an
ellipsoid of continuity generally parallels a recog-
nizable geologic feature, such as a shear direction,
prominent direction of stockwork, or bedding.
Such geologic features are generally recognized
in advance and can be used to optimize the devel-
opment of a semivariogram model.

8. Semivariogram modeling is time-consuming but
warrants the effort regardless of the estimation
method ultimately to be used. Because thesemod-
els are so controlled by geologic features, domains
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characterized by different styles of mineralization
also have different semivariogram models.

9. In general, different semivariogram models
are obtained for sample data of different sup-
port. Where support differences are small, the
difference in semivariogram models might be
negligible, as can be demonstrated by comparison
of experimental semivariograms for the various
supports.

10. Extreme complications to semivariogram model-
ing have not been dealt with at length here.Where
such complexities as hole effects, widely varying
supports, non-Euclidean coordinate space, and
so on are encountered, reference should be made
to the detailed literature on these topics.

9.12: SELECTED READING

Barnes, R. J., 1991, The variogram sill and the sample
variance; Math. Geol. v. 23, no. 4, pp. 673–678.
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Min. Jour., July, pp. 90–94.

Clark, I., 1979b, The semivariogram – part 2; Eng.
Min. Jour., August, pp. 92–97.

9.13: EXERCISES

1. Determine a semivariogram model for the Sim-
ilkameen blasthole data by determining experi-
mental semivariograms in at least six directions
(e.g., including principal grid directions and prin-
cipal diagonal directions) using an available soft-
ware package.

2. Calculate experimental semivariogramsmanually
for lags up to 4 m using data from Fig. 6.3 as fol-
lows: (a) the 20 values of data of smallest support
(1 m); and (b) the data of second smallest support
(2 m). Note the effect of regularization.

3. An isotropic experimental semivariogram can be
fitted by a linear model for lags up to 30 m, a
spherical model for lags up to 45 m, and an ex-
ponential model for distances of at least 70 m. If
blasthole data are available on a square grid with
approximately 7-mspacing, 7×7m2 blocks are to
be estimated and a maximum of 20 samples will
be used for an estimate, which model(s) can be
used to provide adequate block estimates? Which
model is preferred?

4. Autocorrelation models, commonly semivari-
ograms, are fundamental to all geostatistical stud-
ies. It is a useful exercise to critically evaluate how
models are presented in geostatistical papers. Se-
lect a recent scientific/technical paper containing a
semivariogram model fitted to experimental data
and evaluate the model critically. Keep in mind
such features as number of pairs for each plotted
point on the experimental semivariogram, extent
of erratic local variation of the experimental data,
possible justification of the initial lag selected,
adequacy of control points to constrain the model
near the origin, justification of the nugget effect,
justification of the likely stationarity of the do-
main represented by the model, and whether there
is any attempt to relate the model to geologic fea-
tures of the deposit.
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Kriging

If geostatistics are to give improved reserve estimates, two conditions must be satisfied: geologists must be aware
of the methods that are available to them to control the quality of the geostatistical study and geostatisticians
must appreciate those areas in which geological input is required if credible results are to be obtained. (Rendu,
1984, p. 166)

Chapter 10 introduces the general concepts of
kriging and introduces some of the more widely
used procedures in the estimations of mineral in-
ventory, particularly such methods as punctual
kriging, ordinary kriging, and indicator kriging.
A variety of concerns related to kriging are intro-
duced, including negative weights, dealing with
outlier values, and the presence of conditional
bias in kriged results.

10.1: INTRODUCTION

Kriging is a generic term applied to a range of meth-
ods of estimation (punctual or block) that depend
on minimizing the error of estimation, commonly by
a least-squares procedure. The term was coined by
G. Matheron and P. Carlier to honor D. Krige, whose
empiricalwork on reserve estimation in SouthAfrican
gold mines was later expressed by geostatistical the-
ory developed by Matheron. A brief history of the
evolution of kriging is given by Cressie (1990). The
methods have been referred to widely as best linear
unbiased estimator (BLUE), but this simple public re-
lations expression ignores the characteristics inherent

in the wide range of techniques known as kriging, as
well as the many complexities involved with practical
applications. Nevertheless, kriging is an estimation
procedure that is globally unbiased (i.e., unbiased, on
average, over the entire data range).A conditional bias
to kriging results can be significant and is discussed
in a later section.

A number of specific methods are included in the
general term kriging, including simple kriging (SK),
ordinary kriging (OK), indicator kriging (IK), uni-
versal kriging (UK), probability kriging (PK), and
multiple indicator kriging (MIK). All depend on the
same general concepts – that the autocorrelation of
a regionalized variable can be modeled by a mathe-
matical function inferred from a realization (data) of
the regionalized variable and used to assist in esti-
mation. Here, attention is directed to a few specific
kriging techniques that have been widely applied to
resource/reserve estimation problems.

The general problem to be solved by kriging is
to provide the best possible estimate of an unknown
point or block from a discrete data set (samples),
as shown schematically in Fig. 10.1. In this exam-
ple, eight data are available with which to estimate
block B, and there is an implicit assumption that the
use of data outside aswell as inside Bwill improve the

215
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Figure 10.1: The general, block-estimation problem (in two
dimensions); that is, to use a selection of included and
nearby data with which to form an estimate of the mean
grade of a block.

estimation. One can imagine that the eight data points
could be weighted in some way (Eq. 10.1) to provide
the best possible estimate of block B; the question is,
how do we determine the weights in order to achieve
this aim?

g∗
B = w1s1 + w2s2 + w3s3 + w4s4 + w5s5

+w6s6 + w7s7 + w8s8 (10.1)

Simple averaging of the data is acceptable if the vari-
able is random (i.e., all weights are equal), but is not
optimal if the variable is regionalized (i.e., if sig-
nificant autocorrelation exists over distances larger
than the sample to block spacings). When autocorre-
lation is important, it is evident that a nearby datum
should carry more weight than a more distant datum,
although how much more is not clear.

10.2: BACKGROUND

In mineral inventory terms, the problem outlined pre-
viously is to determine sample weights in a manner
that provides the best possible estimator of a variable

(e.g., grade, thickness) for a location or volume, the
value of which is unknown and required. An obvious
constraint on a solution to this problem is that the fi-
nal estimate must be unbiased (i.e.,

∑
wi = 1, where

wi is the weight of sample i). Furthermore, bestmust
be defined. In kriging applications, “best” is taken to
be the estimate that minimizes the estimation vari-
ance (i.e., the procedure of kriging is a least-squares
procedure).

10.2.1: Ordinary Kriging

The estimation variance is given by

σ 2
e = E{[Z − Z∗

k ]
2}

where Z is the true value and Z∗
k is the kriging esti-

mator. This expression can be represented in terms of
the semivariogram, as follows:

σ 2
e = 2γ̄ (B, s) − γ̄ (s, s) − γ̄ (B, B)

or, for a discrete data set with unknown weights on
each datum, as

σ 2
e = 2

[ ∑
wiγ (B, si )

]
−

∑ ∑
wiw jγ (si , s j )

− γ̄ (B, B) (10.2)

where
∑

Wiγ (B, Si ) is the weighted average semi-
variogram value between all data points and the block
to be estimated,

∑ ∑
wiw jγ (si , s j ) is the weighted

average semivariogram value between all possible
pairs of data, and γ̄ (B, B) is the average semi-
variogram value of all possible pairs of points within
the block to be estimated.

Equation 10.2 can be minimized with the con-
straint that the weights must sum to 1 (

∑
wi = 1).

This constraint is introduced into the minimizing pro-
cedure as an expression equivalent to zero, introduc-
ing a new unknown µ, the Lagrange parameter, into
the system of equations (see Isaaks and Srivastava,
1989). The eventual equations that derive from this
procedure, known as the system of ordinary kriging
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(OK) equations, are as follows:




γ (s1, s1) γ (s1, s2) . . . γ (s1, sn) 1
γ (s2, s1) γ (s2, s2) . . . γ (s2, sn) 1
γ (s3, s1) γ (s3, s2) . . . γ (s3, sn) 1
γ (sn, s1) γ (sn, s2) . . . γ (sn, sn) 1

1 1 1 0







w1

w2

w3

wn

µ




=




γ (s1, B)
γ (s2, B)
γ (s3, B)
γ (sn, B)

1




where γ (si , s j ) is the gamma value between any two
data (Fig. 10.2), γ (si , B) is the gamma value between
a datum and the block to be estimated, and wi is the

γ (s7,B)

γ (s3,s2) γ (s3,s5)

γ (s3,s8)

γ (B,B)
_

_
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Figure 10.2: The block and data of Fig. 10.1, illustrating
how various average gamma values are obtained in order
to krige a single block. Lines extending from Sample 3 illus-
trate some of the pairs of data used to estimate the average
gamma value between s3 and all other data points; lines
extending between discretetized block locations (+ signs)
illustrate how pairs are selected to determine the average
gamma value within the block; lines from sample s7 to dis-
cretized block locations (+ signs) illustrate how paired val-
ues are obtained to determine the average gamma value
between a sample and the block.

sample weights to be determined. The solution to this
set of equations provides weights such that the block
(or point) estimate is given by

Z∗
k =

∑
wisi .

The corresponding minimized estimation variance,
known as the kriging variance, is given by

σ 2
k =

∑
wiγ (si , B) + µ − γ̄ (B, B).

Manual implementation of a set of kriging equations
is generally impractical. Fortunately, various software
packages are available at reasonable cost for a wide
gamut of geostatistical calculations, including various
types of kriging (e.g., Deutsch and Journel, 1998).

10.2.2: Simple Kriging

Ordinary kriging does not require that the mean value
of the field of data be known. Consequently, OK is a
common procedure of mineral inventory estimation.
However, there are situations in which themean value
(of the field of data inwhich estimation in undertaken)
is well known. In such cases, the kriging equations re-
duce to the situation of an unconstrained set of equa-
tions (i.e., theweights are not constrained to sum to 1),
as follows:




γ (s1, s1) γ (s1, s2) . . . γ (s1, sn)
γ (s2, s1) γ (s2, s2) . . . γ (s2, sn)
γ (s3, s1) γ (s3, s2) . . . γ (s3, sn)

·
·

γ (sn, s1) γ (sn, s2) . . . γ (sn, sn)







w1

w2

w3

w3




=




γ (s1, B)
γ (s2, B)
γ (s3, B)

γ (sn, B)




.

This system of equations is the simple kriging (SK)
system. In general, the weights obtained will not sum
to 1. They are made to do so (to assure nonbias) by
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assigning an appropriate additional weight to the
mean value, as follows:

wn+1 = 1 −
∑

wI

where wn+1 is the weight to be applied to the mean
value. Equations for both the optimized estimate
and the kriging variance are the same as for ordi-
nary kriging. Simple kriging has been applied ex-
tensively in making estimates for producing “Rand-
type” gold deposits in South Africa, where very large
amounts of data are available and the mean grade of
a deposit or domain is well established (e.g., Krige,
1978).

10.3: GENERAL ATTRIBUTES OF KRIGING

The general procedure of kriging contains a number
of important implications that are not particularly
obvious to those with a limited mathematical back-
ground:

(i) Kriging is correct on average although any sin-
gle comparison of a kriged estimate with a true
value might show a large difference; on average,
however, such differences generally are less for
kriging than for other interpolation techniques.

(ii) Kriging of a location (point) for which infor-
mation is included in the kriging equations re-
sults in a kriged estimate equivalent to the known
data value (i.e., kriging reproduces existing data
exactly).

(iii) Kriging takes into account data redundancy. In
the extreme, a very tight cluster of several anal-
yses carries almost the same weight as a single
datum at the centroid of the cluster.

(iv) Kriging can be carried out as described, but on
transformed data. An extensive literature exists
for lognormal kriging, although this method has
been found in practice to lead to serious biases
in some cases (David, 1988). In general, if the
transform function is not linear, the back trans-
formwill not produce an optimum estimator (see
Journel, 1987). Other transformations are also
common, including an indicator transform and a
generalized normal transform.

(v) A mathematical criterion of the kriging system
is that the semivariogram be represented by a
“positive definite” mathematical function. This
criterion normally ensures that the kriging vari-
ance is positive. Armstrong (1992) warns of
situations in which positive definiteness is an
insufficient criterion to ensure a positive vari-
ance; Journel (1992) suggests that such situa-
tions are extreme and not generally met by prac-
titioners or are taken into account by practical
methodology.

(vi) As described here, kriging depends on a station-
ary field of data. At the very least, local station-
arity is required (i.e., stationarity must exist over
a distance as great as the greatest sample sepa-
ration to be expected). Where local stationarity
is defined, the distance over which local station-
arity occurs defines the maximum diameter of
a search radius for selecting data with which to
make an estimate.

(vii) Kriging is unbiased globally but generally con-
tains some element of conditional bias (i.e., vari-
able bias as a function of concentration), as do
other estimation methods.

10.4: A PRACTICAL PROCEDURE
FOR KRIGING

Kriging results are dependent on the autocorrelation
model of the variable being estimated; hence, the
semivariogram modeling process and the need for a
high-quality model are of paramount importance. A
sound semivariogram model that is integrated with
the geologic model of a deposit is the foundation on
which confident kriging is based. Once the semivari-
ogram model is determined (see Chapter 9) the sub-
sequent procedures have much in common with other
estimation procedures. A practical approach to krig-
ing involves a series of structured steps that include:
(i) cross validation of the semivariogram model,
(ii) criteria for selection of data for individual block
estimates, (iii) specification of minimum and maxi-
mumnumbers of data for kriging each block, (iv) con-
straining data in order to deal with specific problems
(e.g., negativeweights, strings of data, specific locales
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not estimated, block estimation at domain margins),
followed by (v) systematic kriging of each block
in the array to be estimated. Computerized systems
normally work through the defined block array in a
systematic manner, checking various criteria to deter-
mine if and how each block is treated.

Data must be selected for each point or block
to be kriged. This normally entails a search of the
data array for a group of data that meet several speci-
fied requirements. Efficient search procedures are dis-
cussed by Journel and Huijbregts (1978). Generally,
all data within a particular search radius of the point
(or block) being estimated are selected; the search
volume may be spherical or ellipsoidal as the case
demands. A maximum number of data is imposed on
each block estimate so that the set of kriging equa-
tions for any single block estimate is relatively small
and its solution is efficient. Decreasing the number of
data points, perhaps by selecting the few nearest data
in each quadrant or octant, has the added benefit that
negative weights can be avoided and/or minimized. In
addition, a minimum number of data is stipulated in
order to avoid extremely large errors in which only lo-
cal stationarity is guaranteed and ensure interpolation
as opposed to extrapolation. It is normal to require
that data be reasonably well distributed spatially (i.e.,
not all clustered). As an example, a two-dimensional
search might select all samples within a search ra-
dius R from the point (block) being estimated. From
these data, a maximum of two per quadrant are se-
lected (i.e., the two samples closest to the point or
block [center] to be estimated). In addition, a require-
ment might be that at least three quadrants contain
at least one data point. This procedure necessarily
sets a minimum number of data at three and a max-
imum of eight. Potential kriging situations that do
not meet these requirements are not kriged. If many
unkriged blocks arise, the kriging criteria might be
inappropriate.

Clearly, the search radius and the spatial density
of data control the number of data points available for
estimating each block. For a particular data density,
too small a search radius results in too few data being
selected. Isaaks and Srivastava (1989) suggest that for
irregularly located data, a minimum search radius can

be approximated by an average data spacing given by

Avg. data spacing = (Area sampled)/n)1/2.

Too large a search radius leads to large amounts of
data being selected, with the result that computation
time is increased, as are the likelihood of negative
weights and the probability of exceeding the limits of
local stationarity.

Block kriging is generally appropriate when the
block size is comparable to or larger than the spacing
of the data array (Journel andHuijbregts, 1978).When
blocks are small relative to data spacing, estimates
have large errors and conditional bias can dominate
the block estimates. As a general rule, it is not wise to
estimate blocks whose dimensions are less than half
the sample spacing.

Cressie and Zimmerman (1992, p. 57) conclu-
de that, “the geostatistical method is surprisingly
stable. . . . However, we do not advocate the blind use
of geostatistics, but in the hands of a practitioner,well-
informed about its limitations, it can be a powerful
too.”

10.5: AN EXAMPLE OF KRIGING

An experimental semivariogram model has been de-
termined for a bulk, low-grade, epithermal gold de-
posit in the southwestern United States. Data are
average oz/t for 30-ft composites from several hun-
dred vertical drill holes. The deposit occurs in a
nearly flat-lying volcanic sequence that has broad, lat-
eral, geologic continuity but systematic changes with
depth. Bench height is 30 ft, and locations of explo-
ration drill holes closely approximate a 50× 50 ft
grid. The two-dimensional relative spherical semivar-
iogram model developed for horizontal directions in
the uppermost variable level is isotropic with param-
eters C0 = 1.00,C1 = 2.1, and a = 325 ft.

This model can be used to examine a variety of
estimation situations. Consider the problem of esti-
mating a 50× 50× 30 ft3 block with a central drill
hole and the eight data items in the first aureole of
nearby data (Fig. 10.3). This pattern of data reduces to
a set of kriging equations with three unknownweights
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Figure 10.3: A square grid of data to be used to estimate
a block array defined so that each block contains a cen-
trally positioned datum. This array is that of the 50× 50×
30 ft3 block estimation described in the text using ordinary
kriging.

because of the symmetry of the situation (i.e., w1 ap-
plied to sample 1; w2 to be distributed evenly to sam-
ples 2, 3, 4, and 5; and w3 to be distributed equally to
samples 6, 7, 8, and 9). The general kriging equations
that must be solved follow:




γ (s1, s1) γ (s1, s2) γ (s1, s3) 1
γ (s2, s1) γ (s2, s2) γ (s2, s3) 1
γ (s3, s1) γ (s3, s2) γ (s3, s3) 1

1 1 1 0







w1

w2

w3

µ




=




γ (s1, B)
γ (s2, B)
γ (s3, B)

1


 .

All the mean gamma values as determined from the
semivariogam model and the known geometric con-
figuration of the data are listed in Table 10.1. Note that
these values can be estimated directly from the semi-
variogram model; in some cases, the use of auxiliary
functions is a possible alternative to numeric approxi-
mation. Solving these equationswith appropriate sub-
stitutions of values gives the following weights:

w1 = 0.224, w2 = 0.527, w3 = 0.249,

µ = 0.0142.

Remember that w2 applies to four data items; thus,
each item has a weight of w2/4 = 0.132. Similarly,
w3/4 = 0.062 is the weight to be assigned to each
of samples 6, 7, 8, and 9. With these weights and the
Lagrangemultiplier, the equation for kriging variance

Table 10.1 Gamma values for kriging example

Symbol Gamma

γ (s1, s1) 0
γ (s1, s2) 1.48
γ (s1, s3) 1.67
γ (s2, s2) 1.32
γ (s2, s3) 1.76
γ (s3, s3) 1.54
γ (s1, B) 1.21
γ (s2, B) 1.48
γ (s3, B) 1.70
γ (B, B) 1.273

(Eq. 10.3) can be solved as follows:

σ 2
k = 0.224 × 1.21 + 0.527 × 1.48 + 0.249

× 1.70 + 0.0142 − 1.273 = 0.216

or

σk = 0.46.

Because the semivariogram model is relative, the
calculated kriging variance is actually a proportional
error. In other words, the value 0.46 must be multi-
plied by the corresponding block grade in order to
determine the absolute error. Even without knowing
the block grade, it is of considerable interest to real-
ize that the regular, 50-ft grid of data produces block
estimates with an error (one standard deviation) of
46 percent. There can be little wonder that large er-
rors aremade in ore/waste classification and that great
disparities exist in many metal reconciliation studies.

10.6: SOLVING KRIGING EQUATIONS

The solution of a system of kriging equations com-
monly is routine and a variety of subroutines exist
commercially. Some aspects of this topic are dis-
cussed by Journel and Huijbregts (1978). However,
problems can arise as a result of ill-conditioned co-
variance matrices or numeric instability of the algo-
rithm used to solve the matrix equations (O’Dowd,
1991). Davis et al. (1978) provide an algorithm that
has been used widely in the mining industry for local
estimation from blasthole data.
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Table 10.2 Cross-validation results, Au accumulation (oz/st × ft), Silver Queen deposit

Data set Method Estimates mean s2 Residuals mean s2

DDH (n =112) OK-200 0.61 0.12 0.01 0.37
OK-150 0.62 0.16 −0.01 0.43
POLY 0.62 0.37 −0.02 0.51
ISD 0.61 0.14 −0.01 0.38
TRUE 0.59 0.40

DRIFT (n =365) OK 0.54 0.15 0.007 0.114
POLY 0.54 0.28 −0.011 0.178
ISD 0.53 0.15 0.00 0.11
TRUE 0.53 0.25

Source: After Nowak (1991).

A matrix is ill conditioned if small errors (round-
ing or in the original data) lead to large errors in re-
sults that are produced. Small and large are defined
in relation to a specific problem. Numeric stability is
the quality of a particular algorithm in obtaining a re-
sult. The conditioning number of a symmetric matrix,
k(A) = lmax/ lmin, where lmax and lmin are the largest
and smallest eigenvalues, is an indication of the pos-
sibility of a matrix being sensitive to error. O’Dowd
(1991) demonstrates that an ill-conditioned covari-
ancematrix leads to an ill-conditioned krigingmatrix.
In addition, he shows the following:

(i) For a pure nugget effect, as the sill decreases in
value, the conditioning number increases.

(ii) For the spherical model, the conditioning number
is principally a function of the sill value. Large
conditioning numbers can be reduced simply by
scaling. As O’Dowd (1991, p. 731) says, “for
most purposes, scaling the model so that it has a
sill value of 1 to 1,000/n1/2 will reduce the condi-
tion number to tractable levels.” This effect is the
same as scaling the data themselves. It is useful
to note that scaling the semivariogram or covari-
ance model to a sill of one is equivalent to using
the correlogram in the kriging system.

10.7: CROSS VALIDATION

Cross validation is a widely used procedure in which
point data are successively extracted individually
from a data array and each is then estimated by a

group of the neighboring data (the leaving one out
method of Davis, 1987). Thus, any particular estima-
tionmethod can be used, and the results of point (sam-
ple) estimates can be compared with true (known)
values. When many such estimates can be made and
compared with reality, an estimation method can be
evaluated for global bias and an average error can
be determined (as can the histogram of errors). Esti-
mated values can also be plotted versus known values
and the resulting x–y plot can be evaluated for con-
ditional bias (i.e., bias dependent on the value of the
estimate).

The procedure of cross validation is particularly
useful in comparing results by several estimation
methods. Consider as an example, the case of Silver
Queen polymetallic epithermal deposit studied by
Nowak (1991). The deposit is a steeply dipping vein
system for which 112 diamond-drill-hole pierce
points exist at a spacing of roughly 100 ft or more.
Also available are 365 channel samples, each taken
across the vein at 5- to 10-ft intervals along an ex-
ploratory drift. Autocorrelation models have a range
about the same as the diamond-drill-hole spacing
(Nowak, 1991). Known values have been estimated
independently for each data set by three methods:
ordinary point kriging (OK), polygonal (nearest-
neighbor) estimation (POLY), and inverse squared
distance estimation (ISD). Each known point alsowas
estimated byOK, first for a search radius of 150 ft and
then for a search radius of 200 ft. Results are summa-
rized in Table 10.2. The 200-ft search radius produced
marginally better results (i.e., an error dispersion of
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0.37 versus 0.43 for a 150-ft radius), so a search
radius of 200 ft was selected for estimation purposes.

The POLY diamond-drill-hole cross-validation
results most closely reproduce the global characteris-
tics of the raw diamond-drill-hole data (Table 10.2).
However, the residuals are high in comparison with
ISD and OK results, indicating that POLY errors
are relatively large; nonetheless, the errors must be
compensating because the mean error (residual) is
essentially zero. ISD and OK cross validation of
diamond-drill-hole data show the two methods to be
essentially equivalent in quality for these point data.
Both methods are globally unbiased, but are substan-
tially smoothed relative to original data (dispersions
of estimates are much less than the dispersion of
real data). For block estimation purposes, kriging is
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Figure 10.4: Cross-validation of Au accumulation (grade × thickness) by ordinary kriging for 365 drift samples,
Silver Queen epithermal vein. (a) Histogram of original values. (b) Histogram of kriging estimates. (c) Histogram
of kriging errors (estimate − true value). (d) Scatterplot of kriging estimates (y) versus true values (x).

preferred relative to ISD because kriging takes block
size into account, whereas ISD does not.

The drift, cross-validation results illustrate the ad-
vantage of an abundance of closely spaced data at
a relatively early stage of deposit evaluation. The
comparative results of Table 10.2 and Figs. 10.4 to
10.6 show that all three estimation methods appear
to slightly overestimate the true mean value, that the
POLY method approximates the dispersion of real
data but incorporates relatively large random errors,
and that ISD and OK are essentially equivalent in
quality as point estimators. In this case, the similarity
of ISDandOKestimates results from the fact that both
methods place most weight on nearby samples that
are highly correlated with the point being estimated.
In such circumstances, there is little opportunity for
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Figure 10.5: Cross-validation of Au accumulation (grade ×
thickness) by inverse distance squared for 365 drift
samples, Silver Queen epithermal vein. (a) Histogram
of estimated values. (b) Histogram of estimation errors
(estimate − true value). (c) Scatterplot of IDW estimates
(y) versus true values (x).

kriging to operate to its best advantage. Neverthe-
less, as concluded from the diamond-drill-hole cross-
validation results, OK is preferred for block estima-
tion because change of support is automatically taken
into account, whereas this is not the case with ISD.
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Figure 10.6: Cross validation of Au accumulation (grade ×
thickness) by polygonal estimation (nearest-neighbor) for
365 drift samples, Silver Queen epithermal vein. (a) His-
togram of estimates. (b) Histogram of errors (estimate −
true value). (c) Scatterplot of polygonal estimates (y)
versus true values (x).

It is common practice to conduct cross validation
only at a scale (spacing) for which most estimates
are to be made. For example, if only exploration drill
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data are available and a sample in a drill hole is to
be cross validated, no other sample in the same drill
hole is used in the cross validation. This procedure
ignores (i) the fact that in some localities, data for
estimation might be closely spaced, even where most
data are widely spaced; (ii) in block estimation, some
blocks are very close to or contain some of the data;
and (iii) a comparison of estimation methods is in-
complete unless such a comparison is made both
for widely and closely spaced data. In general, it
is advantageous to conduct cross validation at more
than one scale, as illustrated by the Silver Queen ex-
ample, if for no other reason than the difficulty of
distinguishing relative quality of estimation meth-
ods where data are dispersed in space with variable
density.

Cross-validation results can be examined usefully
on scatter diagrams of estimated values versus true
values (Figs. 10.4 to 10.6) because outliers and pat-
terns indicating conditional bias are commonly evi-
dent. When large data sets are cross validated by sev-
eral techniques, it is common to describe the results
by a least-squares line fitted to the data on an x–y
plot. In such a case, a traditional, least-squares pro-
cedure (all error in the estimate) should be used. The
statistics of such lines are useful to compare cross-
validation results by various methods. For example,
the more the slope departs from 1, the greater is the
conditional bias. The relative scatter about the line is
also a useful comparative tool, as is the correlation
coefficient.

10.8: NEGATIVE KRIGING WEIGHTS

10.8.1: The Problem

Negative weights are a peculiarity of certain data ge-
ometries of kriging systems combined with a high
degree of continuity (including a low to negligible
nugget effect) in the semivariogram model. They are
acceptable in estimations involving some data types.
With topographic data, for example, negative weights
permit values that are outside the limits of the data
used to make an estimate. However, with assay data,

in some cases they can lead to enormous estimation
errors, particularly when relatively few data are in-
volved in an estimate. Negative weights create prob-
lems that can be illustrated by several simple exam-
ples, as follow:

� Example 1: Consider a block to be estimated by
five data, one of which is one-third the average
grade of the others and has a weight of−0.1. Con-
sequently, the sum of all the other weights is 1.1.
Assuming grades of 1 and 3 g/t, the average grade
estimated is (−0.1 × 1) + (1.1 × 3) = 3.2 g/t, a
value that is higher than any of the data used in
making the estimate. A negative weight on a low
grade leads to an overestimate.

� Example 2: Consider a block to be estimated by
five data, one of which is three times the other
four data and has a weight of−0.1. Consequently,
the sum of all the other weights is 1.1. Assuming
grades of 1 and 3 g/t, the average grade estimated
is (−0.1 × 3) + (1.1 × 1) = 0.8 g/t, a value that
is less than any of the data used in making the
estimate. A negative weight on a high grade leads
to an underestimate.

� Example 3: Assume the situation of Example 2,
except that the negative weight applies to an out-
lier grade of 75 g/t. Hence, the average grade esti-
mated is (−0.1 × 75) + (1.1 × 1) = −6.4 g/t, an
impossible negative grade!

� Example 4: Assume the situation of Example 3
except that the negative weight that applies to
the outlier is very small, for example, −0.01.
Hence, the average grade estimated is (−0.01 ×
75) + (1.01 × 1) = 0.26 g/t. This low positive re-
sult could send a block of ore to waste!

It is evident from the foregoing examples that neg-
ative weights can be a serious problem. Of course,
the problems illustrated are alleviated if (i) outliers
are dealt with separately in the estimation procedure,
and (ii) negative weights are much smaller in absolute
value than are those in the examples cited. However,
even small negative or positive weights present a se-
rious estimation problem if applied to outlier values.
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Table 10.3 Kriging weights for “rings” of data when a block to be kriged is situated in a regular, square data
array (nugget effect present)

Ring w1 w2 w3 w4 σ 2
k Remark

1 1.0 1.2 Data at four corners of block
2 0.6 0.4 0.84 Two rings of data
3 0.59 0.35 0.06 0.83 Three rings of data
4 0.59 0.34 0.06 0.01 0.83 Four rings of data

10.8.2: The Screen Effect

The common problem of negative weights in krig-
ing is illustrated in Fig. 10.7, where an outer fringe of
samples (shownasfilled triangles)with small negative
weights are screened from the block to be estimated
by samples (+ signs) with positive weights. In such
cases, the negative weights tend to be very small val-
ues relative to other weights (commonly 1/100 or
less), provided there aremany samples to be weighted
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Figure 10.7: An example of the common problem of neg-
ative weights in block kriging (redrawn from Baafi et al.,
1986). The block is kriged using all the data locations
shown and a semivariogram model that, unfortunately, is
not summarized in the text. Data locations shown as +
have positive weights; data locations shown as filled trian-
gles have negative weights. Many such trials indicate that
negative weights are common for (i) data locations that are
screened by other data relative to the block to be estimated,
and (ii) a semivariogram model that has a high degree of
continuity.

and the distribution of samples is not strongly
clustered. In cases of a substantial amount of data
and an absence of outliers, negative weights normally
can be ignored, because in total they represent only
up to a few percent of the total weights and they
are applied to grades of the same magnitude as are
the positive weights. The situation in which negative
weights become detrimental to the estimation pro-
cess is when relatively few data are used to make an
estimate or a relatively high value (perhaps but not
necessarily an outlier) receives a negative weight. In
the extreme situation a negative grade estimate could
result.

An idealized example of negative weights is
provided by Brooker (1975) and is summarized in
Fig. 10.8 and Tables 10.3 and 10.4. The block in

Figure 10.8: A regular grid of data (+) illustrating a block
to be estimated. Ring 1 of data is at the block corners-
ring 2 is the next square “halo” of 12 data, and ring 3 is the
next “square” array of 20 data. Block dimensions are the
same as data spacing. This pattern leads to negative kriging
weights in the outer fringes of data if the semivariogram
model has a high degree of continuity (low nugget effect
and long range) as shown in Tables 10.3 and 10.4.
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Table 10.4 Kriging weights for “rings” of data when a block to be kriged is situated in a regular, square data
array (no nugget effect)

Ring w1 w2 w3 w4 σ 2
k Remark

1 1.0 0.25 Data at four corners of block
2 1.07 −0.07 0.25 Two rings of data
3 1.07 −0.03 −0.04 0.25 Three rings of data
4 1.06 −0.01 −0.03 −0.02 0.25 Four rings of data

Fig. 10.8 is to be estimated by various numbers of
rings of data; ring 1 is the four data at the corners of
the block, ring 2 is the next halo of data, and so on.
A spherical semivariogram model (C0 = 3.8,C1 =
12.2, and a range of 11.4a, where a is the dimen-
sion of the square block to be estimated) is used for
one series of estimates (Table 10.3); then a similar
model (except with C0 = 0) is used for a second se-
ries of estimates (Table 10.4). Results in these two ta-
bles indicate that negative weights can be avoided or
minimized if a nugget effect exists or if relatively few
rings of data are used for block estimation. Thewidely
used procedure of limiting data to two per octant is
one practical means of minimizing the likelihood of
negative weights. As a sidelight, it is interesting to
note from Table 10.4 that the absence of a nugget ef-
fect leads to little practical advantage to adding many
haloes of data.

Baafi et al. (1986) conducted a variety of kriging
experiments to investigate negative weights and un-
derstand better the situations in which they occur; the
principal results of this study are as follows:

(i) An increase in the number of negative weights
occurs as the spatial continuity increases as
demonstrated by kriging experiments in which
the ratio of C0/(C0 + C1) is changed.

(ii) As the range of influence increases, other param-
eters remaining constant, the number of negative
weights increases.

(iii) In all experiments, several haloes of data about
the block being estimatedwere used. In all cases,
negative weights were assigned only to sample
points that are screened by other samples located
closer to the block being estimated.

(iv) “A practical way of deciding the number of
samples to use during kriging to avoid negative
kriging weights is to use the ‘first layer’ of sam-
ples only.” (Baafi et al., 1986, p. 438)

There are other ways of dealing with the prob-
lem of negative weights. Barnes and Johnson (1984)
propose positive kriging, in which an additional con-
straint is imposed beyond the normal kriging con-
straints (i.e., all weights wi are positive). This solu-
tion to the problem requires rewriting kriging routines
(see also an example bySchaap andSt.George, 1981).
Other less onerous solutions include

(i) Requiring appropriate amounts and spatial dis-
tribution of data (e.g., use an octant data search
and accept a maximum of two data items per
octant); this decreases the risk of screened data
occurring

(ii) Adopting a simple routine to test weights ob-
tained for a particular point or block kriging es-
timation; if negative weights are found, the cor-
responding data are omitted and the remaining
data are used to krige again

(iii) Removing outliers so that they are not available
for weighting should negative weights arise.

In general, negative weights are small in relation
to other weights, perhaps representing up to a few
percent of the total weight. Thus, if only a small pro-
portion of total samples in any one kriging array carry
negative weights and outliers are absent, the effect of
negative weights is negligible. In general, however,
outliers are a matter of great concern and must not be
included in routine kriging arrays.
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10.9: DEALING WITH OUTLIERS

The problem of outliers is of utmost importance.
An entire chapter has been devoted to the topic
(Chapter 7) and a discussion presented of the prob-
lems caused by outliers during semivariogrammodel-
ing.A further indication of their importance to kriging
estimation procedures has been considered in connec-
tion with negative kriging weights; a negative weight
attached to an outlier can, in some cases, lead to a
negative grade estimate! A common practice among
geostatisticians has been to ignore outliers during
semivariogrammodeling but retain them for purposes
of mineral inventory estimation (e.g., David, 1977).
This procedure fails to recognize the common geo-
logic situation that outliers represent a separate grade
population characterized by its own continuity; gen-
erally, the physical continuity of high grade is much
less than that of the much more prevalent low grades.
Thus, serious overestimation of both tonnage and
average grade above a cutoff grade can result if a gen-
eral model, normally dominated by the lower, more
continuous grades, is applied to very high-grade val-
ues. The problem is acute when high grades are iso-
lated in a field of lower values. When many high-
grade values cluster spatially, it may be possible to
establish a separate domain with its own continu-
ity model. Practical examples dealing with the prob-
lem of multiple continuity populations are considered
by Champigny and Sinclair (1984, 1998b), Parker
(1991), and others.

10.9.1: Restricted Kriging

Several approaches to kriging have been proposed
to deal with the problem of outliers. An important
method known as indicator kriging has found signif-
icant application in the mining industry and is dis-
cussed at length in a later section of this chapter. An
alternative kriging approach to dealingwith outliers is
restricted kriging (Journel and Arik, 1988; Pan, 1994;
Pan and Arik, 1993), which makes use of an indica-
tor variable to recognize an outlier sample and then
introduces the restriction that the weight of a high
grade (outlier) is equal to the probability of encoun-
tering a high-grade (outlier) value within the search

radius. For example, if n values including p outliers
are within a search radius, the proportion is esti-
mated as f = p/n. The resulting form of the kriging
equations is as follows:
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where symbols are as described previously, except ji
is an indicator with a value of 1 if si is an outlier and
zero otherwise, and � is the probability of outliers
in the particular search radius (� can be determined
on a block-by-block basis in advance, or can be es-
timated as the ratio of outliers/total samples within a
particular search radius). The value of � can be es-
timated globally with reasonable confidence, but it is
very difficult to estimate locally with a high degree
of confidence. The net effect of accepting � as the
ratio of outliers to total samples in the search volume
is that the outlier grades affect many blocks (however
many blocks occur in a search radius centered on the
outlier). This is not consistent with the limited spatial
extent of outlier grades.

If a single outlier is present in a search volume for
the random case, the effect of restricted kriging is to
weight it the same, regardless of location relative to
the block or point being estimated. Consequently, an
outlier is spread with the same weight to all blocks
whose centers are separated from the outlier by a dis-
tance less than the search radius. This is contrary to
the view expressed in Chapter 7 – that true outliers
generally have restricted physical continuity and do
not extend beyond the block within which they are
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contained. Hence, restricted kriging in the treatment
of high-grade outliers can be seen as an empirical
technique that arbitrarily reduces the impact of high-
grade values and thus is analogous to cutting or cap-
ping of values. Pan (1994) also describes the incor-
poration of low-grade outliers into the kriging system
using a similar approach.

Because outliers represent such a small proportion
of the total data (and volume) of a deposit, their char-
acteristics are relatively poorly known. Of course, an
unbiased histogram provides an estimate of their true
relative abundance, but with a large error. Estimation
methods can be tailored to provide block estimates
that globally sum to the correct amount ofmetal, based
on an unbiased histogram. However, individual block
estimates can be seriously in error because outlier oc-
currences not intersected by sampling cannot be taken
into account during estimation, and existing outlier
values will certainly be extended to some inappropri-
ate blocks in order to produce sufficient metal.

10.10: LOGNORMAL KRIGING

The mathematical background to lognormal kriging
is given by Journel and Huijbregts (1978) and a sum-
mary, with cautionary remarks regarding practical
applications, by David (1988). In practice, data are
logtransformed and ordinary kriging is then carried
out on the logtransformed values. This procedure is
applied when the data are lognormally distributed;
consequently, the value estimated is the mean log-
transformed value, the backtransform of which is the
geometric mean. In lognormal distributions, the geo-
metric mean is substantially less than the arithmetic
mean; consequently, the arithmetic mean and associ-
ated error dispersion must be calculated from the esti-
mates of log parameters as illustrated in Chapter 4. Of
course, this calculation assumes a perfect lognormal
distribution. Consider a variable Y (x) = Ln[Z (x)]
(i.e., Z represents the raw data and Y the logtrans-
formed data).

David (1988, p. 119) discusses an example of log-
normal kriging in which variations in the semivari-
ogram parameters lead to two widely different esti-
mates of orebody grade of 2.38 percent metal and

1.54 percent metal, using the same database. Such
differences arise when the semivariogram is not well
defined and there is substantial latitude in choice of
a sill level. Differences in sill levels can translate
into differences in kriging variances, which affect the
transformation from the estimated geometric mean
to the corresponding average value, a transformation
that is extremely sensitive to the kriging variance.
David (1988) concludes, “a dishonest person can get
the grade hewants, simply by changing the variogram
parameters. This does not make lognormal kriging a
recommendable tool” (p. 119). In general, lognormal
kriging should be avoided and an alternative, equiva-
lent procedure such as ordinary kriging with a relative
semivariogram should be used.

Of course, in special cases, particularly where a
thorough cross validation of lognormal kriging has
been demonstrated, the method may find acceptable
use as indicated by Clark (1999), who discusses some
of the practical difficulties and misconceptions that
have arisen in the application of lognormal kriging,
including backtransformation of estimates and con-
servation of lognormality. Kriging of logtransformed
values produces a block estimate that, if backtrans-
formed to its original arithimetic base, produces the
geometric mean rather than the desired arithmetic
mean. The correct value to be backtransformed is

Lk + σ 2
1

/
2 + γ (B, B) − µ

where

Lk is the kriging estimator from
logtransformed data∑2

1 is the kriging variance from
logtransformed data
(semivariogram sill)

γ (B, B) is the F function for the block
estimated

µ is the Lagrange multiplier
determined in solving the kriging
equations.

The involvement of the kriging variance in this
backtransformation function clearly requires confi-
dence in the sill of the semivariogram as emphasized
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by David (1988). Clark (1999) also recognizes that
although no theoretical reason exits for “conservation
of lognormality” in moving from data distribution to
block distribution, such conservation “appears to be
the case in many practical applications” (p. 409).

An easy way to avoid the concerns mentioned
regarding lognormal kriging is to krige without a
transform, but using a relative semivariogram.Cressie
(1985) demonstrated the general equivalence of the
two procedures.

10.11: INDICATOR KRIGING

Indicator kriging (Journel, 1983) involves the trans-
formation of data to zeros or ones depending on
(i) the position of a value relative to a designated
threshold or (ii) the presence or absence of a geo-
logic feature. For example, samples of a barren dyke
can be attributed a value of zero andmineralized sam-
ples assigned a value of 1; similarly, samples above an
arbitrary threshold grade can be assigned 1, whereas
samples below the threshold are assigned0.Of course,
a semivariogram model must be determined for the
newly transformed variable, after which kriging can
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Figure 10.9: Histogram of gold grades showing the concept of indicator transformation. For a threshold of 0.75 g/t (i.e.,
xc = 0.75), all higher values are assigned a value of 1; all equal or lower values are assigned a value of 0. Hence, a transform
of 1 indicates certainty that the value is greater than the threshold.

be carried out exactly as described previously. The
result of kriging with indicator values is to estimate a
proportion pk that can be interpreted in two ways:

(i) The probability that condition “sample = 1” pre-
vails at the point kriged

(ii) The proportion of condition “1” that exists in the
vicinity of the point kriged (the proportion of con-
dition “0” that exists is 1 − pk).

Indicator kriging is simply the use of kriging (sim-
ple or ordinary) to estimate a variable (e.g., gold in g/t)
that has been transformed into an indicator variable. In
this case, each value of g/t gold is transformed into 0 or
1, depending on whether the value is above or below
an arbitrary threshold called the indicator threshold
or indicator cutoff. For example, assume that in a data
set all values greater than 0.75 g/t will be transformed
to 1 and all those values less than or equal to 0.75 g/t
will be transformed to 0, as shown in a histogram of
gold grades (Fig. 10.9) and on a plot of a small data
array (Fig. 10.10). The transformed data (Fig. 10.10b)
now represent the probabilities of being above or be-
low the threshold. If the grade of the sample is above
the threshold, it is assigned a 100 percent probability
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Figure 10.10: Location of a small subset of the data of Fig. 10.9. (a) Posting of original values. (b) Indicator transforms
of data in (a) relative to a threshold of 0.75 g/t. Point A can be estimated by kriging using the transformed data and an
appropriate indicator semivariogram model to determine the probability that the point has a value greater than 0.75.

(1.0) of being above the threshold; if the grade of
the sample is below the threshold, it is assigned a
0 percent probability of being above the threshold. It
can be seen that what has been done with the indica-
tor transformation is change the variable that is esti-
mated from a grade variable to a probability variable.
A kriged estimate is now the estimate of the probabil-
ity of being above the threshold, not an estimate of the
average grade. Of course, assignment of an indicator
assumes that the values are known perfectly. This is
not generally true with ore grades, where the error
of an individual sample can be large; herein lies one
of the principal sources of unknown error in the use of
indicator-transformed data for estimation purposes.

10.11.1: Kriging Indicator Values

Consider point A on Fig. 10.10b. Kriging, using the
surrounding data and an appropriate semivariogram
model, produces an estimated value that lies in the
range from 0 to 1. Assume that kriging produces an
estimate of 0.27 for point A. This estimate can be
interpreted in two ways:

1. 0.27 is the probability that the true value of
the indicator at point A is equal to 1. In this case,
there is a 27 percent chance that point A has a
grade greater than 0.75 g/t gold; hence, there is
a 73 percent chance that A has a grade less than
0.75 g/t gold.

2. Assuming there is a cluster of samples centered
on point A, 0.27 is the proportion that have grades
above the indicator threshold of 0.75 g/t gold.

It is this latter interpretation that is important in
applications of indicator kriging to resource/reserve
estimation. This shift in thinking, in going from
considering the estimate to be an estimate of prob-
ability to considering it an estimate of proportion,
is subtle but valid. If the probability is applied to a
large enough cluster of samples (over a large enough
volume – generally, one block of the block model),
it is reasonable to consider the estimate as being a
proportion of the block.

Such simple applications of indicator kriging have
foundwidespread use inmineral inventory estimation
because of their simplicity. Variography must be car-
ried out for the indicator-transformed data and point
estimation is then by ordinary kriging of the trans-
formed values. This indicator kriging procedure has
been used to estimate relative proportions of mineral-
ized versus unmineralized ground (David, 1988), the
proportion of barren dykes within a mineralized zone
(Sinclair et al., 1993), the presence or absence of a par-
ticular geologic feature such as a barren dyke within
a deposit as opposed to outside a deposit (Sinclair
et al., 1993), and so on. However, the method dete-
riorates as one of the proportions becomes small, in
part because the corresponding semivariogrammodel
is poorly defined.

10.11.2: Multiple Indicator Kriging (MIK)

To this point it has been shown that indicator krig-
ing can be used to estimate the proportion of samples
with values greater than a specific threshold. This is
equivalent to defining a point on the local cumulative
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Figure 10.11: The indicator kriging value for point A, based
on a threshold of 0.75 g/t, is equivalent to determining a
point on the local cumulative curve for small sample grades.
In this case, a kriging estimator of 0.27 indicates that 27
percent of the samples in the vicinity of A are higher than
0.75 g/t. A second indicator kriging, relative to a threshold
of 1.0 g/t, provides an estimate of another point on the
local cumulative curve at 0.13 (or 13 percent). Repetition
of this procedure leads to an estimate of many points on
the cumulative curve; some assumptions are required for
the tails of the distribution.

curve for grades of point samples (Fig. 10.11). Exactly
the same data could be transformed to a new set of
indicators relative to a different indicator threshold
(e.g., xc = 1.0 g/t). The data in Fig. 10.10a would
then be transformed into a slightly different set of in-
dicators than those shown in Fig. 10.10b. A semivari-
ogram model could be determined for this new set of
indicators and point A could be kriged a second time
using this newmodel and the corresponding indicator
values to determine the proportion of samples around
point A, with grades greater than 1.0 g/t. Suppose this
were done and avalue of 0.13was obtainedbykriging.
Now a second point can be added to the cumulative
frequency curve for locality A, as shown in Fig. 10.11.
Thus far, estimates indicate that 27 percent of the data
are above 0.75 g/t and 13 percent of the data are above
1.0 g/t. Hence, the difference (14 percent) occurs in
the interval between 0.75 to 1.0 g/t.

It is apparent that the forgoing procedure can be
repeated for many different indicator values so that

points along the entire cumulative distribution can be
estimated. This procedure is referred to asmultiple in-
dicator kriging (MIK), and the result is an estimate of
the entire cumulative curve (except for the tails); that
is, the frequency distribution shown on Fig. 10.11.
Experience suggests that the cumulative curve can be
estimated satisfactorily from about 8 to 12 points (i.e.,
from 8 to 12 thresholds). Estimation of the tails of the
distribution is arbitrary, but in many cases a practical
procedure is to assume that the lower tail extends to
zero frequency at zero metal content in linear fashion.
Definition of the high tail is more critical because it
has a significant impact on estimates of metal content.
Barnes (1999) suggests two practical ways of delim-
iting the upper end of the cumulative curve (zmax) as
follows:

zmax = zcn + 3(zn − zcn)

zmax = zcn + [21/2/(21/2 − 1)](medn − zcn)

where

zcn is the uppermost indicator
threshold

zn is the mean of values greater than
zcn

medn is the median of values greater than
zcn .

Having estimated the distribution of sample
grades in a block, it is desirable to be able to cal-
culate the average grade of the block. Also, having
the distribution of grades in the block allows the ap-
plication of a cutoff grade to the distribution such that
the proportion of the block above the cutoff and the
average grade above the cutoff can be calculated.

The average grade of the distribution (the esti-
mated grade at point A) can be determined if the av-
erage grade of each indicator interval (class mean) is
known. In the previous example, the average grade
of 14 percent of the samples in the interval between
0.75 g/t and 1.0 g/t might be estimated to be 0.88 g/t
from the available data within the class, or the mid-
value of 0.875 g/t might be accepted arbitrarily. With
the class means, the average grade of the distribution
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can be determined as a weighted average of the class
means, with the weights being the estimated propor-
tion of samples in each class.

It must be remembered that the estimated cumu-
lative distribution is for sample grades. If the data
are to be used for block-estimation purposes, the data
distribution must be corrected in some fashion to
produce a distribution for block grades of a speci-
fied size. This procedure is known as change of sup-
port, and several methods have been widely used in
practice.One particularly straightforwardmethod, the
affine correction, is considered here. In this method,
each of the estimated points on a point distribution
can be squeezed toward the mean according to the
relation

zb = (zs − m)σb/σs

where

zb is a value on the block distribution
zs is a value on the sample grade

distribution
σb is the dispersion of block grades
σs is the dispersion of sample grades
m is the mean grade of the

distribution.

The dispersion of block grades (σb) is determined
from the well-established, volume–variance relation

σb = σs − γ̄ (B, B)

where γ (B, B) is the average value of the semivari-
ogramwhen two points describe all possible positions
in a block of the size being considered. At this stage, a
cutoff grade can be applied to the block-grade distri-
bution. If the block is a selective mining unit (SMU),
the distribution shows the probability that the block
is above the cutoff grade. If the block is much larger
than a selective mining unit, the distribution and the
cutoff grade provide an estimate of the proportion of
blocks above cutoff grade and their average grade.

This procedure also has found widespread use in
mineral inventory estimation because it is nonpara-
metric and avoids some of the problems of dealing
with multiple populations. Moreover, the methodol-
ogy is identical to ordinary kriging once a simple in-

dicator transformation has been done. However, the
method does have limitations (e.g., on the upper tail
of the estimated distribution when the indicator semi-
variogram generally is poorly defined). In addition,
a variance correction involving assumptions must be
applied to transform point estimates of the cumulative
distribution function to block estimates. An excellent
application to the Page–Williams mine (C-zone) is
described by Froidevaux et al. (1986).

10.11.3: Problems in Practical Applications
of Indicator Kriging

A practical concern with multiple indicator kriging is
that a substantial amount of variography is required,
one model for each indicator threshold, although
Journel (1983) suggests that for a “quick solution,”
it is possible to use the same indicator semivariogram
model (i.e., the model for a cutoff equivalent to the
median value) for all indicator transforms. Such a
solutionwould rarely be possible because high thresh-
olds generally give indicator semivariograms with
short ranges and high nugget effects relative to low
thresholds.

Some assumptions must be made about the tail of
the cumulative distribution function being estimated
in order that the grade distribution above the highest
indicator threshold is defined. This is a critical de-
cision because tails of grade distributions are poorly
known relative to ranges closer to the mean, and as-
sumptions about the tails can have very serious impact
on the calculated, average grade above a particular
cutoff, particularly if the cutoff grade is high relative to
the mean value of the distribution. As a consequence
of this problem, multiple indicator kriging does not
completely obviate concerns regarding outliers.

A second concern is the “order relations” prob-
lem, which arises in a small proportion of estimates.
This problem is the situation in which the propor-
tion estimated above one cutoff is not compatible
with the proportion estimated from an adjoining cut-
off (e.g., a high cutoff may lead to a cumulative
proportion higher than that estimated by the next
lower cutoff), an impossibility for a cumulative curve.
For example, the indicator kriging procedure for
one site might lead to an estimate of 10 percent of
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material above a cutoff of 3.0 g Au/t in contrast
with an estimate of 12 percent above a cutoff of
3.25 g Au/t; obviously, this is an impossible situation.
A common solution to this order relations problem
is to check for such inconsistancies, and when they
exist, average the two conflicting estimates and apply
the same average estimate to each of the two cutoffs
in question.

10.12: CONDITIONAL BIAS IN KRIGING

Conditional bias is a term used to indicate bias that
varies as a function of absolute value of a variable (i.e.,
a bias that is conditional on value). Block estimates in
resource/reserve estimation can be unbiased on aver-
age (globally unbiased), but might suffer from differ-
ent amounts of bias at different absolute grades. The
general problem has been long recognized in South
African gold mines and was first quantified by Krige
(1951), whose early considerations are well summa-
rized by Krige (1978). Krige developed an empirical
quantitative model (linear) to explain the established
fact that panel estimates determined from assays, on
average, overestimated high-grade panels and under-
estimated low-grade panels. Krige assumed this re-
lation to be linear (for logtransformed gold grades)
and developed a linear regression system to quantify
conditional bias, as illustrated in Fig. 10.12.

Figure 10.12 is an hypothetical plot of true grades
of blocks (y) versus estimates based on assay data (x).
The linear model of conditional bias passes through
the mean values of x and y and has a slope less than
1 on the diagram and represents the regression of y
on x . The y = x line is called the first bisectrix and
represents the regression of x on y. The equation of
the conditional bias line is

y = B1(x − m) + m

where x and y are as above,m is the mean value of x ,
and B1 is the slope of the line.

The general equation for the slope of a linear
model is

B1 = sxy
/
s2x

where sxy is the covariance of x and y, and sx and sy
are the standard deviations of x and y, respectively.
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Figure 10.12: A traditional view of conditional bias in which
high-grade values are, on average, overestimated and low-
grade values are, on average, underestimated. True block
values are along the ordinate; estimated block values
are along the abscissa. Scales are logarithmic. An ellipse
encompases a field of plotted points (not shown). The
45-degree line is the desired relation; the regression line
for y on x is the actual relation. The two lines intersect at
the mean value of the distribution, where conditional bias is
zero. If a cutoff grade is applied to the estimates (abscissa)
above the mean value of the distribution, gross overestima-
tion can result, as commonly happens with polygonal esti-
mation. Modified from Krige (1978).

The correlation coefficient r of two variables x
and y is given by

r = sxy/sx sy .

Consequently, the slope of the first bisectrix (cf.
Fig. 10.12) is given by

1.0 = r (sx/sy) (10.4)

and, the slope of the linear model for conditional bias
(cf. Fig. 10.12) is

B = r (sy/sx ). (10.5)

Combining Eqs. 10.4 and 10.5 leads to the important
relation

B = s2y
/
s2x < 1.0. (10.6)

Equation 10.6 embodies the fundamental concept of
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conditional bias as described by Krige and expressed
as a linear model (i.e., the bias is a function of the
variance of true, block values [relatively small] and
the variance of block estimates based on data [rela-
tively large], specifically, the ratio of variances is an
estimate of the slope of the linear conditional bias
model). Slopes near 1 have small conditional bias,
whereas slopes much different from 1 have large con-
ditional bias. For very low cutoff grades (lower than
a high proportion of the data), conditional bias might
not be of great concern. However, where the bias is
large and/or the cutoff grade is relatively high (e.g.,
greater than the mean value) conditional bias can
result in serious estimation problems; in particular,
metal produced from a given volume is less thanmetal
estimated to be present in that volume. The practi-
cal problem is expressed elegantly by Journel and
Huijbregts (1978, p. 457) as follows: “The recoverable
tonnagemust be estimated from the distribution of the
estimator. . . .But once this selection is made, the mill
receives the true values, not the estimates; more pre-
cisely, it receives the true values conditioned by the
fact that their estimators are greater than the cutoff.”

Matheron (1971) provided a partial physical ex-
planation of Krige’s account of conditional bias as
follows: it is common practice to estimate locations
of unknown, irregular ore/waste margins by smooth
surfaces (e.g., in Fig. 10.13, line AC estimates the
irregular margin W1O1, . . .W4O4). If “high-grade”
assays along drives AB and CD are used to estimate
the “ore” block ACDB, the result is an overestimate of
grade because dilution caused by protrusions of waste
into the block at W1, W2, W3, and W4 is not taken
into consideration. In contrast, if the block ACDB is
viewed as a low-grade block surrounded by higher-
grade values, then assays along AB and CD underes-
timate the block because high-grade protrusions into
the block are not considered.

In the literature on conditional bias, there is sub-
stantial implicit reference to a linear model, first pro-
posed by Krige. Philosophically, there is no reason
why the bias must follow a linear model, and many
publications recognize this either implicitly or ex-
plicitly (e.g., Guertin, 1987; Journel and Huijbregts,
1978).
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Figure 10.13: Matheron’s (1971) explanation of the condi-
tional bias described by Krige in South African gold mines.
The trapezoid ACBD of ore is defined based on data on
the two drifts shown. Ore/waste margins are interpreted
to have simple (straight line) geometry that departs from
reality. In fact, the ore trapezoid is not all ore but contains
protrusions of waste (Wi ); hence, on average, the trapezoid
is overestimated when complex margins occur. Similarly,
protrusions of ore (Oi ) extend into waste, so ore is lost.
Modified from Matheron (1971).

Matheron (e.g., 1971) first proposed that linear
kriging was an optimal approach to minimizing con-
ditional bias. More recently, Journel and Huijbregts
(1978) emphasized kriging as an optimal estimator in
this regard. In particular, they point to the problem of
minimizing conditional bias as being one of minimiz-
ing errors of incorrect estimation (e.g., on Fig. 10.12,
minimizing the undervaluation and overvaluation ar-
eas by reducing the two sources of scatter, parallel to
both the x and y axes).

More specifically, the problem of minimizing the
conditional variances is to obtain estimators that min-
imize both the accuracy criterion and the dispersion
criterion, as accomplished by kriging and illustrated
in Eq. 10.7:

E{[Zv − Z∗
v ]

2} = E{[Zv − f (Z∗
v )]

2}
+ E{[ f (Z∗

v ) − Z∗
v ]

2}.
(10.7)

“Byminimizing the sum of these two criteria, kriging
represents a compromise between satisfying one or
the other, and because of this, it is preferred to any
other linear estimator for selectionproblems” (Journel
and Huijbregts, 1978, p. 459).

David et al. (1984) describe estimates by several
methods using a simulated database with a known



KR I G I NG 235

mean and spatial structure and a guaranteed station-
arity arising from the simulation procedures. They
are able to compare various estimates with known
(simulated) values and conclude the following:

1. For a normally distributed variable, simple kriging
is somewhat better than ordinary kriging for block
estimation.

2. A procedure that uses ordinary kriging to estimate
a global mean, which is then used in simple krig-
ing, is almost as good as is simple kriging with a
known mean.

3. For a simulated, postively skewed distribution
(Coef. of Variation = 2), ordinary linear kriging
produces block estimates with a more severe con-
ditional bias than does simple linear kriging.

10.12.1: Discussion

Conditional bias as described by Krige (1978) leads
to average overestimation of high-grade blocks and
average underestimation of low-grade blocks:

1. The relation is nonlinear in general, but com-
monly is approximated by a linear relation be-
tween true and estimated grades, with the linear
model passing through the mean grade (i.e., zero
conditional bias at themean grade). The slope of a
line (p), which incorporates both the classic idea
of conditional bias and the smoothing that results
from kriging small blocks with widely dispersed
data, can be determined for each block estimate as
follows (Pan, 1998):

ρ = [
σ 2
0 − σ 2

k + µ
)]/[

σ 2
0 − σ 2

k + 2µ
)]

where

σ 2
0 is the declustered variance of the

data
σ 2
k is the kriging variance of the block

estimated
µ is the Lagrange multiplier obtained

from kriging.

2. The classic definition of conditional bias attributes
it to differences in variances of block estimators

and true block grades (i.e., it is a function of the
volume–variance relation, so well established in
geostatistics).

3. Correct documentation of conditional bias re-
quires a comparison of estimates with true values,
an unlikely situation at the feasibility stage but one
that can occur for deposits that have produced for
many years, as in the case of South African gold
mine experience, or for the case in which grades
are known formany subvolumes of a bulk sample.

4. Because the general nature of conditional bias is
understood, there are a number of actions that can
be taken to reduce possible conditional bias, gen-
erally to an unknown extent, including
(i) Use of separate continuity domains with

characteristic grade distributions and semi-
variogram models

(ii) Use of composites rather than individual
assays of small support

(iii) Special treatmemt of outlier values.
5. Note that all these procedures have the effect of

reducing the spread (variance) of the information
used to make block estimates.

6. Conditional bias generally is not resolved “by
a mere change of variogram model. . . .Rather
the prior decision of stationarity (averaging) over
A and/or the estimation algorithm itself (to de-
termine the xs) may have to be reconsidered”
(Journel, 1987, p. 101).

7. There is an implicit (rarely explicit) assumption
that perfect stationarity exists in the deposit be-
ing considered, or at least, within certain defined
zones of a deposit. This may be true for some
deposits, but it is unlikely to be so in many de-
posits, including porphyry copper and large, ep-
ithermal gold deposits. Smoothed grade profiles
along individual drill holes may give some idea
of the scale on which local high to low variations
in grade occur. Note that if blocks are small rela-
tive to distances over which grades vary system-
atically, then use of the global mean introduces a
conditional bias. If block size is about the same
as the wavelength of grade variations, then use of
the global mean in simple kriging produces block
estimates that are conditionally unbiased.
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8. Simulations show that simple kriging is better
than ordinary kriging when simulated data are the
basis of comparison, but simulations are highly
idealized relative to real grade distributions, and
the comment cannot be generalized. Simulated
data sets are strictly stationary, whereas real data
generally are not.

9. One step toward minimizing conditional bias is
to add more data by increasing the search radius.
Unfortunately, this solution leads to other prob-
lems such as oversmoothing and the introduction
of negative kriging weights. Some compromise
among these factors must be considered.

10.13: KRIGING WITH STRINGS
OF CONTIGUOUS SAMPLES

Certain linear data configurations lead to ordinary
kriging weights that are peculiar because the sam-
ples furthest from the point/block being estimated
carry the largest weights (cf. Rivoirard, 1984). Also,
samples that are roughly centrally located in the
data string can take on large negative weights if
they are positioned slightly off the line of data (see
Chapter 17, Section 17.4; Shurtz, 1994, 1998).Both of
these situations arise commonly in mineral inventory
estimates – contiguous drill-hole samples are the fun-
damental data of many studies and slightly offline
samples can arise in the “linear” array at breaks in the
linear trend that arise from intermittent down-hole
survey locations. The common geometry of the prob-
lem is illustrated in Fig. 10.14.Deutsch (1993) studied
the problem at length using simple examples involv-
ing a linear array of 11 samples used to estimate a
point along a line through the central datum and per-
pendicular to the linear array. For example, the point is
distance a from the center of the string of samples and
kriging weights are determined for three different ra-
tios of nugget effect to total sill, that is,C0/(C0 + C1),
of 0, 0.2, and 0.8. In the highly continuous case
(C0 = 0), the paradoxical result of extremely high
weights being assigned to the two end samples is ev-
ident; specifically, the two extreme samples account
for about 67 percent of the total weight, despite the

Drill hole #1

Drill hole #2

Drill hole #3

?

Figure 10.14: The common occurrence of using strings of
data for mineral inventory estimation. When the database
is contiguous samples along drill holes, a search ellipsoid
necessarily locates strings of data for block or point esti-
mation. Redrawn from Deutsch (1993).

fact that each of the other nine samples is closer to
the point being estimated. The weights clearly ap-
pear more sensible as the nugget effect increases
(Fig. 10.15).

In an additional test, Deutsch kriged a point at
different distances from the same string using the
semivariogram model with C0/(C0 + C1) = 0.2. Re-
sults show that as the point gets closer to the string
of data, the concern about excessive weights on dis-
tant samples lessens. According to Deutsch (1993),
“Kriging yields this type of weighting because of the
implicit assumption that the data are within an infinite
domain – the outermost data inform the infinite half-
space beyond the data string and hence receive greater
weights” (p. 42). However true this explanationmight
be, such weights are not satisfactory in local estima-
tion. Solutions that emerge from the study byDeutsch
(1993) include the following:

(i) Using two of the data in a string and rejecting
the other data. This solution does not take full
advantage of the available data. One practical
means of adapting this rule is to use relatively
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Point being kriged

Point being kriged

Nugget = 0%
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Figure 10.15: An example of kriging weights for a single
string of data used to estimate a single point. As the
nugget effect of the semivariogram model increases, the
high distant weights become of less concern. Redrawn from
Deutsch (1993).

long composites of the string of samples as the
basis for kriging, and then selecting the two near-
est composites for estimation purposes.

(ii) Extending the data string to include a dummy
data point at each end, then excluding the two
end weights and recalculating the remaining
weights to sum to 1. Practical implementation is
awkward.

(iii) Using simple kriging rather than ordinary krig-
ing (see also Rivoirard, 1984). In general, simple

kriging requires a knowledge of the mean value.
Because only local stationarity exists in most
mineral deposits and the local mean is not well
known, ordinary kriging is the appropriate krig-
ing procedure in many cases.

(iv) Unacceptable weight distributions arise when
only one or two data strings are involved in an es-
timation.Kriging experimentation shows that the
problem of distant high weights quickly disap-
pears in the presence of additional strings. Even
for three strings, the problem is minimal. Conse-
quently, the simple requirement that a minimum
of three quadrants or five octants contain data
for block estimation is a practical solution to the
problem.

Rivoirard (1984) has a useful explanation of the
phenomenon (i.e., he explains ordinary kriging as
a combination of simple kriging and kriging of the
mean). The relatively high, more distant weights are
related to estimating themean value, whereas the sim-
ple kriging weights represent the more local effect.
Such an explanation is consistent with a more theo-
retical discussion by Deutsch (1993).

10.14: OPTIMIZING LOCATIONS
FOR ADDITIONAL DATA

Because geostatistics was first widely promoted as
an improved basis for mineral inventory estimation,
it has been touted (e.g., David, 1977) as providing a
quantitative approach to optimizing the locations of
additional data with which to improve the quality of
estimation. It is important to understand exactly what
optimizing means in this context. Generally, in such
studies, optimizationmeans the location of additional
samples in such a pattern that a specified minimum
number of new samples decrease the estimation vari-
ance to a predefined, acceptablemaximum.Numerous
examples exist in the public domain; one of the clear-
est is that of Dowd and Milton (1987), who consider
the affect of various sampling arrays of information on
errors of several types, including error in surface area,
error in tonnage, error in metal quantity, and error in
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grade. Such an approach permits a critical assessment
of individual sources of error.

It is a relatively simple matter to (i) add specific
sampling sites to a data array (without actually go-
ing to the cost and effort of taking the samples),
(ii) perform kriging with the new array on the as-
sumption that the global mean will not change, and
(iii) estimate the effect of the new data on the es-
timation (kriging) variance. In the great majority of
cases, such a procedure is adequate. In this way, a
variety of new data patterns can be kriged and their
relative effects on both local and global errors com-
pared, leading to an informed decision as to which
data array is best for the purpose at hand. An example
is given in Fig. 10.16 for a stope at the Giant Mine,
Yellowknife, Northwestern Territories, Canada. In
this case, a stope (Fig. 11.3) was defined using 31 drill
intersection through a near-vertical, tabular, mineral-
ized zone. Gaps were filled with various amounts of
well-placed additional drill holes to examine their im-
pact on errors; similarly, data were extracted in a few
cases. For each data array, the global errors for thick-
ness and gold accumulation were determined and the
results are shown on Fig. 10.16. These results show a
pattern common for such studies (i.e., for small num-
bers of data, the addition of a few additional data de-
creases the global estimation error significantly; the
same is not true when large numbers of data already
exist). In this example, there is little improvement in
estimation error beyond a total of about 40 data.

The more general problem of optimizing the indi-
vidual locations of m additional samples in a data ar-
ray in order to minimize the kriging variance is a con-
strained, nonlinear, programmingproblemconsidered
by Chou and Scheck (1984). The problem has been
dealt with at length by Barnes (1988) and Aspie and
Barnes (1990). A simple example provides consider-
able insight into the problem (Aspie andBarnes, 1990,
p. 523): “[T]here are over 75million different ways to
select 5 new samples from 100 candidate locations.”
Obviously, the potential computer time required to
check and compare benefit measures of all possible
locations is exhorbitant and alternative strategies are
necessary. Two possibilities are presented by Aspie
and Barnes (1990): the “Greedy algorithm” and a
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Figure 10.16: Example of the systematic decrease in global
kriging error versus number of data for a stope in the Giant
Mine, Yellowknife, Northwest Territories, Canada (after
Shahkar, 1995). (a) Error variance versus number of data
for global mean-thickness estimator. (b) Error variance
versus number of data for global accumulation (gold ×
thickness) estimator. Both error variances decrease little,
even for large increases in number of data beyond n = 40.

“sequential exchange algorithm.” With the Greedy
algorithm, all possible new data locations L are
checked to locate the one that meets the guiding cri-
terion/criteria best (e.g., minimizes global estimation
variance). This location is accepted and the next best
location that makes the best pair with the first is lo-
cated. The next location that makes the best trio with
the two previous locations is then identified, and so on
until a predetermined number of new data locations
M has been identified. This procedure does not op-
timize the positions of the M new sample locations,
but provides a good first estimate.



KR I G I NG 239

Output from the Greedy algorithm may be ade-
quate, or it can be used as input for the more so-
phisticated sequential exchange algorithm (cf. Aspie
and Barnes, 1990). Although there may be situations
in which such optimization is desirable, the practi-
cal demands exerted by geology on sample locations
generally overrides such sophisticated optimizing
procedures that implicitly assume uniformity of ge-
ology. The hypothetical example used by Aspie and
Barnes (1990) is a case in point: the five new “opti-
mal” sample sites ignore the concept of verifying the
high-grade core. Only one of the five samples is on
the edge of the high-grade center, the others being dis-
persed in the low-grade fringe. In fact, for relatively
few additional samples, judicious evaluation of con-
toured maps of grade and local estimation variance in
conjunction with a detailed geologic map can provide
the essential controls for defining new sample loca-
tions. At all times, however, it is important to keep in
mind the stage of data collection and the likelihood
that a substantially denser data array might be neces-
sary to improve the certainty of geologic continuity
and to provide adequate quality for local estimation.
For many operations it is the location of the boundary
between ore and waste (i.e., the cutoff grade contour)
that is critical, and extra drilling and additional drilling
to better define this contact is essential.

10.15: PRACTICAL CONSIDERATIONS

1. Kriging is an optimal block- or point-estimation
procedure, optimal in the sense that weights for
samples are unbiased and are determined using a
least-squares procedure such that the estimation
variance is minimized. Confidence in the semi-
variogram (value continuity) model is an essential
prerequisite to successful kriging.

2. Ordinary kriging of raw data or composites (local
mean is unknown) is the most widely used and
perhaps most fundamental kriging procedure.

3. Simple kriging requires a knowledge of the mean
value; consequently, it is less widely used than
ordinary kriging. In certain cases, a useful oper-
ational procedure is to krige a large block by or-
dinary kriging to estimate the local mean, and to

use this mean with simple kriging to obtain more
detailed estimates.

4. Three-dimensional arrays of blocks approximat-
ing the geometry of a particular geologic domain
are kriged block by block in systematic fashion.
For each block, a specified search volume (sphere
or ellipsoid) centered on the block contains the
data used for kriging. This search volumemust be
consistentwith the semivariogrammodel, the data
array, and the geologic character of the domain.
It is common to define minimum and maximum
amounts of data required for kriging to be car-
ried out. Similarly, it is common to ensure that
sufficient quadrants (at least three) or octants (at
least five) contain data, so that the estimate is by
interpolation rather than extrapolation.

5. Both ordinary and simple kriging can be done on
transformed data. Thus, lognormal kriging is sim-
ply kriging of logtransformed data, a process that
is equivalent to kriging of raw data using a rel-
ative semivariogram. Similarly, indicator kriging
is simply ordinary or simple kriging of data that
have been transformed to indicator values (0 or 1)
that represent the presence or absence of a condi-
tion (i.e., mineralized ground = 1; unmineralized
ground = 0).

6. The indicator concept can be applied to a contin-
uous distribution of grades in which 1 is above
any arbitrary threshold and 0 is equal to or below
the threshold. In this latter case, indicator kriging
produces a point on the local cumulative curve of
samples. Repeated indicator kriging for different
thresholds, a process known asmultiple indicator
kriging, allows the local cumulative curve to be es-
timated, from which the local mean can be deter-
mined, a block distribution can be estimated, and
the proportion of blocks above cutoff grade (and
their average grade) can be estimated. Multiple
indicator kriging is widely applied to seemingly
erratic values, such as those common tomanygold
and uranium deposits.

7. Multiple indicator kriging has been promoted as
a means of dealing with outlier values, but it is
not particularly effective for such a purpose be-
cause the procedure interpolates substantial gold
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that does not exist in and around true outliers. Out-
liers, as a rule, have very different continuity than
themuchmore abundant lower grades; hence, out-
liers should not be incorporated in kriging equa-
tions that use the continuity model of those lower
grades. The mining industry combines cutting of
grades with ordinary kriging as a practical, if ar-
bitrary, solution to this problem.

8. Restricted kriging is another approach suggested
for dealing with outliers. Application of the
method is somewhat arbitrary and likely to spread
outlier values far beyond their true physical extent.

9. Negative weights resulting from kriging occur in
specific situations that can generally be avoided
or the effects minimized by certain precautionary
moves: (i) ensure that data in the search volume
are not screened by other data that are nearer the
block/point being estimated, (ii) use themethod of
positive kriging, (iii) check for negative weights
following an initial kriging, reject those data with
negative weights, and re-krige the remaining data,
and (iv) as a safeguard, deal with outliers sepa-
rately – even small negative weights applied to
outlier values can produce extreme estimates and
in some cases even negative grade values!

10. Strings of data can lead to peculiar kriging results
in cases inwhich a semivariogrammodel is highly
continuous. To avoid or minimize such problems,
(i) use composites of as great a length as is reason-
able, (ii) limit to two the number of composites
selected from each string, (iii) ensure that at least
three strings are represented in the search volume,
and (iv) use simple kriging wherever possible.

11. Conditional bias (i.e., bias that is a function of
grade) is inevitable to some extent in resource
estimation. Such bias is particularly extreme in
polygonal estimation, and generally is somewhat
less extreme if estimates are based on increas-
ing amounts of data. What is traditionally termed
conditional bias involves overestimates of high
grades and underestimates of low grades. This
feature is counteracted by a process known as
smoothing, illustrated by widely spaced data that
produce similar estimates for all small blocks in
a local cluster of blocks. Both situations are im-

proved by increasing the amount of data. How-
ever, in many deposits, a practical maximum
search volume exists because only local station-
arity exists.

12. In using kriging to optimize the location of addi-
tional data for evaluatingmineral deposits, it is es-
sential to understand the basis of the optimization.
Within a homogeneous domain for which a semi-
variogram model is known, it is possible to add
potential new sampling sites and estimate the im-
pact such sites will have on the kriging variance.
Such calculations can be done for many hypo-
thetical data arrays, and the corresponding krig-
ing errors can be evaluated to determine which
array is best in a specific case. The controlling
parameters are a desirable (relatively low) error
and a corresponding reasonable cost to obtain the
data that provides that error. “Best” is an accept-
able compromise between data density and cost,
always ensuring that geologic integrity is main-
tained during the locating of additional samples.
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10.17: EXERCISES

1. Krige the central point in each of the triangular
and square grid patterns of Exercise 4 at the end
of Chapter 5 (Fig. 5.23). In both cases, assume
the distance from the block or triangle center to
sample is a = 5 m, and assume a spherical semi-
variogram model with C0 = 0.2,C1 = 0.8, and
range of a = 20 m. (Note: If the problem is being
done manually, it becomes easier if the spheri-
cal model is approximated by a linear model with
γ (h) = 0.2 + 0.058h. Note also that if one aure-
ole of data is used for the estimate, all data take
equal weights. The point of interest here is a com-
parison of the kriging variances.)

2. Evaluate the kriging errors for point estima-
tion using the two data arrays of Question 5.4
(Fig. 5.23) with a spherical model: C0 = 0.2,
C1 = 0.8, anda1 = 35m.Use one aureole of data.
Repeat with two aureoles of data. In all cases,
estimate a central point within a block/triangle.
Assume that distance a in Fig. 5.23 is 21.2 m.

3. Four data are located at the corner of a square cell.
The central point in the cell is to be estimated by
1/d2 (ISD) and ordinary kriging (OK).

(a) Assuming that grade continuity is isotropic,
which of the two estimates will be the
best?

(b) Suppose that grade continuity is anisotropic,
with a range along one diagonal that is twice
the range of the other diagonal. Which esti-
mation method is best?

4. Construct an arbitrary data array for estimation
purposes that generates negative kriging weights.
Recall that screening of data and a highly contin-
uous semivariogram model contribute to the ease
with which negative weights occur. Use any avail-
able kriging routine to demonstrate the negative
weights.

5. Construct an arbitrary linear array of 11 sample
locations that simulate sample sites along a drill
hole or a trench. The centroids of each sample
are separated by 1 unit. Estimate a point that is
10 units away from the middle datum along a line
that is perpendicular to the line of samples. Use
any available routine for ordinary kriging with
all the available data to arrive at your estimate.
Assume a spherical semivariogram model with
C0 = 0,C1 = 1.0, and a = 10 units.

6. An absolute semivariogrammodel produces grade
estimates of 0.8 g/t and 3.1 g/t for two blocks. In
each case, an identical data array was used for the
estimation and the identical kriging error (stan-
dard deviation) of 0.6 g/twas estimated.Comment
on the relevance of the error estimates.



11
Global Resource Estimation

While it is well known that a smoothing estimation method such as kriging is not suitable to produce realistic
estimates in blocks which are far away from the sampling information, it [kriging] is unfortunately too often used
for this purpose. (Ravenscroft and Armstrong, 1990, p. 579)

Many estimation procedures, traditional and
geostatistical, have been described in Chapters
1 and 10, respectively. Chapter 11 introduces a
variety of procedures concerned with the estima-
tion of very large volumes commonly referred
to as global resources. The concept of global
resources is introduced and such estimates are
considered in terms of regular and irregular data
arrays. A common case, concerning tabular de-
posits that can be treated as two-dimensional, is
considered at length. Specialized procedures for
the estimation of co- and by-products are also
considered.

11.1: INTRODUCTION

Global estimation is directed toward mineral inven-
tory estimates for very large volumes, perhaps an en-
tire deposit or all or most of a mineralized zone or
domain. Such estimates are generally possible with
substantially less data than are required for confident
local estimation; thus, global estimates generally can
be done earlier in the exploration and evaluation of
a deposit than can local estimates. The principal pur-
poses of global estimation are

(i) To quantify the likely target as a guide to further
data-gathering decisions relatively early in the
evaluation of a deposit

(ii) To summarize the resources/reserves of a deposit
as a basis for medium- and long-term planning
in a feasibility or production situation.

Global estimates are included in such terms as
in situ estimates, geologic estimates, and others, al-
though they form only a part (commonly the least
well-known part) of those categories. Because global
estimates generally are based onwidely spaced explo-
ration data and, thus, are known with relatively low
confidence, they can be classed at best as “inferred
resources” and, in most jurisdictions, cannot be used
as a basis for mine or financial planning.

Estimation of global resources can be by any of
the traditional or geostatistical methods described in
Chapters 1 and 10, depending on the geologic situ-
ation and the nature of available data. In addition to
those well-known estimation approaches, there are a
variety of more specialized procedures that, although
not necessarily restricted to global estimation, can
be applied usefully in cases of global estimation,
including (i) simple statistics applied to simple spatial
arrays of data, (ii) composition of terms, (iii) volume
variance, and (iv) estimates involving irregular arrays

242
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of data. Special procedures are required in cases in
which data are widely dispersed relative to the size
of blocks that form the basis of the estimate.

11.2: ESTIMATION WITH SIMPLE
DATA ARRAYS

11.2.1: Random and Stratified Random
Data Arrays

Purely random arrays of data (Fig. 11.1a) are rarely
encountered in the estimation of mineral inventory.
Treatment of such an ideal situation is useful, how-
ever, as part of the conceptual development of meth-
ods by which to treat more realistic situations. In gen-
eral, the optimal estimate of grade of a volume V (the
domain), estimated by n randomly distributed sam-
ples (of uniform support) is the arithmetic mean of
the samples, and the estimation error is the standard
error of the mean. This error, expressed as a variance,
is equivalent to the variance of a sample within the
volume V divided by n (number of data). When the
variable is characterized by a spherical semivariogram
whose range is small relative to the dimensions of V,
the error is equivalent to the sill of the semivariogram
divided by n:

σ 2
n = [σ 2(s/V )/n]

whereσ 2(s/V ) is an unbiased estimate of the variance
of samples in the deposit.

a b c

Figure 11.1: A mineralized zone explored by various data arrays. Black dots indicate mineralized samples; open circles
are samples that are unmineralized. (a) Data are randomly distributed throughout the zone. (b) Each datum is randomly
distributed within a cell of a regular array of cells. (c) Each cell within a regular array of cells contains a centered datum.

Random stratified data arrays are approximated
in some practical cases. Consider a large volume V
subdivided into n smaller volumes, each of size v and
each containing a single sample that is randomly po-
sitioned in v. In this case, the estimated grade is the
arithmetic mean of the n samples and the estimation
variance is the average error for a single volume v
divided by n:

σ 2
n = [σ 2(s/v)/n].

For a random stratified grid (Fig. 11.1b), the term
σ 2(s/v) refers to the extension variance of randomly
located samples in a block, which is given by

σ 2
n = 2γ̄ (s, v) − γ̄ (s, s) − γ̄ (v, v)

= γ̄ (v, v) (11.1)

where

γ̄ (s, v) is the average semivariogram for
two points that take all possible
positions in s and v . In this
particular case, the term is
equivalent to the F function

γ̄ (s, s) is the average semivariogram for a
single point and is equal to zero

γ̄ (v, v) is the F function (see Chapter 8).

11.2.2: Regular Data Arrays

In the case of regular grids of data with few or no gaps
(Fig. 11.1c) the global mean is the arithmetic mean of
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the sample values. If samples are located at the centers
of grid cells the global variance is given by

σ 2
g = σ 2

c /n

where n is the number of sampled cells and σ 2
c is the

extension variance of a central point extended to a
block and can be determined from the semivariogram
model of the variable for a block of any desired di-
mension in the same manner illustrated by Eq. 11.1.
For a regular grid, however, the term 2γ (s, v) is much
less than for the random stratified grid described in
Eq. 11.1.

11.3: COMPOSITION OF TERMS

In estimating global averages of mineral domains or
deposits, it is common practice to subset the data into
groups, each of which has a systematic arrangement
relative to a subvolume of the domain for which a
global estimate is being determined. The relative sizes
of the subvolumes then become theweights applied to
the corresponding data in order to obtain an unbiased
global estimator of a variable.
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Figure 11.2: A vertical, longitudinal section of the Eagle vein showing the exploration drifts and the rectangular areas
constructed about the drifts to define weights for global estimation. In this case, it has been possible to approximate the
area of the vein by four areas with centered strings of data. The gap in the upper drift arises because it represents a zone
of fractured oxidized, low-grade vein material that is to be omitted from the global estimate.

11.3.1: An Example: Eagle Vein

When data are preferentially and unevenly dis-
tributed, individual values must be weighted in pro-
portion to their lengths or areas of influence in order
to obtain unbiased global estimators. In the case of
the Eagle vein, northern British Columbia, Sinclair
and Deraisme (1974) estimate the mean grade of a
Cu vein and use a composition of terms procedure to
determine the error to attach to the mean value. A lon-
gitudinal section of the near-vertical vein (Fig. 11.2)
shows the four weighting areas (blocks) relative to
the exploration drifts for which 693 samples of vein
width were obtained. The gap between blocks 1 and 2
is a highly fractured and oxidized part of the vein, to
be omitted from the global estimation. Because sam-
ples are approximately equally spaced (about 8–10 ft
apart) along the drift in each of these large blocks,
average thickness and accumulation values were de-
termined separately for each block. These averages
were weighted by the corresponding block areas in
order to determine global average grade for the vein.
Weighted mean values of 17.0 ft and 4.02 ft were ob-
tained for accumulation and thickness, respectively,
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and from these the mean Cu grade was determined as
follows: 17.0/4.02 = 4.23 percent Cu.

The error on the mean-grade estimate can be de-
termined by the method of composition of terms for
which components of error are determined separately
for a random component, extension error in one di-
mension (extending sample grades to correspond-
ing drift), and extension error in the second dimen-
sion (extending drift grades to corresponding blocks).
These three components of error are assumed to be
independent, hence, they are additive and can be ex-
pressed as follows:

σ 2
e = C0/n + �

[
l2i σ

2
i (li )

]/
(�li )

2

+ �[(Dihi )
2]σ 2

2 /(�Dihi )
2 (11.2)

where

C0 is the nugget effect
n is the number of samples
li is the length of vein represented by

an individual sample
Dihi is the area of a block with

dimensions Di and hi
σ 2
i (li ) is the extension variance of a

sample in line li
σ 2
2 is the extension variance of a

central line of data in a block Dihi .

The relative weighting factors are lengths squared
[(l2i )/(�li )2] for extension to one dimension, and area
squared [(Dihi )2/(�Dihi )2] for the second dimen-
sion (slice term). For Eagle vein thickness,C0 = 0, so
the nugget term does not exist; the line term is esti-
mated as the extension variance of a point centered
in a line 10 ft long divided by the number of sam-
ples, and is so small as to be negligible; the slice
term is the weighted sum of four slice terms, one
for each block. Each of these four slice-term com-
ponents is the extension variance of a central line to
a rectangle (Fig. 11.2), each weighted by the squared
area of the respective rectangle; for Eagle vein, the
slice term is 0.038. The error variance for accumu-
lation, determined in a comparable manner to that
for thickness, has a significant nugget term (from the
semivariogram) of 0.09, a line term of 0.014, and

Table 11.1 Summary of global estimators for the
Eagle vein

Mean Error Relative error
Variable grade variance variance (%)

Thickness (ft) 4.02 0.038 4.8
Accumulation (g × t) 17.0 1.33 6.8
Grade (% Cu) 4.23 0.072 6.3

Source: After Sinclair and Deraisme (1974).

a slice term of 1.23, to give an estimation variance
of 1.33.

Errors determined for thickness and accumulation
are used to determine error for grade as follows:

σ 2
g /g2 = σ 2

a /a2 + σ 2
t /t2

− 2rat (σa/a)(σt/t) + · · · (11.3)

where

σ 2
g /g2 is the relative variance for grade

σ 2
a /a2 is the relative variance for

accumulation
σ 2
t /t2 is the relative variance for thickness

g is the mean grade
a is the mean accumulation
t is the mean thickness
rat is the correlation coefficient for

thickness and accumulation.

Using the mean values of grade, thickness, and
accumulation as given and r = 0.45 for Eagle vein
data, the absolute error for the global grade estimate
can be calculated from Eq. 11.3. Results are sum-
marized in Table 11.1. The Eagle example is for a
two-dimensional case because of the tabular form of
the vein, but the composition of terms procedure can
be extended to three dimensions by the addition of
another term to Eq. 11.2. This additional term takes
into account the extension error from the slice into the
third dimension.

11.4: VOLUME–VARIANCE RELATION

The volume–variance relation is a fundamental ge-
ostatistical relation that permits calculation of the
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dispersion variance of average grades for various vol-
umes using raw data and a knowledge of the semi-
variogram model (e.g., Parker, 1979). The dispersion
variance of small volumes v in a larger volume V is
given by (Journel and Huijbregts, 1978):

D2(v/V ) = γ̄ (V, V ) − γ̄ (v, v) (11.4)

where

D2(v/V ) is the dispersion variance of grades
of small volumes v in much larger
volumes V

γ̄ (V, V ) is the mean semivariogram value in
large volume V (F function)

γ̄ (v, v) is the mean semivariogram value in
small volume v (F function).

If s represents samples, SMU is the selective min-
ing unit, and D is the deposit, Eq. 11.4 can be written
in two ways, as follows:

D2(s/SMU)= γ̄ (SMU,SMU)− γ̄ (s, s)

(11.5)

D2(SMU/D)= γ̄ (D, D)− γ̄ (SMU,SMU).

(11.6)

Adding Eqs. 11.5 and 11.6 gives Krige’s relation

D2(s, D)= D2(s/SMU)+ D2(SMU/D)

(11.7)

or, rearranging Eq. 11.7

D2(SMU, D)= D2(s, D)− D2(s,SMU).

(11.8)

The development of Eq. 11.8 demonstrates that the
dispersion of block grades is a function of the semi-
variogram and the dispersion of sample grades. Thus,
if the semivariogram model is well established for
samples, the dispersion of SMU grades can be calcu-
lated from the previously mentioned equations. Both
blocks and samples have the samemean value; conse-
quently, the only information missing to establish the
relative histogram of SMU grades is the shape of the
distribution. In practice, an unbiased histogram of
the data is obtained and an assumption is made that
the same general form is retained by the distribution
of SMU grades. Thus, if the form can be assumed and

the dispersion of block grades can be determined (as
mentioned), the estimated distribution of block grades
can be determined. This general procedure is known
as change of support. Several methods for calculating
change of support are in common use, including the
affine correction and the indirect lognormal approach
(see Journel and Huijbregts, 1978). The affine cor-
rection is discussed in Chapter 12. Attaching errors
to estimates based on the volume–variance relation is
difficult at best (e.g., Froidevaux, 1984b), and is not
done routinely.

A cutoff grade can be applied to the distribu-
tion of block grades to determine the proportion of
blocks that are ore, and, of course, the average grade
of these ore blocks can be determined from the his-
togram. In order to proceed to an estimate of tons
of ore, it is necessary to know fairly precisely the
volume to which the estimated block distribution ap-
plies. When this is possible, the proportions of ore
that arise from the volume–variance approach can be
transformed into volumes of ore, and, in turn, volumes
can be transformed to tons using an appropriate bulk
density. The general procedure and a simple example
are described in Chapter 12, Section 4.

11.5: GLOBAL ESTIMATION WITH
IRREGULAR DATA ARRAYS

Global estimation is possible by any of the traditional
or geostatistical methods discussed elsewhere. Statis-
tically based methods have an advantage over empiri-
cal techniques in that an estimate of error canbegener-
ated to accompany the global mean estimator. Here,
the procedure is illustrated using ordinary kriging.
Shahkar (1995) conducted a retrospective evaluation
of production and various mineral inventory estima-
tion techniques for a near-vertical, shear-controlled
gold deposit, the C7-04 stope at the Giant Mine,
Yellowknife, Northwest Territories. As part of that
study he approximated the stoped outline on vertical
section by 24 blocks, each 25 × 25 ft2 (Fig. 11.3).
Gold grades and true thicknesses for 31 diamond-
drill-hole intersections were then used to krige each
of the 24 blocks for thickness and gold accumula-
tion. Mean thicknesses and associated kriging errors
(standard deviation) are shown on Fig. 11.3. Grades
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Figure 11.3: Longitudinal vertical projection of the C7-04
stope, Giant Mine, Yellowknife, Northwest Territories. The
stope outline is approximated by 24 cells, each 25× 25 ft2.
Numeric values in each cell are kriging estimates for zone
thickness (upper) and error as a standard deviation (lower).
Dots are drill-hole pierce points. Average thickness and
the associated global error (standard deviation) are listed
on the lower part of the diagram. Redrawn from Shahkar
(1995).

and associated errors were then determined using
Eq. 11.3, with a correlation coefficient of 0.845 for
thickness versus accumulation. The resulting global
estimate of grade is 0.72 opt ± 0.023 with error as
a standard deviation. This simple example is useful
because it uses all the drill-hole data available at the
time the stopewas planned and demonstrates the large
local errors involved, yet gives a clear idea of a cen-
tral thick “ore” zone that thins to the north and south.
This example illustrates quantitatively the general-
ization that for a common data array, errors for esti-
mates of large volumes are less than errors for esti-
mates of small volumes. Other estimation methods
could be used to estimate global means in a compa-
rable manner, but empirical techniques could not be
used to quantify the corresponding error. The main
practical points to be made here are as follows:

1. Estimation of an array of blocks of uniform size is
a routine procedure common to virtually all com-
mercially available estimation software.

2. When many blocks are involved, the block size
should approximate the sample spacing, although
the exact block size selected is not critical.

3. Using a relatively small block size (approximately

equivalent to sample spacing and no less than half
the sample spacing) clearly indicates areas where
data are scarce (i.e., have high kriging variance)
and where added data could most effectively im-
prove the quality of the global estimate.

11.5.1: Estimation with Multiple Domains

Mineral deposits for which estimates are required
commonly are divisible into two or more domains.
The need for these domains generally relates to dif-
ferent geologic control from place to place, but in
some casesmight be the result of very different quality
and/or arrays of data from one part of a deposit to
another. Champigny and Sinclair (1984) found two
grade populations for the Cinola gold deposit, Queen
Charlotte Islands, British Columbia. A rare (< 1 per-
cent of assays) high-grade subpopulation is superim-
posed on dominant widespread lower grade mineral-
ization. Champigny and Sinclair (1984) determined a
semivariogram model and kriged the abundant low-
grade data to estimate large panels (100 × 100 ×
8m3); the rare high-grade population was assumed to
be a random variable, and the mean value was com-
bined with the ordinary kriging result for each block
estimate as a weighted average (weights were the
global proportions of the two subpopulations). Later
work showed that block estimates could have been
improved by incorporating the high-grade subpopu-
lation only in the geologically defined zone of quartz
veinlets where outlier values were concentrated. In
such cases, a popular alternative solution to block
estimation (e.g., Clark, 1993) is to define a threshold
between the two populations (cf. Chapter 7), krige
each grade population separately, and weight the two
estimates by using the results of an indicator krig-
ing for the proportions of the two grade populations.
Deutsch (1989) used such an approach in determining
reserves for the Eastmain gold-bearing vein deposit
in northern Quebec.

Characterization of lithologic domains requires
thorough geologic mapping and data analysis to es-
tablish significant differences with respect to continu-
ity. Sinclair et al. (1983) demonstrate widely different
semivariogrammodels for fivemineralized rock types
at the Golden Sunlight deposit, Montana. Use of the



248 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

corresponding semivariogrammodels producedblock
estimates based on exploration data that were used
both for global estimates and for block estimates used
in mine planning. Subsequent work showed that these
early estimates were within 5 percent of production
figures (Roper, 1986). Lithologies commonly have a
marked control over continuity for several reasons, as
follow:

(i) Various lithologies respond differently to a struc-
tural regime.

(ii) Ore fluids react variably with wallrocks depend-
ing on their textures and compositions.

(iii) Some genetic processes are characterized by
fundamentally different styles of mineralization
from place to place during the formation of a
deposit (e.g., a layered massive sulphide deposit
with an underlying stockwork feeder zone).

These simple examples illustrate the importance
of incorporating the concept of geologic (continuity)
domains into the procedure for global estimation.

11.6: ERRORS IN TONNAGE ESTIMATION

11.6.1: Introduction

Errors in tonnage estimates are paid lip service but are
not commonly quantified. In too many cases, tonnage
estimates are quoted to five or six significant figures
and give an impression of a high level of accuracy
even when errors are large; in other cases errors in
tonnage can be negligible.Whatever the situation, it is
useful to know the level of error. Here, such errors are
considered in relation to in situ or geologic resources
rather than for local reserves.

11.6.2: Sources of Errors
in Tonnage Estimates

Tonnages of mineral inventory are determined from a
volume component and a conversion factor that takes
rock density into account, according to the relation

T = V × f

whereT is tons,V is volume (m3), and f is average rock
density. For tabular deposits, V can be considered

V = t × S

where t is average thickness (m) and S is surface area
in the plane of the vein (m2). Errors can arise in the
estimation of each of the terms t, S, and f. These errors
can be expressed as relative errors and can be assumed
to be independent; thus, they are additive as variances
as follows:

(σT /T )2 = (σS/S)
2 + (σt/t)

2 + (σ f / f )
2

where

S is surface area
t is thickness
f is bulk density
σx

2 is the error variance of the
parameters indicated by various
subscripts.

This equation is in the form for application to a
two-dimensional deposit; however, the product of the
t and S terms could be replaced by a single volume
term. In some practical cases, the volume term has
negligible error, for example, a month’s production
from the center of a porphyry copper deposit.

11.6.3: Errors in Bulk Density

Even when average rock density is known, systematic
variations can exist that lead to errors in tonnage es-
timates of large blocks of ore. Such variations might
be related to systematic zonations of ore and gangue
minerals or abrupt changes in mineralogy from one
place to another in a deposit. Several examples of the
impact of such errors are documented in Chapter 15.

Highly significant errors can occur even in seem-
ingly uniform ore such as that encountered in
porphyry-type deposits. Consider the difference in
specific gravity of two granitic ores that contain 1 per-
cent pyrite and 10 percent pyrite, respectively. If the
bulk densities of granite and pyrite are 2.7 and 5.1 g/t,
respectively, the two mixtures have bulk densities of
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2.72 and 2.94 (assuming zero porosity), a difference
of about 8 percent.

This hypothetical case indicates the importance
of obtaining representative estimates of bulk den-
sity so that appropriate values can be used for pur-
poses of global estimation of tonnage. However, it
is apparent that the potential for errors in local es-
timates of tonnage is high because common prac-
tice is to use a single global average value for bulk
density. Clearly, a simple means of monitoring or es-
timating local bulk density is desirable. Of course,
estimates of bulk density can be determined in the
same way as any other variable providing sufficient
data are available; this is generally not the case. One
practical approach, useful when direct measurements
of bulk density are limited in quantity, is to de-
velop a simple ormultiple regression relation between
bulk density and metal assay values, as described in
Chapter 15. An example for the Craig nickel mine
in the Sudbury area (Bevan, 1993) illustrates the
procedure:

Bulk density = 0.297 × %Ni + 2.839.

This relation is a best fit with errors of about ±1 per-
cent for Ni grades and about ±0.2 g/cc for bulk den-
sity values. When appropriate data are available, the
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Figure 11.4: Illustrations of the concept of error in surface area estimation. Two different grid positions are illustrated,
relative to the same irregular target. In one case, the target is approximated by 38 cells; in the other case, the target was
approximated by 40 cells. The associated errors in each case, determined using Eq. 11.9, are shown. Redrawn from Journel
(1975).

potential error in tonnage that emerges from errors in
bulk density estimates can be determined.

11.6.4: Errors in Surface (Area) Estimates

The general concept of error in the estimation of an
area based on widely spaced sampling points is illus-
trated in Fig. 11.4. Clearly, different locations of the
sampling grid relative to the surface being estimated
lead to somewhat different area estimates. For a fairly
regular grid of data the surface area estimate (two-
dimensional limits) is approximated by the number
of small cells that approximate the true outline

S = n · a = n · l · h (11.9)

where a is the area of regular cell of dimensions l × h
and n is the number of cells that defines the surface.
Error in a surface estimate can be determined with the
following equation (e.g., Matheron, 1971):

(σ/S∗)2 = [(l/n2)[N2/6 + 0.06(N1)
2/N2 . . .]

where (σ/S∗)2 is the relative surface estimation vari-
ance, n is the number of positive (ore) intercepts on
a more or less regular sampling grid (i.e., the number
of cells that approximate the surface), N1 is half the
total unit-cell edges defining the perimeter parallel to
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direction one, and N2 is half the number of unit cell
edges defining the perimeter in direction two; direc-
tionsmust be labeled such that N2 ≤ N1. The equation
applies in the specific case inwhich a regular sampling
grid has been superimposed on an ore zone, such that
limits of the ore are known to occur between “hits” and
“misses” in the regular sampling pattern. The precise
locations of the boundary between adjacent hit–miss
pairs are assumed to have an even distribution (i.e.,
all positions of the boundary between a hit–miss pair
are equally probable). Hence, the formula applies in
cases in which a deposit has relatively sharp margins.

11.6.5: Surface Error – A Practical Example

A practical example of the application of the formula
concerns a statistical study of the thickness of a clay
layer byWolfe andNiederjohn (1962).An exploration
concessionwas covered by a regular grid of drill holes
on 300-ft centers to evaluate the average thickness and
extent of a clay layer that was to be used as a source of
argillaceous material in making cement. The outline
of the concession and the drilling grid are shown in
Fig. 11.5. In this case, the total area of the concession
is known, as is the area of the northern part where
the layer has eroded. Furthermore, the clay layer is
known to extend beyond the limits of the concession
to the east, west, and south, so no surface error is at-
tributed to these boundaries. Amaximum surface area
of the clay layer can be determined precisely (ST).
Within the concession there are local areas shown by
drilling, in which the clay layer has eroded (incised
sand deposited by a former river that cut through and
removed part of the clay layer); this area of eroded
clay (S0) can be estimated, as can the error associ-
ated with the estimate. Hence, the surface area under-
lain by clay (Sc) can be determined as

Sc = ST − S0.

Pertinent information relative to an error estimate
of S0 can be determined from Fig. 11.5: n = 27
cells, N1 = 22, N2 = 16, and a1 = a2 = 300 ft. These
data substituted in Eq. 11.6 give a relative error of
0.00694 (i.e., 0.7 percent). Because S0 = n · a1 · a2 =
2,430,000 ft2, the absolute error is 17,000 ft2.

0 3,000 ft

Figure 11.5: Distribution of vertical bore holes (dots) that
intersect a horizontal clay layer in a concession with east,
west, and south boundaries shown as solid and dashed
straight lines. The clay layer is absent (eroded) north of the
sinuous northern boundary. Blank squares indicate cells
in which the clay layer is absent. Data from Wolfe and
Niederjohn (1962).

The geologic nature of the sand “strings” that
indicate erosion of clay, combined with abundant
drill information close to the concession boundaries,
suggest that the “internal” sand is the only signif-
icant contributor to error in the lateral extent of
clay. If this is an acceptable assumption, the ab-
solute error in sand is also the absolute error in
clay. The total area of the concession (556 acres) is
24,219,360 ft2; thus, Sc = ST − S0 = 24,219,360 −
2,430,000 = 21,789,360 ft2. Hence, the relative er-
ror is 17,000/21,800,000 = 0.0008, or 0.0000064 as
a variance.Wolfe and Niederjohn (1962) found an av-
erage thickness of 9.51 ft with a standard error of the
mean of 0.275 (i.e., a relative error of 0.275/9.51 =
0.0289, or 0.000835 as a variance). The relative error
(as a variance) for total volume of clay is 0.000853
+ 0.0000064 = 0.00086 as a variance, or 0.03 as a
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relative standard deviation. With a negligible error in
bulk density, the error for both volume and tonnage
of clay is about 3 percent.

11.6.6: Errors in Thickness

Thickness is a regionalized variable, and related error
estimates rely on an appropriate semivariogrammodel
and subsequent mean and error estimates by a variety
of procedures, including kriging and composition of
terms. Where data are widely spaced, as in the exam-
ple in Section 11.6.5, the error on global thickness is
given by the standard error of the mean.

11.7: ESTIMATION OF CO-PRODUCTS
AND BY-PRODUCTS

Jen (1992) defines the principal (metal) product of a
mine as “the metal with the highest value of output,
in refined form, from a particular mine, in a speci-
fied period” (p. 87). A co-product is “a metal with
a value at least half . . . that of the principal product”
(p. 87); a by-product is “a metal with a value of less
than half . . . that of the principal product” (p. 87). By-
products are subdivided into significant by-products,
which are “metals with a value of between 25% and
50% . . . that of the principal product” (p. 88) and nor-
mal by-products, which are “metals with a value of
less than 25% . . . that of the principal product” (p. 88).

Estimation of co-products and by-products com-
monly is done by techniques similar to that of the
principal commodity (e.g., inverse distance weight-
ing, kriging). In these cases, each estimate of the two
or more products is made totally independently of the
other, with the implicit assumption that no signifi-
cant correlation exists among them. This procedure is
time-consuming and costly, and information might
not be used to its best advantage if correlations exist
but are not taken into account in the estimation
process.

11.7.1: Linear Relations and Constant Ratios

In the extreme case of a very strong correlation among
co-products it may be reasonable to estimate only one
variable independently and determine the others as a
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Figure 11.6: Scatterplots of Au versus Ag analyses of run of
mine samples, Shasta gold deposit. (a) Original data. (b)
Reject analyses. Statisical parameters for the two linear
models (all error in y) are listed in Table 11.2. The two
models differ by a small but significant proportion.

function of the first. Consider the example of Au ver-
sus Ag grades for the Shasta epithermal gold deposit
(Fig. 11.6). Statistical and regression (Ag regressed
on Au) parameters for Au and Ag for an original set
of analyses (n = 81) and for duplicate reject analy-
ses are given in Table 11.2. The results are of interest
because they illustrate the method by which one vari-
able can be estimated by another. However, they are
also informative because the two estimates (pulps and
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Table 11.2 Statistical and regression parameters for Au and Ag, Shasta epithermal gold deposit, northern
British Columbia

Au Ag

Data x s x s r Slopea Intercepta Dispersion

Original 1.477 1.953 74.0 113.1 0.883 51.1(0.42) −1.53(1.02) 53.5
Duplicate 1.637 2.168 73.1 112.4 0.870 45.1(0.385) −0.73(1.04) 55.8

a Numbers in parentheses are one standard deviation error.

rejects) actually provide significantly different results.
In particular, the slopes are seen to be significantly dif-
ferent and give Ag estimates that differ by about 10
percent. A sampling problem is indicated that must
be resolved in order to adopt a correct linear model
for co-product estimation using this modeling proce-
dure. Apart from that, 81 samples is a relatively small
sample base with which to develop amodel to be used
for estimation purposes.

As a futher illustration, assume that the model for
the original data is correct, as follows:

Ag(g/t) = −1.5 + 51.1Au(g/t) ± 53.5.

Gold is most important from an economic point of
view and is the variable that should be measured di-
rectly; hence, Au is the independent variable of the re-
gression equations. Because of the remarkably strong
correlation (r = 0.88) and the relatively lesser eco-
nomic importance of Ag, it is possible to consider as-
saying all samples for Au and, perhaps, to assay only
a proportion for Ag as a monitor on the correlation.
The linear relation then can be used to estimate Ag for
all samples not assayed for Ag. In practice, if a corre-
lation exists on a sample scale, it is even stronger on a
block scale, so the same linear relation can be used to
provide Ag block estimates from their corresponding
Au estimates. In addition, a linear model that passes
through the origin indicates a constant ratio of the two
metals, equivalent to the slope of the line.

The linear model provides an easy route to mon-
itoring the relative values of the two commodities as
metal prices change. Suppose that metal prices are
Au=US$280/oz andAg=US$5/oz. For a gold grade
of 10 g/t, the linear model gives a corresponding Ag

grade of about 510 g/t. The relative gross value of the
metals is about US$122/t for Au and US$82/t for Ag,
approximately 60:40.

11.7.2: A General Model for Lognormally
Distributed Metals

Models for the average grade and tonnage above cut-
off for both normally and lognormally distributed
variables were introduced in Chapter 4, Sections 4.4.3
and 4.4.4. The case of two correlated metals derived
by Matheron (1957) is summarized by David and
Dagbert (1986) as follows. Assume that block grades
have the same correlation as sample grades (probably
a conservative assumption) and define the following
parameters:

K = m(x0) · exp (
u2x

)

L = m(x0) · exp(r · ux · uy)

R(x, y) = � [(Ln(x))/y + y/2]

where

r is the correlation coefficient of
logtransformed variables x and y

m(x0) is the mean value of logarithms of
x (metal 1)

m(y0) is the mean value of logarithms of
y (metal 2)

u2x is the variance of logtransformed x
values

u2y is the variance of logtransformed y
values

�[ · ] is the integral of the normal
distribution from [ · ] to infinity
(see Eq. 4.6).
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If the volume and bulk density are well con-
strained, the total tonnage is known, in which case
T (xc), the tonnage above cutoff grade (xc) (applied to
the principal commodity) is given in Eq. 11.10:

T (xc) = T0R(xc/mx , ux ) (11.10)

where T0 is the tonnage for zero cutoff.
The quantity of the principal commodity x above

cutoff grade xc is

Qx (xc) = m(x0) · T (x0) · R(xc/K , ux ). (11.11)

The quantity of the co- or by-product y above cutoff
grade xc is

Qy(xc) = m(y0) · T (x0) · R(xc/L , ux ). (11.12)

Corresponding average grades of each metal can be
determined by dividing total tonnage by the appro-
priate quantity of metal. A detailed example is shown
by David and Dagbert (1986), who illustrate the use
of a chart to assist with calculations such as those of
Equations 11.10 to 11.12.

11.7.3: Equivalent Grades

An equivalent grade is one that is a combination of
two or more grade variables in an arbitrary manner
to produce a single variable for estimation purposes.
For example, in an Au deposit containing some Ag,
an equivalent grade might be obtained as follows:

Aueq (g/t) = Au (g/t)+ k ·Ag(g/t)

where k is a parameter that, in this case, generally
is taken as the ratio of Ag price to Au price (e.g.,
k = 1/56 if Au and Ag values are $280/oz and $5/oz,
respectively). Equivalent grades are used commonly
to simplify the problem of mineral inventory estima-
tion by estimating a single variable, rather than the
two or more variables from which the single variable
(equivalent grade) is derived. In general, the use of
equivalent grades should be discouraged. Fluctua-
tions in metal prices can change k significantly, and
each new value requires a completely new mineral

inventory estimation. Perhaps even more serious is
the common problem that recoveries of individual
metals generally are not taken into account (e.g.,
Goldie, 1996; Goldie and Tredger, 1991) and can
vary significantly as a function of grade. Recoveries
of individual metals generally cannot be interpreted
from estimates of equivalent grades.

11.7.4: Commentary

When correlations are used as a basis to assist in
the estimation of a co- or by-product, it is important
to ensure that the correlation exists throughout the
volume being estimated. This can be ascertained by
conducting a monitoring program in which the corre-
lation is tested in about every tenth sample. More-
over, different correlation (geologic) domains may
exist as a function of variations in the mineraliza-
tion style. A linear model for one domain might not
be applicable in another domain. This can be true
even in adjacent and superficially similar deposits.
For example, Cu/Au ratios for various mineralized
zones of the Similkameen porphyry copper camp (cf.
Nowak and Sinclair, 1993; Raymond, 1979) differ by
up to 50 percent.

With adequate approximations to lognormal dis-
tributions for all the variables involved, co- and by-
products can be estimated from the corresponding
value of the principal commodity using appropriate
equations. In some cases, equivalent metal grades
can provide increased efficiency. In general, equiv-
alent metal grades can pose problems arising from
their dependency on metal prices and should be
avoided.

11.8: PRACTICAL CONSIDERATIONS

1. Global estimates of mineral deposits are used for
two main purposes – (i) to justify further expen-
ditures and investigations and (ii) summarize the
results of more detailed estimates.

2. Several techniques of global resource/reserve esti-
mation do not provide a specific estimate for a spe-
cific block (e.g., volume variance); such methods
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can be used to define the general magnitude of a
target that must be proved to exist through addi-
tional exploration.

3. Where a grade cannot be assigned to a selective
mining unit with reasonable confidence, an esti-
mation method must be considered global rather
than detailed.

4. The general procedure of approximating a large
ore volume by an array of relatively small and
regular blocks is more useful than a widely used
procedure involving an array of blocks of vari-
ous sizes, each with a roughly centrally located
datum.

5. Attention should be directed toward calculation
of errors for tonnage estimates. At the very least,
such an endeavor leads to an appreciation of the
principal sources of error (e.g., thickness, bulk
density) and how the quality of the estimate could
be improved.

6. Estimation of co- and by-products indirectly by
their relation to the principal product is pos-
sible when a strong correlation exists between
the co-product/by-product and the principal prod-
uct. Constant ratios or linear relations of by-
product/principal product are common in prac-
tice, although they can vary from one geologic
zone to another in the same deposit. When such
simple relations are demonstrated, they can save
considerable time in the estimation process.

7. When simple mathematical relations such as ra-
tios and linear trends are used to estimate co- and
by-products, it may be acceptable practice to save
on assay cost by not assaying all samples for the
co-product/by-product. However, the relation be-
tween co-product and principal products should
be monitored, perhaps by assaying every tenth
sample for the variable(s) that are to be estimated
by the relation.

8. Equivalent metal grades are commonly esti-
mated as a cost-saving procedure, but the proce-

dure is generally false economy and should be
avoided.
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11.10: EXERCISES

1. A stope on a vein dipping 65 degrees is planned
to extend from the 855-m level to the 910-m level
and has a strike length of 45 m. The true vein
thickness (± standard deviation) of 2.3 ±1.1 m is
based on 38 more or less evenly distributed drill
intersections. Determine the tonnage of the global
(in situ) resources if 10 local, large grab samples
provide a density estimate (± standard deviation)
of 2.98± 0.15. Also, determine the error attached
to the tonnage estimate.

2. The volume–variance method can be applied to
any unbiased histogram of data representing a
known volume for which the bulk density is
known. Of course, an implicit assumption is that
ore/waste selection can be done on the same sup-
port as the data on which the histogram is based.
Select an appropriate histogram from the techni-
cal literature and develop a corresponding grade–
tonnage curve.



12
Grade–Tonnage Curves

A frequently used decision tool is the so-called grade–tonnage relationship, which relates the tonnage of mineable
ore to its average grade, for a given set of economical conditions. It is in the estimation of grade–tonnage
relationships that most errors and biases occur for lack of a clear definition of the necessary concepts. (Huijbregts,
1976, p. 114)

Chapter 12 deals with various derivations of
grade–tonnage curves including unbiased his-
tograms of data (and block estimates) and con-
tinuous probability density functions of unbiased
data (and block estimates). A case history illus-
trates some of the various grade–tonnage curves
that can result from a mineral inventory estima-
tion project. The effect of conditional bias on
kriged block estimates can be taken into account
globally, but local estimates are more difficult
to correct. Thus, grade–tonnage curves based on
widely spaced data can approach, but rarely at-
tain, reality.

12.1: INTRODUCTION

Grade–tonnage curves are one of the more useful
means of summarizing mineral inventory informa-
tion. Generally, two curves are involved: one is a
graph of tonnage above cutoff grade versus cutoff
grade, and the other is the average grade of tonnage
above cutoff versus cutoff grade. A third graph,
quantity of metal versus cutoff grade, can be derived
from the other two. These graphs are constructed
either from a tabulation of grade estimates or from

smooth curves fitted to histograms of grade estimates.
An example is given in Fig. 12.1 for the South Tail
zone, Equity Silver deposit, northwestern British
Columbia (Giroux and Sinclair, 1986); data for the
curves are listed in Table 12.1. In this example, two
separate tonnage curves are indicated: an optimistic
estimate and a conservative estimate of the tonnages
to which the curves apply, reflecting somewhat
different criteria for interpolating and extrapolating
data. In the conservative case, there are several gaps
within the rectangular field of data that are not con-
sidered as potential ore. For the optimistic case, ore
continuity is assumed through those internal gaps.

Grade–tonnage curves are useful at several stages
of deposit evaluation. During the exploration stage,
they can be an important component of target char-
acterization (i.e., they provide a quantification of re-
sources based on exploration data and are an initial
rough estimate of the general size [tons of ore or
quantity of metal] of a resource for various cutoff
grades). At this early stage, estimates are neither re-
sources nor reserves in the strictest sense, because a
detailed economic analysis has not been performed;
therefore, an appropriate cutoff grade might not have
been defined. Furthermore, because selectivity has
not been considered in detail, the total quantity of
metal is likely to be optimistic. At the feasibility stage
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Figure 12.1: Grade–tonnage curves for South Tail zone,
Equity Silver Mine. Two tonnage curves are shown: an up-
per curve, based on relatively optimistic extrapolation and
interpolation; and a lower more conservative curve. The
x axis is cutoff grade; the y axis is millions of tons (left)
and average grade of ore (right). After Giroux and Sinclair
(1986).

economic controls are much more stringent, and
grade–tonnage curves are useful in contrasting grades
and tonnages for various operating scenarios (e.g.,
large-scale production at low cutoff grade versus
smaller-scale production at higher cutoff grade). Dur-
ing planning and production, grade–tonnage curves
are useful for summarizing quantities of tonnes and
metal to be mined during a specific time interval or
from a particular part of a deposit (e.g., one bench)
and provide rapid insight into changes in ore recov-

Table 12.1 Summary of grade–tonnage information
for silver, South Tail zone, Equity Silver Mine

Tonnage using Tonnage using
T0 = 59 T0 = 48.8

Cutoff (g/t) Grade (g/t) milliona milliona

20 89.9 14,056,000 11,626,000
30 114.1 10,293,000 8,513,000
40 125.1 9,025,000 7,465,000
50 135.8 7,983,000 6,603,000
60 149.0 6,877,000 5,688,000
70 156.1 6,327,000 5,233,000
80 161.7 5,917,000 4,894,000
90 170.3 5,331,000 4,409,000
100 180.2 4,711,000 3,897,000
110 185.7 4,389,000 3,630,000
120 188.6 4,221,000 3,491,000
130 196.5 3,754,000 3,105,000
140 203.3 3,368,000 2,786,000
150 206.1 3,212,000 2,657,000
160 210.0 2,988,000 2,471,000
170 212.7 2,823,000 2,335,000
180 218.3 2,469,000 2,042,000
190 218.7 2,440,000 2,018,000
200 220.1 2,291,000 1,895,000
210 220.9 2,162,000 1,789,000
220 221.4 2,028,000 1,678,000

a T0 = tonnage for zero cutoff grade.
Source: After Giroux and Sinclair (1986).

ery that could result from significant changes in cutoff
grade (e.g., in response to changes in metal prices or
smelter contractual arrangements).

The use of grade–tonnage curves to summarize
“recoverable reserves” contrasts with their use dur-
ing the exploration stage for quantifying a somewhat
idealized target that remains to be proved. For their
various applications, grade–tonnage curves can be ap-
proximated in several ways and it is essential that the
means by which such curves have been generated is
well understood. Histograms or probability density
functions (e.g., normal and lognormal density func-
tions) of sample grades provide an overly optimistic
approach to determining grade–tonnage curves be-
cause they are based on samples of small volume, far
smaller than any practical ore/waste selective mining
unit (SMU). Nevertheless, such information can be
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used to estimated grade–tonnage characteristics of a
deposit and provide important information on which
to base decisions regarding continued evaluation. It
is important to recognize that spatial location is not
known for ore implied bygrade–tonnage curves, as es-
tablished from histograms and normal and lognormal
density functions for sample data. More realistic uses
of sample histograms or probability density functions,
for derivations of grade–tonnage curves involving re-
coverable reserves, require a knowledge of the dis-
persion characteristics of average grades for blocks
approximating a realistic selective mining unit. Re-
coverable reserves is a widely used term for the ton-
nage (and its average grade) that is above cutoff grade;
geostatistical estimates of recoverable reserves may
be somewhat optimistic because they do not take into
account factors other than block grades (e.g., blocks
that might not bemilled for reasons of technology and
mine planning).

12.2: GRADE–TONNAGE CURVES DERIVED
FROM A HISTOGRAM OF SAMPLE GRADES

An unbiased histogram of grades contains much of
the necessary information with which to construct
grade–tonnage curves provided the samples are repre-
sentative of the deposit in question. As David (1972,
p. 90) pointed out, “mathematical treatment cannot
increase the quantity of information.” For purposes
here, suppose that a large block of ore has been de-
limited by adequate sampling and the volume V is
well defined and known. An unbiased histogram of
sample grades for this volume contains information
about

(i) The proportion of grades above any specified cut-
off grade

(ii) The average of all grades above any cutoff grade.

That is to say, an unbiased histogram of assay data
(or composites) contains grade–tonnage curve infor-
mation, albeit for very small samples each of volume
v; hence, such curves represent an idealized view of
the proportions of ore and waste based on selection
units the size of samples. Proportion of grades above

cutoff (p>c) is the discrete estimator

p>c = N>c/Nt

where N>c is the number of grades greater than cutoff
and Nt is the total number of grades. If values have
beenweighted to produce an unbiased histogram, then
N>c is replaced by the sum of weights above cutoff
[
∑

w j (≥c)], and Nt is replaced by the sum of all
weights [

∑
wi (t)] to give

p>c =
∑

w j (>c)
/ ∑

wi (t)

Where volume V and appropriate bulk density factors
(d) are known, the proportions of tonnage (i.e., p>c

values) can be transformed into amounts of absolute
tonnage greater than cutoff grade (T>c):

T>c = T0 × p>c

= V × d × p>c.

If a histogram is based on very large Nt , it is more
convenient to use frequencies of class intervals as
weights. For the case of equal weighting of values, the
average grade of the proportion above cutoff is easily
determined as the arithmetic mean of the individual
items above cutoff. With weighted information for an
unbiased histogram, a weighted average must be cal-
culated. This procedure can be repeated for a variety
of cutoff grades (commonly chosen as the values that
bound class intervals for the histogram) to produce a
tabulation of data that can be plotted as grade–tonnage
curves. A simple example is illustrated in Fig. 12.2,
in which data are represented by a histogramwith fre-
quency as percent; the necessary data for constructing
the corresponding grade–tonnage curve (as calculated
from the histogram information) are summarized in
Table 12.2.Note that grade–tonnage calculations such
as these can be done conveniently using readily avail-
able spreadsheet software.

This procedure for producing a grade–tonnage
curve is global (rather than local) in character because
there are no implications as to where, in the relevant
volume V (the deposit), the higher grade vs (sam-
ples) occur. Moreover, the histogram and the grade–
tonnage curve derived from it can be attributed only
to the rock volume represented by the samples; only
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Table 12.2 Tabulated grade–tonnage information for
the data in Fig. 12.2

g(c)a T>g(c)
b g(m)>c

c

0.5 1 2.72
1.0 0.99 2.74
1.5 0.92 2.85
2.0 0.81 3.01
2.5 0.6 3.28
3.0 0.35 3.66
3.5 0.17 4.1
4.0 0.08 4.5
4.5 0.03 4.92
5.0 0.01 5.25

a Cutoff grade.
b Proportion of tonnage above cutoff grade.
c Average grade (% metal) of tonnes above cutoff grade.

limited extrapolation may be possible. It is useful to
be aware that an unbiased histogram provides grade–
tonnage information, because such knowledge opens
the possibility relatively early in the exploration of
a deposit of estimating grade–tonnage curves, and
thus estimating potential target size. However, it must
be remembered that data distribution is a function of
sample size (volume) and that grade–tonnage curves
generated from sample data, however large, must be
viewed as optimistic because of the volume–variance
relation (cf. Chapter 8).
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Figure 12.2: Histogram of hypothetical grade information listed in Table 12.2.

12.3: GRADE–TONNAGE CURVES DERIVED
FROM A CONTINUOUS DISTRIBUTION
REPRESENTING SAMPLE GRADES

Just as unbiased histograms can be used to create
grade–tonnage curves, continuous distributions can
be used in the same manner. This idealized approach
is particularly useful when examination demonstrates
that a normal or lognormal distribution characterizes
an unbiased distribution of the grades in question.
For example, consider the parameters of a lognormal
distribution of blasthole grades for the Bougainville
porphyry copper deposit (David and Toh, 1988);
the arithmetic mean and standard deviation of
the distribution are 0.45 percent Cu and 0.218,
respectively, and the mean and standard deviation of
natural logarithms of the data are−0.9035 and 0.458,
respectively. The application of Eq. 4.14 for a series
of different cutoff grades provides the proportion of
tonnage above each cutoff grade. This information,
along with Eqs. 4.15 and 4.16, can be used to deter-
mine the average grade of material above each cutoff
grade. Results of a number of calculations are listed in
Table 12.3 and are shown as grade–tonnage curves in
Fig. 12.3. If data fit a lognormal distribution, the ease
with which grade–tonnage curves can be established
is apparent.

It is clear that similar calculations for a nor-
mal distribution can be done using the appropriate
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Table 12.3 Tabulated grade–tonnage information for
the lognormal distribution in Fig. 12.3

Cutoff P>c R>c g(m)>c

0 1.0 1 0.45
0.1 0.9993 0.999 0.45
0.2 0.9415 0.97999 0.468
0.3 0.74486 0.86958 0.525
0.4 0.51124 0.68688 0.605
0.5 0.3228 0.50041 0.698
0.6 0.1944 0.34472 0.798
0.7 0.1139 0.23006 0.909
0.8 0.0657 0.15028 1.03
0.9 0.0376 0.09684 1.16
1.0 0.0215 0.06188 1.30
1.2 0.0070 0.02498 1.61
1.4 0.0024 0.01009 1.89
1.6 0.0008 0.00412 2.32

equations in Chapter 4. The assumption that a normal
(or lognormal) distribution describes a real data set
breaks down on the tails of the distribution. Thus, esti-
mates of both proportion (tonnes) above cutoff grade
and average grade of those tonnes (and, therefore,
quantity of metal) can be seriously in error, partic-
ularly with a cutoff grade on the upper tail of the
distribution.

12.4: GRADE–TONNAGE CURVES BASED
ON DISPERSION OF ESTIMATED BLOCK
GRADES

12.4.1: Introduction

For feasibility and production purposes, grade–
tonnage curves must be based on dispersion of grades
of blocks of a realistic size for purposes of classifica-
tion as ore or waste (i.e., an SMUmust be assumed or
defined and that information integrated into the deter-
mination of grade–tonnage curves). Two approaches
are possible:

(i) The histogram (or continuous density function)
of samples can be modified to take into account
the change in dispersion of grades of a different
support (i.e., the SMUs).

(ii) Grades can be estimated for individual SMUs,
and these data can be accumulated into grade–
tonnage curves.

First, consider the correction to be applied to an
unbiased histogram of sample grades in order to de-
rive a histogram of grades averaged over a larger
support, the SMU. The volume–variance relation
(cf. Huijbregts, 1976; Parker, 1979) serves this pur-
pose in part (cf. Fig. 12.1):

D2(b/V ) = D2(s/V ) − D2(s/b) (12.1)

where

D2(b/V ) is the dispersion variance for SMU
(b) grades in the deposit (V )

D2(s/V ) is the dispersion variance of sample
grades (s) in the deposit (V )

D2(s/b) is the dispersion of sample grades
(s) in the SMU (b).

The term D2(s/V ) represents the unbiased dis-
persion variance of sample grades and can be deter-
mined from the data themselves or from the sill of
the semivariogram. The term D2(s/b) represents the
dispersion variance of sample grades in volume b and
can be determined knowing the block size and the
semivariogram model; the term D2(s/b) is also
equivalent to the F auxiliary function ofmany authors
and can be determined from graphs available in a va-
riety of texts (e.g., Clark, 1979; David, 1977; Journel
and Huijbregts, 1978) or with published computer
programs (e.g., Clark, 1976). With the forgoing
information, Eq. 12.1 can be solved for the dispersion
variance of block grades throughout the deposit.

A dispersion variance of block grades also can be
expressed in terms of average semivariogram values,
as in the following example:

D2(b/V ) = γ (V, V ) − γ (b, b) (12.2)

where γ (x, x), for x = b or x = V is the average of
all gamma values obtained for all possible pair sep-
arations in volume x (see Fig. 10.2). A good-quality
semivariogram is essential to the determination of dis-
persion variances and the F function. It is clear from
Eq. 12.2 that the dispersion variance of average grades
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Figure 12.3: (a) Lognormal distribution of grades for the Bougainville copper mine (after David and Toh, 1988), and (b)
grade–tonnage curve derived from the lognormal distribution of (a). Note that tonnage is given as a proportion because the
tonnage at zero cutoff grade is not available.

of SMUs as a function of the size of the SMU. Thus,
decisions relating to mining method must be made so
that an appropriate SMU can be used in developing a
grade–tonnage curve. At this stage, if an assumption
also can be made about what happens to the shape of
the probability density function in the change from a
data distribution to a block–grade distribution (e.g.,
conservation of normality or lognormality), grade–
tonnage curves can be estimated as described in
Section 12.3.

When a histogram approach is to be used to con-
struct grade–tonnage curves, the histogram of sample
grades must be transformed to an estimate of the his-
togram of block grades based on a knowledge of

D2(b/V ) (determined from Eq. 12.1) and assump-
tions concerning the form of the histogram of grades
of blocks. A simple assumption that is commonly rea-
sonable is the affine correction, which produces the
histogram of grades of blocks from the histogram of
sample grades by the following transform:

gb = (gs − m)[D2(b/V )/D2(s/V )]1/2 + m.

(12.3)

By this transform, each sample grade (gs) is
moved toward the mean (m) as a function of the ratio
of the two dispersion standard deviations to produce a
corresponding block grade (gb). Other transforms can
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be used (see Journel and Huijbregts, 1978); for exam-
ple, an assumption of the conservation of lognormal-
ity, which, although not true theoretically, has been
shown to be useful in practice (e.g., David, 1972).
Once the histogram of block grades is estimated, a
grade–tonnage curve can be determined, as described
in Section 12.2.

12.4.2: Grade–Tonnage Curves from Local
Block Estimates

Conceptually, the simplestmeansof producinggrade–
tonnage curves is from grade estimates for an array
of selective mining units of equal size. The great ad-
vantage of this procedure is that block locations are
known and can be integrated into a particular mining
procedure. Tonnage above any cutoff grade is easily
determined by arranging the mineable SMUs in order
of decreasing grade; tonnage above cutoff is T × n,
where T is tonnes per SMU (corrected for variable
specific gravity if necessary) and n is the number
of SMUs above cutoff. Similarly, average grade of
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Figure 12.4: Solid curves are grade–tonnage curves for the normal grade distribution of hypothetical Cu sample data (mean
and standard deviation are 0.76 percent Cu and 0.28 percent Cu, respectively) used as an example in the text. Dashed
curves are grade–tonnage curves derived for the normal distribution of hypothetical block average grades (mean and standard
deviation are 0.76 percent Cu and 0.24 percent Cu, respectively) used as an example in the text.

Table 12.4 Tabulated grade–tonnage information
for the text example (Section 12.4.2) shown
in Fig. 12.4

g(c) z P>c Z[z] g(m)>c

Data
0.0 1.0 0.76
0.2 −2 0.98 0.054 0.775
0.4 −1.286 0.903 0.1745 0.814
0.6 −0.571 0.717 0.3389 0.892
0.8 0.143 0.443 0.3949 1.01
0.96 0.714 0.237 0.309 1.126
1.0 0.857 0.194 0.276 1.158
1.2 1.571 0.055 0.116 1.351
1.4 2.286 0.009 0.029 1.662

Blocks
0.0 1.0 0.76
0.2 −2.333 0.992 0.0262 0.765
0.4 −1.5 0.936 0.1295 0.793
0.6 −0.6666 0.748 0.3195 0.862
0.8 0.1666 0.434 0.3934 0.978
0.96 0.8333 0.201 0.2819 1.096
1.0 1.0 0.157 0.242 1.13
1.2 1.8333 0.030 0.0743 1.349
1.4 2.666 0.003 0.0114 1.773
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tonnes above cutoff is simply the average grade of
all SMUs above cutoff. These two parameters, deter-
mined for a range of cutoff values, can then be plotted
as grade–tonnage curves.

This seemingly simple procedure is not without
its problems, particularly if applied at the feasibility
stage. In general, early planning is based on rel-
atively widely spaced sampling information, such
as diamond-drill-hole samples; in contrast, produc-
tion is based on much closer control that in many
cases gives rise to selectivity of ore and waste on a
much finer scale than exploration data spacing. To at-
tempt to estimate relatively small SMUs from widely
spaced exploration data results in extensive smooth-
ing according to the relation (e.g., Huijbregts, 1976)

D2(SMU∗) = D2(SMU) − σk
2 + 2µ (12.4)

where D2(SMU∗) is the dispersion of estimated
(kriged) grades of SMUs, D2(SMU) is the dispersion
variance of true grades of SMUs, σk

2 is the aver-
age kriging variance of the SMUs, and u is the aver-
age Lagrange multiplier (a product of kriging). When
the mean grade is well known, µ is negligble and the
expression reduces to

D2(SMU∗) = D2(SMU) − σ 2
k . (12.5)

The foregoing relation quantifies the smoothing
that results from block kriging. With limited data and
small blocks, the kriging variance is large; with abun-
dant and high-quality data, the kriging variance is
smaller and dispersion of kriged block grades more
closely approximates the truth. The variances con-
sidered in Eqs. 12.4 and 12.5 are global or averages
and thus can be applied as corrections only to global
estimates. Consequently, they can be taken into ac-
count in grade–tonnage curves, but, of course, indi-
vidual blocks are not corrected.

The importance of establishing grade–tonnage
curves for block estimates rather than sample es-
timates can be illustrated by an artificial example.
Such calculations illustrate why mineral inventory
estimation procedures that depend on sample-grade
dispersion (e.g., polygonal estimation) rather than
block-grade dispersion can result in large errors. As-

sume a normal distribution of sample data with gm =
0.76 percent Cu, D(s/V ) = 0.28, D(b/V ) = 0.24,
and gc = 0.96 (Fig. 12.4). Substitute z = (0.96 −
0.76)/0.28= 0.714 in Eq. 4.6 and solve to estimate
P>c (samples)= 0.237 (i.e., 24 percent of the total
tonnage is above cutoff grade). Substitute in Eq. 4.9
to determine the average grade of material above cut-
off, gm(>c) = 1.126 percent Cu.

Similar calculations can be done using the block-
grade dispersion of 0.24 to provide P>c (blocks)=
0.201 and an average grade of 1.096 percent Cu.
Suppose that these calculations apply to a block of
200,000 tonnes. The overestimation of tonnes above
cutoff byusing the data distribution rather than the dis-
tribution of block grades is (0.237−0.201)200,000=
7,200 tonnes of ore. Much larger errors can arise with
skewed distributions. The error in estimated metal
contained in material above cutoff grade using data
rather than blocks is (0.01126×47,400)− (0.01096×
40,200)= 533.7− 440.6= 93.1 tonnes of Cu metal,
a 21 percent overestimation relative to ideal metal
recovery by blocks. This example is not at all unre-
alistic; much larger errors are possible, particularly
when positively skewed distributions are present and
the cutoff grade is further toward the upper tail of the
distribution.

12.5: GRADE–TONNAGE CURVES
BY MULTIPLE INDICATOR KRIGING

The product of multiple indicator kriging is a se-
ries of estimates on a cumulative frequency distribu-
tion for which mean and variance can be determined.
For example, the resulting distribution might repre-
sent the distribution of sample grades in a 30× 30×
10 m3 panel. When the semivariogram is known, the
volume–variance relation can be used to alter this
sample distribution to a distribution representing
grades of blocks of a specified size (e.g., 5 × 5 ×
10m3). Note that there are 36 such blocks in the larger
panel. A cutoff grade can be applied to the small block
distribution in order to estimate the proportion of such
blocks that are above cutoff grade and the average
grade of those “ore” blocks. Moreover, the informa-
tion from similar block distributions for many large
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panels can be combined to produce a grade–tonnage
curve for a very large volume such as the deposit itself.
The general procedure of multiple indicator kriging
is considered in greater depth by Journel (1985).

12.6: EXAMPLE: DAGO DEPOSIT,
NORTHERN BRITISH COLUMBIA

The Dago deposit is a stratabound, massive to dis-
seminated sulphide concentration with important pre-
cious metal content that occurs within cherty tuff and
bleached andesite of the Lower Jurassic Hazelton
Group, northern British Columbia (Dykes et al.,
1983). Pyrite, sphalerite, galena, and lesser chalcopy-
rite occur as narrow, discontinuous sulphide lenses
that are locally massive, but more commonly are
5 to 15 percent sulphides (by volume). The deposit
has been evaluated by diamond drilling: 120 drill
holes scattered through an area of about 135× 270m,
which is of interest here for the gold content of
core samples (5-m composites). Declustering with
a variety of cell sizes (Fig. 12.5) indicates that a
45-m square cell is optimal with which to produce
an unbiased histogram of gold grades. The cumu-
lative histogram of 5-m composites (in the form of
grade–tonnage information) is given in Table 12.5.
Comparable information is given for 5× 5× 5 m3

and 10× 10× 5 m3 blocks in Table 12.6 and for
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Figure 12.5: Declustered means versus cell (block) size, exploration drill data, Dago deposit. Size of square declustering
blocks refers to length of a side. The weighted mean is based on the total samples in each block having a constant weight,
regardless of the number of samples in the block. Optimal block size is the size corresponding to the lowest weighted mean,
assuming high grades are clustered. After Giroux and Sinclair (1983).

Table 12.5 Tabulation of grade–tonnage curve data,
16.4-ft composites, Dago deposit (see Fig. 12.6)

Average grade
Cutoff (oz/t) above cutoff Short tons

0.010 0.037 2,158,000
0.015 0.047 1,552,000
0.020 0.054 1,266,000
0.025 0.064 969,000
0.030 0.077 724,000
0.035 0.084 624,000
0.040 0.091 541,000
0.045 0.093 522,000
0.050 0.096 488,000
0.055 0.098 461,000
0.060 0.107 394,000
0.065 0.115 333,000
0.070 0.138 225,000
0.075 0.142 212,000
0.080 0.149 191,000

kriged 10× 10× 5 m3 blocks in Table 12.7. Note
that a high level of smoothing is to be expected
in the kriging results because the data density (two
dimensional) is one “sample” per 300 m2. The
corresponding grade–tonnage curves are given in
Figs. 12.6 and 12.7.

It is informative to consider the magnitude of dif-
ferences among the various grade–tonnage curves for
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Table 12.6 Tabulation of grade–tonnage curve data by volume variance, Dago deposit (see Figs. 12.6
and 12.7)

16.4 × 16.4 × 16.4 ft3 blocks 32.8 × 32.8 × 16.4 ft3 blocks

Cutoff grade (oz/t) Tons above cutoff Average grade above cutoff Tons above cutoff Average grade above cutoff

0.010 2,548,000 0.031 2,624,000 0.030
0.015 1,663,000 0.042 1,685,000 0.041
0.020 1,250,000 0.050 1,251,000 0.049
0.025 932,000 0.059 925,000 0.059
0.03 693,000 0.071 686,000 0.070
0.035 584,000 0.078 576,000 0.077
0.04 529,000 0.082 526,000 0.080
0.045 494,000 0.085 489,000 0.083
0.05 461,000 0.087 447,000 0.087
0.055 373,000 0.096 359,000 0.095
0.06 299,000 0.106 271,000 0.107
0.065 219,000 0.123 215,000 0.121
0.07 198,000 0.128 192,000 0.127
0.075 176,000 0.135 171,000 0.134
0.080 160,000 0.141 158,000 0.139

the Dago example. Consider a cutoff grade of 0.05 oz
Au/st in the following table:

Average
grade Contained

Volume unit Tons oz Au/st Au (oz)

Volume variance
5-m composite 487,700 0.096 46,800
5 × 5 × 5 m3 blocks 461,200 0.087 40,100
10 × 10 × 5 m3 blocks 446,900 0.087 38,900

Kriged estimates
10 × 10 × 5 m3 blocks 490,000 0.0711a 34,800

a Au-equivalent grade (includes Ag).

Of the estimates by the volume–variance method,
the 5-m composites produce a result that is high (as
expected) by nearly 7,000 oz relative to the maximum
expectation for 5 × 5 × 5 m3 blocks. Recall that the
block estimate is optimistic vis-à-vis production; that
is, it is based on the assumption that all the mate-
rial above cutoff grade will be located (e.g., by blast-
hole data). A somewhat larger selective mining unit
(10× 10× 5 m3 blocks) leads to a minor reduction

in tonnage (−4 percent) with no significant change
in average grade. The grade–tonnage curves obtained
by kriging (Fig. 12.7) are not strictly comparable be-
cause they are based on an equivalent gold grade that
includes the associated silver information. Both Au
and Ag were kriged (ordinary kriging) independently
to obtain an average Au equivalent for each block;
these data are incorporated in Fig. 12.7. In general,
kriging is based on an average data spacing (horizon-
tal plane) of one sample per 300 m2 and a spherical
semivariogram model with a large nugget effect and
a range of about 25 m. This produces a substantial
amount of local averaging when data are clustered,
with the result that tonnage above high cutoff grades
is underestimated, as is the average grade above cut-
off. Local estimates, regardless of the method used,
generally have a large error in this case.

In summary, assuming a 10 × 10 × 5 m3 SMU,
the true reserves are somewhat less than the “ideal”
volume–variance results for such blocks (446,900
tons at 0.087 oz Au/st). Ore/waste selection should
not be based on the kriging results determined from
exploration data, but should depend on themuchmore
abundant data that is obtained from blastholes during
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Table 12.7 Tabulation of grade–tonnage curve data
by block kriging 32.8 × 32.8 × 16.4 ft3 blocks,
Dago deposit (see Fig. 12.7)

Average Average Au
Cutoff Au grade Ag grade equivalent
(oz/t) (oz/t) (oz/t) (oz/t) Tonnage

0.010 0.0306 0.58 0.044 1,651,000
0.015 0.0386 0.73 0.056 1,236,000
0.020 0.0452 0.87 0.066 985,000
0.025 0.0512 0.99 0.075 820,000
0.030 0.0563 1.10 0.083 706,000
0.035 0.0603 1.20 0.089 629,000
0.040 0.0639 1.28 0.094 569,000
0.045 0.0672 1.34 0.099 521,000
0.050 0.0709 1.41 0.104 489,000
0.055 0.0741 1.48 0.109 413,000
0.060 0.0774 1.53 0.114 413,000
0.065 0.0805 1.58 0.118 381,000
0.070 0.0844 1.65 0.124 343,000
0.075 0.0902 1.73 0.131 300,000
0.080 0.0945 1.87 0.139 262,000

production. For purposes of obtaining amore realistic
“global” grade–tonnage curve for kriging estimates,
the curves of Fig. 12.7 could be corrected for smooth-
ing (Eq. 12.5) by a method comparable to a change
of support (e.g., the affine correction of Eq. 12.3).

12.7: REALITY VERSUS ESTIMATES

All grade–tonnage curves contain some error, even
those based on an abundance of closely spaced
information. The better the quality of data, the better
are the estimates and the grade–tonnage curves that
result. All estimation techniques produce conditional
bias to some extent. In the case of the application
of a cutoff grade, these conditional biases can be-
come important. Block estimates are based on data
that generally have been smoothed to some extent.
This smoothing compensates to an unknown extent
for conditional bias and might overcompensate.

Grade–tonnage curves should be accompanied by
explanatory information summarizing how they have
been obtained and indicating likely sources of error.
One error that deserves specific mention is analyti-
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Figure 12.6: Grade–tonnage curves by the volume variance
method for the Dago deposit. Triangles are for 5-m (16.4-ft)
composites; circles are for 5 × 5 × 5 m3 (16.4 × 16.4 ×
16.4 ft3) blocks. Data are tabulated in Tables 12.5 and
12.6. After Giroux and Sinclair (1983).

cal and sampling error. Selection is not based on true
grades but on estimated grades. A significant sam-
pling error can be introduced that can lead to substan-
tial differences between what is estimated and what is
produced, especially as regards local estimates. With
relatively few data at the exploration stage, a large
sampling and analytical error can have a significant
impact on a grade–tonnage curve, generally leading
to an overestimation of high-grade tonnage.

A further problem can be encounteredwhen block
selection is based on the presence of two or more
value measures (e.g., Cu and Mo, in the case of many
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Figure 12.7: Grade–tonnage curves for 10×10×5 m3

(32.8×32.8×16.4 ft3) blocks at the Dago deposit by or-
dinary kriging (triangles) and by volume–variance method
(circles). Redrawn from Giroux and Sinclair (1983). Data
are tabulated in Tables 12.6 and 12.7.

porphyry copper deposits). If the estimation proce-
dure smooths the data, both variables are smoothed;
that is, low values of both variables are overestimated.
This situation leads to the problem that both variables
can contribute to the “grade” of somewaste-block val-
ues being inadvertently raised above the cutoff grade
(grade heremeans the combined value of the two vari-
ables in question). This source of error may be signif-
icant when much of the ore and waste occur in blocks
close to the cutoff grade; but is difficult to correct,
other than arbitrarily. The problem has less impact
when the two metals are randomly related and greater
impact when the two metals are highly correlated.

12.8: PRACTICAL CONSIDERATIONS

1. Unbiased histograms of grade contain the infor-
mation necessary for construction of a “relative”
grade–tonnage curve (i.e., a grade–tonnage curve
showing proportion of tonnes rather than abso-
lute tonnes). When the volume represented by
data and appropriate bulk density information are
available, the relative curve can bemade absolute.

2. The type of information (e.g., sample data, block
estimates) used in the construction of a grade–
tonnage curve should be documented clearly.

3. When histograms (or probability density func-
tions) are involved, clear evidence of how they
have been “unbiased” should be provided. If
probability density functions are used, an evalua-
tion of why these functions are representative of
the deposit must be given. If the volume–variance
relation has been used, then the details of de-
termining block dispersion from data dispersion
should be given.

4. When block estimates are used to generate a
grade–tonnage curve, the block size and data den-
sity should be specified and the method of block
estimation should be outlined.

5. Virtually all methods of developing grade–
tonnage curves contain error, the “direction” of
which might be known. A discussion of the na-
ture of likely error in a grade–tonnage curve is
a useful guide to appreciating the quality of the
curve.

12.9: SELECTED READING

David,M., 1972, Grade–tonnage curves: use andmis-
use in ore-reserve estimation; Trans. Inst. Min.
Metall., Sect. A, pp. A129–A132.

Huijbregts, C., 1976, Selection and grade–tonnage re-
lations; in Guarascio, M., et al. (eds.), Advanced
geostatistics in the mining industry, pp. 113–135,
D. Reidel Pub. Co., Dordrecht, the Netherlands.

12.10: EXERCISES

1. Cu assays for the 1,181 blasthole samples
from one bench (bench height= 40 ft) of the
Similkameen Mine (Raymond, 1979) are given
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in data files SIMILK.dbf. (a) Determine grade-
relative tonnage curves for these data based on
the histogram (i.e., using the method outlined in
section 12.2). (b) The SIMILK.dbf file can be read
by P-RES, software supplied through the pub-
lisher’s website and that can be used to view the
distribution, establish its form (e.g., normal or log-
normal), and obtain simple statistical parameters.
Knowing the normal or lognormal form, the pa-
rameters can be used in the appropriate equations
from Chapter 4 to establish an idealized grade–
tonnage curve; determine such a curve and com-
pare results with the results from (a). Note that
the grade–tonnage curve for specified normal or
lognormal distributions can be generated directly
by P-RES.

2. An adequate spherical, two-dimensional semivar-
iogram model for blasthole Cu assays for the
Similkameen Mine is isotropic with C0 = 0.068,
C1 = 0.069, and a1 = 200 ft. Coordinates in the
SIMILK.dbf file are in feet. Produce grade–
tonnage curves for 45× 45× 40 ft3 blocks us-
ing statistics of the block-grade distribution. The
dispersion variance of samples in the deposit is
known from Exercise 1 and should be in close
agreement with the sill of the semivariogram. The
semivariogram model can be used to estimate
the F function [i.e., D2(s/b) of Eq. 12.4) using
graphs (see Fig. 8.4).

3. Any unbiased histogram of grades can be con-
verted into a corresponding grade–tonnage curve.
Assume that the histogram of Ni grades for the
Cerro Matoso deposit (Stone and Dunn, 1994,
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Figure 12.8: Histogram of Ni grades, Cerro Matoso nickel
laterite deposit, Columbia. Redrawn from Stone and Dunn
(1994).

p. 53), reproduced in Fig. 12.8, is representative
of the deposit (unbiased) and pertains to a vol-
ume containing about 24 million tons. Construct
a grade–tonnage curve from the histogram (rec-
ognizing that a histogram of sample grades gives
an optimistic view). The same reference contains
a listing of the polygonal “preliminary” reserves
with from which a grade–tonnage curve could be
constructed for comparison with the histogram
results.



13
Local Estimation of Resources/Reserves

The comparatively low grades of many . . . mineral deposits, the escalation of mine operating costs, and the volatility
of metal prices in recent years, has required improvements in short- and long-term mine planning. One of the prereq-
uisites to improved planning systems is the need for accurate grade prediction. (Norrish and Blackwell, 1987, p. 103)

Chapter 13 is concerned with the application of
geostatistical procedures to the specific problem
of local resource/reserve estimation. First, local
is defined in terms of both the autocorrelation
characteristics of the variable being estimated
and the size of block estimated. Some of the esti-
mation problems/situations that are particularly
pertinent to local estimation are discussed, in-
cluding data location, the use of outlier values,
adapting estimation to individual domain char-
acteristics, and domain boundaries. Local esti-
mation, particularly at the preproduction stage,
involves smoothing. Some consideration is given
to the problem of correcting local estimates to
provide a realistic estimate of recoverable re-
serves.

13.1: INTRODUCTION

The term local estimation is not defined rigidly, but
is used in the general context of point estimation or
the estimation of small blocks or units on the scale
of a selective mining unit (SMU). A volume within
which local estimates of a mineral inventory are to be
determined is generally divided into a two- or three-
dimensional array of blocks of uniform size. Each

block within this array is evaluated within the con-
straints of a specific problem. For example, a two- or
three-dimensional semivariogram model is essential
for geostatistical estimates; cross validation normally
has been done to verify that the model is unbiased and
assist in defining the search field to be used to isolate
data for each local block estimate. A two-dimensional
example illustrates the general problem of approxi-
mating an irregular geometric form (an ore deposit)
by a regular block array (Fig. 1.1). Marginal blocks
consisting of both ore and waste lead to dilution and
ore loss, matters discussed further in Chapter 16.

Local estimation is normally directed toward
specific goals such as detailed mine planning and
grade control during production.Mine planningmight
be conducted without the ultimate database that will
be available during exploitation, whereas grade con-
trol (ore identification and selection during mining) is
an integral part of production operations and uses the
final database available for distinguishing ore from
waste. For the purposes of local estimation, these are
two fundamentally different situations.

13.2: SAMPLE COORDINATES

The general introduction to kriging in Chapter 10
clearly indicates the advantage that kriging has in
providing not only an optimized estimate of a block’s

268
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mean grade, but also an estimate of the error that can
be attached to the mean value. In global estimation,
the assumption commonly is made that no errors ex-
ist in the location of samples and that all variability
arises because of errors in the variable in question. Al-
though thismay be a reasonable assumption for global
estimation, it is clearly not the case in local estima-
tion when grades might be assigned to specific blocks
for a final ore/waste decision. The excessive errors
in sample locations that can arise because of “wan-
dering” diamond-drill holes are legion; both dip and
lateral deviations occur, and surveying of long drill
holes is essential. As a rule, vertical diamond-drill
holes deviate less than do inclined holes. Cummings
(1980) discusses factors that contribute to drill-hole
deviation and lists controls that can be implemented
to minimize such deviation. Large discrepancies be-
tween planned and true drill-hole locations can oc-
cur; a 200-m drill hole whose plunge is off by only
5 degrees will have the end-of-hole displaced hori-
zontally by about 17.4 m from its expected position.
If locations are not corrected, the use of the end of the
hole sample value for estimation purposes could lead
to serious errors of local estimation. For example, a
20× 20× 10 m3 block, thought to be centered on the
end-of-hole sample of the previous example, would
actually be estimated by a sample that lay well out-
side the block, and the estimated value might bear
little relation to the true average grade of the block. It
is clear that weights assigned to such seriously mis-
placed samples are meaningless; to counteract this
problem, surveying of diamond-drill holes along their
lengths is necessary if the location and assay data are
to be used for local estimation.

Even blastholes can have significant location er-
rors (cf. Konya, 1996). In particular, the burden might
not be constant, blasthole spacing can vary substan-
tially from planned distances along lines, the drilling
angle might not be vertical, and a hole might be either
too deep or not deep enough. Factors that contribute
to location errors are not necessarily compensating in
the case of local estimation. A 17-m blasthole drilled
at 15 degrees from the vertical has its centroid mis-
placed by about 1.1 m vertically and 4.4 m laterally
from its planned position. Such a sample might be re-

moved significantly from its anticipated position for
local block estimation, depending on the autocorre-
lation model and other data available. Any weighting
method, including kriging, could be carried out with
weights that are seriously in error if samples are not
located well in space. Local estimates based on both
blasthole and exploration data are particularly sus-
ceptible to errors that arise from incorrect locations
of data, if the block to be estimated is very small and
the incorrect locations are closest to the block.

13.3: BLOCK SIZE FOR LOCAL
ESTIMATION

While it is well known that a smoothing esti-
mation method such as kriging is not suitable
to produce realistic estimates in blocks which
are far away from the sampling information, it
is unfortunately too often used for this purpose.
(Ravenscroft and Armstrong, 1990, p. 579)

Linear estimation, particularly that based on
widely spaced data relative to the size of block to
be estimated, is subject to two competing effects,
conditional bias and smoothing (Pan, 1998), topics
discussed in detail in Chapter 10. Of these, smooth-
ing imposes limits on the size of block that can be
estimated effectively because sparse, widely spaced
data produce comparable estimates for small adjacent
blocks that do not reflect the true local variability of
small block grades.

Local reserve estimation at the feasibility stage
commonly uses widely spaced exploration data as
a basis for estimating average grades of relatively
small blocks. This undertaking is almost too easy,
with the ready access to kriging software for per-
sonal computers, because it can lead to substantial
errors if estimates are made for blocks whose dimen-
sions are small relative to sample spacing. Armstrong
and Champigny (1989) address the following ques-
tion: How small a block size is too small? They ex-
amine variations in the kriging variance, dispersion
of estimated grades, slope of the regression of the
true but unknown grades on estimated values, and the
coefficient of correlation between actual grades and
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Figure 13.1: (a) A square data array (dots with a 10 × 10 m2 unit cell) with a central small square, the size of which can vary.
This fixed data array is the basis for calculations discussed in the text. (b) The block kriging variance has been estimated for
many block sizes, centered at the same point using a semivariogram model (described in the text) for which the range was
varied. (c) Dispersion variance of the kriged estimators and kriging variance as a function of range of the semivariogram.
(d) Slope of the linear regression of the actual grades on the estimated grades for various block sizes. Redrawn from
Armstrong and Champigny (1989).

estimates. These four quantities were calculated for
several simple, two-dimensional geometries of data
versus block (e.g., Fig. 13.1) using a spherical semi-
variogram model with a sill of 1.0, no nugget effect,
and a range varying from 0.1 to 40 m (twice the sam-
ple spacing). Important generalities from their study
are as follows:

(i) The kriging variance for block estimates changes
significantly as a function of block size and range
of the semivariogram.

(ii) The kriging variance differs fundamentally from

the dispersion variance and the two should not
be confused.

(iii) The dispersion variance of block grades varies
widely, depending on block size and the range of
the semivariogram.

(iv) The slope of the regression of actual grades Z on
the estimated grades Z∗

k and the correlation co-
efficient should both approach 1.0. Results show
this to be the case only if the semivariogram
range is at least as great as the average sam-
ple spacing. When the range is small relative
to sample spacing, small-block estimates are
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“virtually useless for distinguishing ore from
waste” (p. 129) and “should not be used for pre-
dicting recoverable reserves” (p. 133).

(v) Improvements in quality of block estimates can
be achieved by using increased amounts of sur-
rounding data for block estimations if the semi-
variogram range is close to the sample spacing
(the difference in kriging error from adding a few
fringing data is minor).

(vi) When the range is greater than 1.5 times the sam-
ple spacing, block estimates (for block sizes at
least half the sample spacing) are adequate to
distinguish ore from waste.

These results by Armstrong and Champigny (1989)
lead to the following guidelines for successful small-
block kriging:

(i) Data spacing should be substantially less than the
range of the semivariogram, perhaps nomore than
two-thirds the range.

(ii) Block dimensions should be as large as possi-
ble and not much smaller than the average data
spacing. A rule of thumb is that each block to be
estimated should contain at least one sample (cf.
Ravenscroft and Armstrong, 1990).

Ravenscroft and Armstrong (1990) document an
example in which 10-m spaced data, extracted from
a set of real data spaced at 2 m, are used to estimate
2-m blocks. Kriged estimates of 2-m blocks using
all available data are assumed to represent the “real”
block values to which estimated values are compared.
In this case, they show that for cutoff values below the
mean, kriging overestimates tonnage; for cutoff val-
ues above the mean, kriging underestimates tonnage.
At relatively high cutoffs, kriging estimates 5 percent
of blocks as ore instead of the 12 percent known to
be ore!Moreover, kriging consistently underestimates
average grade above cutoff, regardless of cutoff value.
Ravenscroft and Armstrong (1990) conclude the
following:

[K]riging of small blocks from sparse data will
always over-estimate the recoverable tonnage
for a cut-off value below the mean, and under-
estimate this tonnage for a cut-off higher than

the mean. The method will also always under-
estimate recovered mean grade, whatever the
cut-off value. (p. 586)

An important consequence of the forgoing results
is that kriging generally is not a sound basis for the
direct estimation of individual selective mining units
(SMUs) fromwidely spaced exploration data. Instead,
a variety of techniques have been developed to deter-
mine “recoverable” reserves from relatively limited
exploration data. One of the general approaches to
this problem involves obtaining a kriging estimate of
a large panel and a separate estimate of the dispersion
of small-block SMU grades within this large panel.
This dispersion of block grades is then centered on the
kriged mean to provide an estimate of the distribution
of small-block SMU grades. Of course, the locations
of these individual ore-grade SMUs within the large
panel are not known, nor is the form of the probability
density function of the SMU grades; assumptions are
necessary.

13.4: ROBUSTNESS OF THE KRIGING
VARIANCE

Kriging is an estimation procedure that minimizes
the estimation variance. In many estimation projects,
estimates are required before data gathering (explo-
ration/evaluation) is complete, and the semivariogram
modelmaybedeterminable onlywithin limits. In such
cases, it is important to have an understanding of the
impact that errors in semivariogram parameters have
on the kriging variance. Brooker (1986) conducted a
study of the robustness of kriging variance to errors
in these parameters. For his work, he assumed the
following:

(i) An isotropic spherical model with a sill level of
10 units (i.e., C0 + C = 10)

(ii) A regular square data array (5× 5 units) with
which to estimate a central block containing a
central datum.

Kriging variances were then determined for semi-
variogrammodels corresponding to a broad spectrum
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of orebody models by varying the relative nugget
effect (C0/C) from 0 to 2 and by varying the range a
from 1 to 10 units where these units are equiva-
lent to the data-array units. With the resulting val-
ues as a base, specific percentage changes can be im-
posed on any one model parameter and a percentage
change in kriging variance determined.An example of
Brooker’s results is shown in Fig. 13.2 that illustrates
some of his principal conclusions:

[K]riging variance is robust to most errors likely
to be made in semivariogram models selection
for the widely used spherical model and this
[described previously] block-sample geometry.
However, if a nugget effect near zero is selected
instead of a proper nonzero value, kriging vari-
ances can be understated significantly. Thus the
extra effort needed to define this parameter well,
perhaps by a series of closely spaced holes, or
by deflection holes, can be warranted. (Brooker,
1986, p. 487)

The magnitude of possible errors in range and rel-
ative nugget effect are dependent on the nature of
available data. When data are collected with a view
to aiding the semivariogram modeling process, large
errors in the parameters of a model are unlikely. Un-
fortunately, this is not always the case, and there are far
too many examples of highly approximate semivari-
ogrammodels beingused as the basis for geostatistical
studies. Clearly, it is essential to take full advantage
of all available information. Exploration commonly
results in a variety of data types, all of which can con-
tribute to the modeling process. In particular, trench
assays and close-spaced data along exploration drives
canprovide insight into the nugget effect and the range
in specific directions, evenwhenmost data for estima-
tion purposes are of another type (e.g., diamond-drill
core). Similarly, the common practice of defining a
semivariogram model for a few fixed-grid directions
(e.g., principal grid directions only) is generally in-
appropriate because it commonly ignores two impor-
tant contributors to model quality: geology and pref-
erential directions of linear samples (e.g., along drill
holes that cross the direction of principal geologic
continuity).
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Figure 13.2: Examples of the robustness of the kriging vari-
ance. (a) Kriging variance as a function of range and rel-
ative nugget effect. (b) Percentage change in kriging vari-
ance if relative nugget effect of the semivariogrammodel is
changed by +25 percent. (c) Precentage change in kriging
variance if range is changed by +25 percent. See text for
details. Redrawn from Brooker (1986).

13.5: BLOCK ARRAYS AND ORE/WASTE
BOUNDARIES

Where a block array of SMUs is superimposed on
an ore/waste boundary, individual blocks, in general,
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Figure 13.3: A block array in two dimensions superimposed
on a sharp ore/waste boundary. Blocks straddling the
boundary are composed of both ore and waste. Their classi-
fication as ore leads to dilution; their classification as waste
leads to ore loss.

are a combination of both ore and waste material
(Fig. 13.3). This configuration leads to dilution and
loss of ore, both of which result in less metal recov-
ered per tonne mined. The problem is minimized by
using the smallest blocks possible, as illustrated by
the following example (Fig. 13.4). Consider a single
block, 20× 20× 10 m3 (ca. 12,000 tonnes), a prin-
cipal diagonal of which is the ore/waste contact. If
the half that is ore has a grade more than twice the

20 m

Figure 13.4: As the block size of the selective mining
unit decreases, dilution and loss of ore decrease at an
ore/waste boundary. This example, described in the text,
compares dilution and ore loss for 20×20 m2 blocks (pale
plus dark patterns) and 5 × 5 m2 blocks (dark pattern).

cutoff grade, the block is classed as ore when diluted
by half a block of zero grade. In this case, dilu-
tion results in a doubling of tonnes and a 50 percent
loss of grade. If the half that is ore is between one and
two times the cutoff grade, the overall block grade
is below cutoff and the block is classed as waste, in
which case 6,000 tonnes of ore is lost to waste.

Now, assume that the selection size is 5× 5×
10m3 (ca. 750 tonnes each). Four such blocks aligned
along the ore/waste contact lead to much less di-
lution or ore loss than does the larger block. For
one such SMU, the dilution amounts to 375 tonnes
(i.e., 4 × 375 = 1500 tonnes for the four blocks that
cover the ore/waste boundary). Similarly, if all four
blocks were classed as waste, the ore loss would total
1,500 tonnes, much less than the 6,000 tonnes for the
larger block. This example applies to sharp and sim-
ple ore/waste boundaries; the situation is somewhat
more complicated when boundaries are gradational.

A variety of methods have been introduced to
characterize gradational ore/waste or domain bound-
aries (cf. Chapter 2), including individual profiles of
linear sample grades that cross a boundary, average
profiles, geochemical contrast, and x–y plots of grade
pairs located at comparable distances from the con-
tact but one in ore and the other in waste. An ide-
alized grade profile across an ore/waste boundary is
shown in Fig. 13.5, where the width of the ore/waste
boundary zone is indicated. Information of this sort
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Figure 13.5: An idealized grade profile across a gradational
ore/waste boundary. The sawtooth curve represents indivi-
dual grades that have been smoothed to the average linear
models shown in each domain. G is the width of the gra-
dational boundary zone. How data are treated during block
estimation depends on the relative dimensions of G and
the block.
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is commonly available from diamond-drill holes that
extend beyond the limits of a domain. For practical
purposes, the average grade profile across a grada-
tional boundary zone is more informative because the
model for a domain boundary zonemust be integrated
into an estimation procedure that is acceptable for all
locations of the boundary.Where the width of the gra-
dational boundary is small relative to the block size
being estimated, the boundary canbe treated as a sharp
boundary (i.e., data onone side of the boundary cannot
be used to estimate blocks on the other side). Where
the gradational contact is very wide relative to the
dimension of the blocks to be estimated and is char-
acterized by substantial local fluctuations of grade, a
single estimation procedure is acceptable across the
zone. Where a well-defined gradational zone is wider
than the blocks to be estimated, it might be appropri-
ate to attempt to define the gradational boundary as a
transitional zone in which blocks are estimated using
only data within the zone.

The foregoing discussion is idealized. Practicing
geologists recognize that it might be easy to define
an ore/waste (domain) boundary zone in individual
drill holes; a common problem is to predict confi-
dently the position of such boundary zones between
control points that are widely spaced both horizon-
tally and vertically (e.g., between drill sections). This
interpolation problem results in geometric errors of
interpretation, considered in Chapter 2.

13.6: ESTIMATION AT THE FEASIBILITY
STAGE

13.6.1: Recoverable “Reserves”

Recoverable reserves are defined as that mineable
volume for which each block (normally the SMU)
is above a specified cutoff grade. Many methods are
described in the literature for estimating recoverable
reserves; the problem can be treated locally or glob-
ally. The smoothing of block grades (i.e., generating
groups of blocks with very similar grades) that is en-
demic in many estimation procedures using widely
spaced exploration data is well documented in the
literature and led to the development of a variety
of methods that try to reproduce local block-grade

distributions that are realistic. These procedures are
known collectively as estimation of recoverable re-
serves (e.g., Journel, 1985d). The terminology is
somewhat unfortunate because themethods have been
widely applied to what are now referred to as re-
sources. The smoothing problem decreases as the
data spacing decreases (i.e., adding infill data) and
the block size increases (i.e., increasing the scale of
selection).

Concern about smoothed estimates is particularly
relevant at the feasibility stage of deposit evaluation
because it is then that estimates form thebasis ofmajor
investment decisions. For kriged results, the net im-
pact of smoothing (and conditional bias) can be quan-
tified (e.g., Pan, 1998). Many studies, including those
ofArmstrong andChampigny (1989) andRavenscroft
and Armstrong (1990), as discussed previously, em-
phasize the impracticality of estimating grades of very
small blocks using relatively sparse data. Alternative
approaches to offsetting the smoothing effect include
the following:

(i) Volume variance
(ii) Conditional probability (Raymond, 1979)
(iii) Multiple indicator kriging (Journel, 1983)
(iv) Disjunctive kriging (Matheron, 1976).

Guibal and Remacre (1984) use blasthole data
from a porphyry copper deposit to demonstrate the
similar results obtained from several nonlinear meth-
ods of estimating recoverable reserves (disjunctive
kriging, multigaussian kriging, and uniform condi-
tioning). From a database consisting of 2,095 blast-
hole assays from one level of a porphyry copper
deposit (their “reality”), they selected 173 roughly
uniformly spaced assays to serve as a database for
making estimates. They used this database to estimate
recoverable reserves by three methods, the results of
which could be compared with reality. In brief, their
principal conclusions are as follows:

(i) Tonnage is slightly overestimated for very low
cutoff grades and overestimated for high cutoff
grades.

(ii) Quantity of metal is underestimated for all cutoff
grades, but disparity with reality is greatest for
high cutoff grades in rich areas of the deposit.
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(iii) Overall results are generally acceptable ex-
cept for very high-grade blocks. The disparity
between estimates and reality for high-grade
blocks is attributed to a lack of strict stationarity
in the deposit.

This study is important for three reasons: (i) it shows
that theoretical approaches can overcome the smooth-
ing problem and provide realistic estimates of recov-
erable reserves, (ii) it indicates the consistency of sev-
eral independent methods of estimating recoverable
reserves, and (iii) it emphasizes the fact that mineral
deposits generally are not “strictly” stationary, and de-
partures of estimates (of recoverable reserves) from
ideal models are to be expected.

Of the many methods of estimating recoverable
reserves, multiple indicator kriging is described in
Chapter 10, and other nonlinear methods such as
disjunctive kriging are beyond the aims of this text.
Comment here is restricted to two topics, the volume-
variance approach used to provide conceptual insight
into procedure, and conditional probability as prac-
ticed by Raymond (e.g., 1979).

13.6.2: Volume–Variance Approach

A simple procedure for estimating recoverable re-
serves involves the estimation of the mean value of
a large panel, a corresponding estimate of the dis-
persion of sample grades in the panel, and a change
of support procedure to produce a block-grade dis-
tribution within the panel. The procedure is similar
to that described in Chapter 12 as a global resource-
estimation method. Following is a brief summary of
the procedure directed toward the estimation of local
recoverable resources.

1. Consider a single large panel, perhaps 80 ×
80 × 5 m3, for which a mean value is estimated
by ordinary kriging using contained and immedi-
ately surrounding data.

2. Choose an appropriate SMU (e.g., 10 × 10 ×
5 m3). Thus, the panel contains 64 blocks in this
example.

3. Assume an appropriate form for the unbiased his-
togram of data (e.g., lognormal). Assume that log-

normality is preserved in deriving the distribution
of block grades, an assumption that is not strictly
true but that has been found adequate in many
practical cases.

4. Determine the F function for a 10 × 10 × 5 m3

block (Fb). This requires that a high-quality semi-
variogram model be established for the deposit.

5. Calculate the dispersion of block grades as in
equation 12.5.

6. In general, a change of support model (e.g., affine
correction) is required to transform the sam-
ple distribution to a block-grade distribution. In
the simplest case, such as assumed here in Step 4,
the change of support is incorporated in the
assumption that the blocks have a lognormal
distribution.

7. Now that the block distribution is fully defined,
a cutoff grade can be applied and the proportion
of blocks above cutoff identified. Moreover, the
average grade of these ore blocks can be estimated
(appropriate equations are in Chapter 4).

8. Repeat the procedure for all panels.

Suppose that when a cutoff grade is applied to
the distribution of block grades in a panel (Step 8),
23 percent of blocks are indicated as being above
cutoff grade. This is equivalent to 0.23× 64= 19.3
blocks with an average grade that can be estimated
from equations in Chapter 4. Note that a similar cal-
culation canbedoneon the samepanel formanycutoff
grades so that a grade–tonnage curve can be estimated
for the panel. Combining comparable grade–tonnage
curves for other panels allows a grade–tonnage curve
for the entire deposit to be constructed.

Of course, it must be realized that this approach
is probabilistic, and that the positions of individual
10× 10× 5 m3 ore blocks within a panel are not
known. From a practical point of view, the exact lo-
cations of ore blocks and their grades might not be
critical. Where precise block values are required for
some pit-optimization programs, one solution is to
simply assign block grades arbitrarily such that the
known distribution of block grades is reproduced.

Parker et al. (1979) present a detailed description
of a somewhat more complex approach that can be
compared to the foregoing procedure: an application
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to the estimation of recoverable reserves for the
Imouraren uranium deposit, central Niger.

13.6.3: “Conditional Probability”

Raymond (1979, 1982, 1984) developed a practical
approach to estimation using widely dispersed explo-
ration data. His method, referred to as conditional
probability, is an empirical attempt to estimate local,
sample-grade distributions that approximate expected
recoveries. The method itself is not of concern here;
the interested reader is referred to a detailed account
concerning the Valley porphyry copper deposit (Ray-
mond and Armstrong, 1988).

However, an important concept in Raymond’s
work is worth illustrating – the idea of a conditional
distribution. Consider an array of 10× 10× 10 m3

cells superimposed on a zone of trial surface mining
for which widely spaced exploration data exist. Each
node of the array of cells can be estimated from two
different data sets, the exploration data, and the ul-
timate database (blastholes for trial mining). Figure
13.6a is such a plot for many hundreds of paired es-
timates. From the figure, it is evident that blasthole
estimates have a much larger spread of values than
do the exploration estimates (an example of smooth-
ing). Consider a slice from Fig. 13.6b for a narrow
range of exploration estimates, 0.425± 0.025 percent
Cu (Fig. 13.6a). Remember that the blastholes repre-
sent the ultimate data on which ore/waste selection
is made. Hence, the slice represents a close approxi-
mation of the true grade distribution, conditional on
the kriging estimate being 0.425 ± 0.025 percent
Cu. This “conditional” distribution is shown as a
histogram in Fig. 13.6d. Suppose a cutoff grade of
0.4 percent Cu is applied to this distribution. About
11 percent of the blocks classed as ore using the ex-
ploration estimates are seen to be waste based on the
blasthole estimates.

13.7: LOCAL ESTIMATION AT THE
PRODUCTION STAGE

The procedure followed for routine grade estimation
at the production stage (part of grade control) is that

outlined in Section 10.4. Estimation, although gener-
ally based on relatively abundant data (e.g., blasthole
assays), is not routine everywhere and constant moni-
toring is necessary in order to recognize and deal with
special circumstances. A few of these special situa-
tions are discussed in the following subsections.

13.7.1: Effect of Incorrect Semivariogram
Models

The effect of incorrect semivariogram models on
the quality of block estimates is strongly dependent
on the local situation and the nature and degree of
the “incorrectness.” The robustness of the semivari-
ogram is discussed in a previous section, and the gen-
eral conclusion is that substantial errors can occur in
semivariogram modeling without producing drastic
changes to the quality of block estimates. Neverthe-
less, there are practical situations in which estimates
can be greatly improved during production with im-
proved quality of the semivariogram model. This is
particularly the case when semivariogram models are
anisotropic.

Sinclair and Giroux (1984) document an interest-
ing case for the South Tail zone of the Equity Sil-
ver deposit, central British Columbia. Blasthole data
for the 1310 bench were used to construct a gen-
eral, two-dimensional, semivariogram model for the
bench; this strongly anisotropic model was used to
demonstrate a production-kriging procedure for the
mine. In the course of this study, it became apparent
that the northerly direction of greatest overall conti-
nuity contrasted sharply with geologic evidence and
grade contours for the northern part of the zone. In-
dependent semivariogram modeling was possible in
this small zone because of abundant blasthole data;
the direction of greatest continuity was found to be
roughly at right angles (i.e., easterly) compared with
the general model (see Fig. 3.3).

A rough idea of the impact of using the incor-
rect, semivariogram model as opposed to the correct
model to make block estimates can be appreciated
with a specific example. A subset of the real data
for the small northern domain is shown in Fig. 13.7,
with a superimposed array of 25 blocks. Each block is
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Figure 13.6: (a) Comparison of exploration-based versus blasthole-based estimates by ordinary kriging of a three-dimensional
array of nodes spaced at 10 m and coinciding with a trial mining zone, Valley copper deposit. Redrawn from Raymond and
Armstrong (1988). Note the difference in dispersion of the two types of estimates. (b) A slice from (a) for a narrow range
of grades (0.425 ± 0.025 percent Cu) estimated by ordinary kriging, using exploration data. Note the large dispersion of
true grades determined by kriging using blasthole data. The true distribution is conditional on the exploration estimate being
0.425 ± 0.025 percent Cu. (c) A histogram of the data in (a) projected on the x axis. (d) A histogram of the data in (b)
projected on the y axis (i.e., the conditional distribution of true grades, given that the exploration kriged estimate is 0.425 ±
0.025 percent Cu).

5 × 5 × 5 m3 and is equivalent to about 360 metric
tonnes. The blocks can be estimated using the general
(incorrect) and the correct semivariogrammodels; re-
sults are shown in Fig. 13.7b and 13.7c, respectively.
Of course, 25 blocks hardly represents a large sam-
ple of this northern domain of the South Tail zone;
nevertheless, a rough idea of the impact on estimation

of an incorrect semivariogram model can be obtained
by a simple deterministic calculation summarized in
Tables 19.3 and 19.4. In brief, with a cutoff grade
of 50 g Ag/t, the incorrect model selects nine blocks
as ore, with an estimated mean grade of 65.2 g Ag/t.
A better estimate of these nine blocks is obtained
with the correct semivariogrammodel, which gives an
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Figure 13.7: An array of SMUs in a small domain at the
north end of the South Tail zone of the Equity Silver Mine,
Houston, British Columbia (a) Locations of 5-m blasthole
data (g Ag/t) and block outlines. (b) Block kriging esti-
mates (top) and number of blasthole samples used (bot-
tom) based on incorrect semivariogram model. (c) As in
(b), except that the correct semivariogram model was used
for kriging.

estimatedmean value of 58.4 gAg/t; thewrongmodel
appears to overestimate blocks classed as ore bymore
than 10 percent and can lead to problems in reconcil-
ing production with estimates. In this case, the two
kriging estimates of Ag content differ in profit by
about 22,000 g of silver.

However, the correct semivariogram model leads
to selection, as ore, of a slightly different subset of
the blocks; 10 blocks are classed as ore, 8 of which

are in common with classification using the incorrect
model. These 10 blocks have an estimatedmean value
of 63.5 g Ag/tonne. It is possible to evaluate the metal
profit that results from using the correct semivari-
ogram model rather than the incorrect model. Calcu-
lations, summarized as a metal balance in Table 19.4,
show that for the 25 blocks (25× 360= 9,000 tonnes)
considered here, the correct model provides a net gain
(increase in true operating profit relative to the nine
blocks identified as ore by the incorrect model) of
more than 21,000 g Ag for the 10 blocks classed as
ore. Note that operating costs have been taken into ac-
count by subtracting the cutoff grade from the block-
average grades.

A second example of the effect of different semi-
variogram models is shown in Fig. 13.8, in which
two comparisons are made for different approaches
to block estimation at the Cinola deposit, Queen
Charlotte Islands, British Columbia (cf. Champigny
and Sinclair, 1984). The upper diagram compares
two two-dimensional kriging estimation procedures;
one assumes isotropy, the other takes account of
anisotropy. The two two-dimensional approaches can
be seen to give equivalent results. However, if aniso-
tropy in the third dimension is taken into account,
the two-dimensional estimates are seen to con-
tain a proportional bias. Postolski and Sinclair
(1998a) describe a similar case history for the
Huckleberry porphyry copper deposit, central British
Columbia.

13.7.2: Spatial Location of Two-Dimensional
Estimates

In many two-dimensional cases (e.g., veins, beds) in-
volving estimation of thickness and accumulation,
there is the added complexity that the locations in
space of the estimated quantities are not known and
are not a product of the estimation of thicknesses,
accumulations, or grades. The problem is easily ap-
preciated if the horizontal trace of a tabular deposit is
sinuous on two levels; because of a comparable sin-
uosity between the two levels, the exact location of
small blocks comprising the deposit is not known. For
example, sudden or systematic changes in orientation
of the ore sheet are not evident purely from thickness
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Figure 13.8: A comparison of different approaches to or-
dinary block kriging for the Cinola epithermal gold de-
posit, Queen Charlotte Islands, British Columbia. (a) Two-
dimensional block estimates assuming horizontal isotropy
versus estimates based on an anisotropic semivariogram
model. (b) Two-dimensional block estimates versus esti-
mates based on a three-dimensional semivariogrammodel.
Note the tendency for a proportional overestimation by the
two-dimensional estimation approaches.

and accumulation estimates. This contrasts with the
estimation of blocks representing a two-dimensional
bench in which the position in space of each block
estimated is fixed and known.

This problem can be met in a variety of ways.
For example, a deterministic interpolation (e.g., lin-
ear, quadratic) can be used that experience has indi-
cated to be adequate. Such an approach generally is
acceptablewhere the sinuosity of the tabular deposit is
not pronounced. Various interpolation methods (e.g.,

such as those used for grade interpolation) are also
possible; kriging of the distance from block centers
to a reference plane is one possible solution. In flat-
lying bodies, the reference planemay be horizontal; in
steeply dipping bodies, the reference plane might be
vertical (e.g., a particular longitudinal section). In the
general case of a moderately dipping, tabular body,
the reference plane might be one with the mean ori-
entation of the tabular sheet, passing near or partly
through the tabular sheet. A complete additional esti-
mation undertaking is required that involves variog-
raphy and kriging so that the process is not a trivial
one. The previously mentioned approach could be ap-
plied separately to the hangingwall and the footwall,
doubling the computational effort and leading to the
possibility that the two estimatedmargins might cross
in space. More complicated approaches to this prob-
lem have been attempted (e.g., Dowd, 1990), but it
is not clear that they are warranted, unless there are
special circumstances.

13.7.3: Planning Stopes and Pillars

Local estimates are important for mine planning and
an infinite number of situations can be imagined.
Here, a simple case history is described to illustrate
concepts, methods, and problems. The example is
for the Whitehorse copper deposit, Yukon, a roughly
vertically dipping tabular zone of copper skarn that
was nearing the end of productive life. Planning was
underway to develop the lowest known extension of
the deposit (Sinclair and Deraisme, 1976). The gen-
eral scenario is illustrated in the vertical projection of
Fig. 13.9. Alternating stope and pillar positions were
to be estimated from the information base of limited
diamond-drill data. For example, estimates could be
made for the stope–pillar array shown in Fig. 13.9.
Estimates can be made by shifting the stope–pillar
pattern horizontally to various locations and for each
position, the estimated copper content of all the stopes
can summed. Hence, the particular stope–pillar array
that maximizes the copper content of stopes can be
determined. The important concept here is that pro-
duction design can be optimized by comparing the es-
timated metal contents for various design scenarios.
The practical problems in this example are twofold
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line is the assumed extent of the copper skarn. Modified
from Sinclair and Deraisme (1976).

(see Fig. 13.9): First, the drill database is so sparse
that errors for individual stopes are large; second, the
limit of mineralization is highly speculative. Clearly,
more data are required.

13.8: POSSIBLE SIMPLIFICATIONS

13.8.1: Block Kriging with Bench Composites

A common procedure in determining reserves for an
open-pit mine is to produce bench composites of drill-
hole samples to be used as the information base for
estimates and use two-dimensional kriging to obtain
block–grade estimates. The procedure entails the for-
mation of composites that extend from the top to the
floor of the bench; hence, for an inclined hole subdi-
vided into many contiguous samples, all samples to-
tally contained within the bench plus parts of the two
extreme or encompassing samples are weighted to
form the composite value. This procedure is compli-

cated, introduces a small component of oversmooth-
ing of the composites, and is unnecessary (see also
Chapter 5). A sounder and more efficient approach is
to decide on a standard length of composite (prefer-
ably a multiple of the sample length and less than or
equal to the bench height) and use three-dimensional
kriging for block-estimation purposes.

13.8.2: Easy Kriging with Regular Grids

When a highly regular data grid (e.g., blasthole array)
exists, a block can be defined by data at the block
corners and an acceptable kriging estimate for the
block is the average of the four corner samples. David
(1988, p. 115) states that such a procedure is accept-
able evenwith locallymissing data; suchmissing data
can be simulated by averaging the three nearest neigh-
bors.

13.8.3: Traditional Methods Equivalent
to Kriging

It is commonly possible to determine, fairly effi-
ciently, an inverse-distance weighting (IDW) estima-
tionprocedure that is closely equivalent to kriging. For
example:

(i) Select a trial block array (e.g., 5× 5× 4) and
estimate each block by kriging and by a variety
of IDW approaches (i.e., various exponents).

(ii) Produce x–y plots of each set of IDW estimates
versus the corresponding kriging estimates.

(iii) Fit a reducedmajor-axis regression to the results.

An exponent that leads to a slope of 1 with little scat-
ter about the line is a reasonable IDW estimator that
produces results comparable to kriging.

Raymond (1979) found that for the Similkameen
porphyry copper deposit, an inverse cubed distance
estimator based on weights that were a function of
1/(d3 + k), where d is distance (sample to block cen-
ter) and k is an empirically determined constant, pro-
vided block estimates are essentially equivalent to
block kriging estimates. Clearly, trial and error is nec-
essary to arrive at such a procedure.
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13.9: TREATMENT OF OUTLIERS IN
RESOURCE/RESERVE ESTIMATION

Outliers havebeen treated in an infinity ofways during
resource/reserve estimation (e.g., Bird, 1991; David,
1979; Journel andArik, 1988). Among the procedures
are a group known as cutting or capping, in which all
values above a particular threshold are reduced (cut)
to that threshold value and are then incorporated into
the estimation process. In gold deposits, for example,
it is common to reduce extreme assays to an arbitrary
value, perhaps 30 g/t. An arbitrary procedure of this
nature requires some production data so that an esti-
mation versus production reconciliation can be done.
If the reconciliation is poor (e.g., metal produced is
very different from metal estimated), a different cut-
ting factor might be necessary. The philosophy of cut-
ting is described in detail in Chapter 7. In practice, a
variety of totally arbitrary threshold selection proce-
dures have been recommended (e.g., Bird, 1991), and
there is no practical way to choose the most useful of
these until production data are available for compari-
son with estimates.

Geostatisticians have considered the treatment of
outlier values in estimation (as outlined in Chap-
ter 10). Traditionally, their methods have not relied
heavily on geology. The widely used procedure of
extracting outliers from a data set to develop a semi-
variogram model and reinserting the outlier values
for estimation by kriging is flawed geologically. Re-
stricted kriging is useful as an automated procedure,
but assigns arbitrary weights that can lead to large er-
rors in local block estimates. Even multiple indicator
kriging does not apply to true outliers. The geologic
characteristics of outliers suggest the following pro-
cedure for their incorporation into mineral inventory
estimation:

1. Verify that outlier values are not errors. Exam-
ine the drill core and rock faces from which out-
lier values were obtained. Attempt to characterize
outlier values in terms of geologic features. Also
characterize the three-dimensional shape of out-
liers in both geologic and sample terms geometry.
Remember that a 1-cm-thick vein of native gold
is spread through the sample of 1 m. Hence, the

physical dimension of the outlier is 1 m. The aim
of this study is to determine an average geome-
try of outlier values and the average grade of the
outlier population.

2. Experience suggests that average outlier geome-
tries are much smaller than the dimensions of
blocks to be estimated. Hence, outlier grades
should be extended only to the blocks in which
they occur, unless field examination suggests oth-
erwise.

3. A block model should be estimated by whatever
interpolation method is to be used but omitting
the outlier values.

4. All blocks containing outlier assays must now be
corrected. A weighted average for such a block is
obtained as follows:

gw = (B − vo) gb + vo go

where

gw is weighted block grade
B is block volume
gb is block grade estimated by selected

interpolation method
vo is average volume of an outlier
go is average grade of outlier

population.

The procedure assumes that both outlier and lower-
gradematerial have the same bulk density. In addition,
there is an assumption that the specific outlier grade
is not a good measure of the contribution the outlier
makes to a block grade; instead, the mean value of the
population is attributed to the outlier. Finally, a single
intersection of an outlier provides little information as
to volume (although exceptions exist), so the average
size of an outlier is used for estimation purposes.

It is evident that the use of average outlier charac-
ter (size and grade) lead to substantial errors in some
higher-grade block estimates. However, the chances
are that such blocks will be above cutoff grade, so ore
is not likely to be lost because of these errors. In addi-
tion, some blocks contain outliers that have not been
intersected (e.g., between drill sections), and thus are
not represented in the sample database; on average,
such blocks are underestimated, and some of these
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blocks might be ore that is inadvertently sent to waste
because of the underestimation. The principal advan-
tage of the procedure lies in the fact that outlier values
are not spread widely to produce large quantities of
false metal not found during production.

13.10: PRACTICAL CONSIDERATIONS

1. Data location is of fundamental importance in lo-
cal estimation. Surveyingpositions of sample sites
can be essential to success in estimation.

2. Selection of block size can be a conundrum. Se-
lectivity of the mining method commonly places
a lower limit on block size. However, the dispo-
sition of data themselves is commonly such that
only relatively large blocks can be estimated with
an acceptably low estimation error.

3. Where blocks impinge on ore/waste margins, the
smaller the block size, the less the contact dilution.

4. Where data are especially widely spaced, it is
likely that local estimation of individual blocks
will be highly smoothed and unrepresentative of
local grade variations. In such cases, the esti-
mation method must be tailored to the situation
if a reasonable estimate of potentially recover-
able resources is to be obtained. One widely used
approach is a variation of the volume–variance
method described in Chapter 11.

5. It is important that semivariogram models be
monitored during production. Amodel developed
early in the production history of a deposit might
be inappropriate for a part of the deposit devel-
oped later. Use of incorrect semivariogram mod-
els can lead to significant differences in the blocks
selected as ore during production.

6. There are cases in which relatively simple, em-
pirical estimation techniques have been shown to
be generally equivalent to more labor-intensive
kriging results. Kriging can be replaced by more
traditionalmethodswhen there are data to demon-
strate that the traditional methods are acceptable.

7. Outliers have an extraordinary impact on individ-
ual block estimates. There are two common prob-
lems: (i) the high-grade value is spread to many
surrounding blocks and leads to overestimates

of both tonnage and average grade above cutoff;
and (ii) some existing outliers are not intersected
by sampling and are not taken into account dur-
ing estimation, leading to underestimation. Con-
sequently, a simple reconciliation of production
with estimates is not necessarily a fair indication
of the quality of the estimation procedure. This
arises because the two sources of error are, in part,
compensating.
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13.12: EXERCISES

1. The two patterns of Exercise 4, Chapter 5 (Fig.
5.23) can be examined for quality of estimation
by kriging for any specified autocorrelation (semi-
variogram) model. Compare the quality of ordi-
nary kriging estimates of the central point in each
array for the following two linear semivariogram
models:γ (h) = k · h andγ (h) = Co + k · h, with
k = 0.5 and Co = 0.5.

2. The following 26 Au values (g/t) are for contigu-
ous 3-m composites from a drill hole that crosses
an ore/waste boundary.Assume the data are repre-
sentative of the boundary. Develop an estimation
procedure for an array of 5 × 5 × 5 m3 blocks,
assuming that holes are drilled approximately on
a square grid with spacing of 20 m.

Au data values (g/t): 0.61, 1.02, 0.48, 0.67, 0.39,
0.95, 0.53, 1.01, 1.48, 0.77, 1.45, 1.09, 1.73, 1.58,
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1.33, 1.55, 1.13, 2.37, 1.74, 2.21, 1.31, 2.52, 1.01,
2.75, 1.79, and 2.61

3. Seven outlier values have been identified in a data
base of 3,422 samples for a Ag–Pb–Zn deposit.
The outliers have been examined in outcrop and
drill core and found to be late-stage vertical veins,
rich in sulphides, that average about 0.3m inwidth
and 6 m in horizontal extent. Their vertical extent
is uncertain. Grades of 1-m samples that include

these late veins are about one order of magnitude
greater than most of the mineralization, which
averages 0.8 percent Pb, 2.3 percent Zn, and
148 g Ag/t. Consider a two-dimensional estima-
tion problem (a bench) for which the SMU is 10×
10× 5m3 and diamond-drill data are available for
a square grid with spacing of 40 m. Discuss the
practical problems of developing a grade-estima-
tion procedure for an array of SMUs with empha-
sis on the presence or absence of outlier values.



14
An Introduction to Conditional Simulation

[W]hile the real surface z0(x) is known only at a limited number of locations xi, . . . the simulated surface can be
known at almost every point x of the deposit. It is then possible to apply to the simulation the various processes
of extraction, hauling, stockpiling, etc., to study their technical and economic consequences and by feedback to
correct these processes. (Journel, 1974, p. 673).

Two- and three-dimensional arrays of values,
having the same statistical and spatial charac-
teristics as grades of a mineral deposit or do-
main, are becoming increasingly useful in the
design of advanced exploration/evaluation pro-
grams, as well as in mine and mill planning at
the feasibility and operating stages. Chapter 14
provides insight into the development of arrays
of conditionally simulated values and their use
specifically for purposes related to improving the
quality of resource/reserve estimation.

14.1: INTRODUCTION

Simulation in a mining context means imitation of
conditions. Simulation, as it relates specifically to es-
timation, generally involves an attempt to create an
array of values that has the same statistical and spa-
tial characteristics as the true grades; however, values
are generated on a muchmore local scale than that for
which true grade information is available. Although
reference here is restricted to grade, other variables
can be simulated. A simulation is not an estimate;
it is rather a two- or three-dimensional set of values

having the same general statistical character as the
original data.

It is important to realize why simulations are nec-
essary when both data and estimates exist. The reason
is best illustrated in a simple diagram showing grade
profiles across a mineralized zone (Fig. 14.1). True,
local fluctuations in the spatial distribution of grade
are smoothed by most estimation methods, such that
estimates do not reflect the local grade variations. In
two dimensions, one can imagine a complex surface
that represents the true grade distribution and a much
smoother surface that represents the distribution of
estimates. Simulated arrays of values are constructed
to vary on the same scale as the true variations of
sample grades. In estimation, we are concerned with
minimizing the error variance; in simulations, we are
concerned with reproducing the dispersion variance
of the real data.

Simulation procedures can be designed that repro-
duce histograms of any shape (e.g., Agterberg, 1974),
including normal, lognormal, and three-parameter
lognormal distributions. In the simplest case (a single
process), the procedures simply involve random
draws from a defined population. In more compli-
cated cases, several random processes can contribute
to a final distribution. Such simulations have limited

284
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Figure 14.1: A comparison of idealized profiles of true grade
(solid line), simulated grade (dashed line), and kriged es-
timated grade (dotted line) on a common profile. Note the
similar variability of the true and simulated grades in con-
trast to the smoothed pattern of estimated grades. All pro-
files pass through the known data points. Redrawn from
Journel (1975).

application in a mining context because they do
not take into account the spatial characteristics of
the variable under study. Simulated data arrays that
retain the same density distribution (histogram) and
autocorrelation character and that are linked spatially
to reproduce the existing data are called conditional
simulations. Conditional simulations are the type
normally used for applications involving ore/waste
grades. A conditional simulation and reality can be
considered realizations of the same random function.
Journel (1975) states, “Reality and simulation can be
considered as two variants of the same mineralized
phenomenon” (p. 8).

14.2: AIMS OF SIMULATION

Simulations serve a variety of purposes in the mineral
industry, including (see Journel, 1979) the following:

(i) Study of grade continuity (e.g., Nowak et al.,
1993)

(ii) Optimizing sampling plans for advanced explo-
ration

(iii) Evaluation of resource/reserve estimationmeth-
ods (e.g., Dowd and David, 1976)

(iv) Mine planning (e.g., Blackwell et al., 1999)

(v) Mill optimization (e.g., Journel and Isaaks,
1984)

(vi) Financial risk analysis (e.g., Ravenscroft, 1992;
Rossi, 1999)

(vii) Any combination of the purposes listed here.

Here, emphasis is placed on the use of conditional
simulations for characterizing grade continuity and
as a means of evaluating estimation methods.

Simulations produce values at the nodes of an ex-
tremely fine grid (i.e., very closely spaced nodes rel-
ative to the distance separating the conditioning data)
such that the character of a simulated deposit or do-
main is almost perfectly known by a large set of punc-
tual values. These are the values used for the various
purposes listed previously. Because somany punctual
values can be simulated within blocks of a practical
size (e.g., selective mining unit [SMU]), the average
of all simulated values within a block can be taken as
a close estimate of the true average value of the block.
This opens the way for a number of practical appli-
cations of simulations (e.g., a mining sequence can
be imposed on the blocks based on estimated grades
to determine the true impact of production on such
procedures as ore/waste selection, haulage schedul-
ing, stockpiling, blending, and mill efficiency. Here,
emphasis is directed to simulations as they relate di-
rectly to the problem of obtaining high-quality block
estimates in a production scenario.

Various estimation methods can be applied to
blocks whose simulated true grades are known. Es-
timates by each method can be compared with true
block grades and the best method selected for use
in practice. When complex data distributions occur, it
has become common to usemultiple indicator kriging
to obtain grade estimates. One of the necessary steps
in this procedure involves a change of support opera-
tion (see Chapter 12) that derives a block-grade distri-
bution from a sample-grade distribution. Simulations
can provide examples of the types of block-grade dis-
tributions that are encountered in practice that can be
compared with distributions obtained by change of
support procedures; simulations can also be used to
verify change of support procedures (e.g., Rossi and
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Parker, 1994). An important but little-used applica-
tion of simulation involves an understanding of the
spatial distribution of grade subpopulations (i.e., sim-
ulations of the pattern of physical continuity in space
of various grade populations).

14.3: CONDITIONAL SIMULATION AS AN
ESTIMATION PROCEDURE

In certain respects, a simulated value is an estimate
of the true value at the site of the simulation. How-
ever, the simulated value is not a best estimate, and
the related estimation error is twice that of the cor-
responding kriging error. Consequently, conditional
simulation has not been viewed as a reliable or ac-
cepted estimation procedure. Of course, simulation
and estimation have different purposes. Simulation
allows local variations in values of a variable to be
examined, particularly with regard to what impact
these local variations have on sampling plans, estima-
tion procedures, mine andmill planning, and financial
matters. Estimates, however, are made ultimately for
the purpose of identifying ore and waste on a scale
that physical separation can be achieved.

There has been a trend toward the use of condi-
tional simulations as a realistic approach to estima-
tion, particularly for grade control during production
(e.g., Blackwell et al., 1999). The general procedure
involves the production of n simulations (for exam-
ple, 10) of the same locations in space. The 10 values
simulated at each point define the probability distri-
bution for the grade at that point. These distributions
can be used in a variety of ways (e.g., to estimate the
probability that grade is above a cutoff at a point). Al-
ternatively, all such distributions in a specified block
can be combined to estimate the grade of the block
or to estimate the probability that the block grade is
above a cutoff grade.

14.4: A GEOSTATISTICAL PERSPECTIVE

Consider a single point, x, amongmany in space. This
point has a real value of z0(x) and a kriged value of
z∗
k (x) such that

z0(x) = z∗
k (x) + [z0(x) − z∗

k (x)].
(kriging error)

The expected value of this kriging error is zero. Now
consider a random function Z0(x) independent of z(x)
but isomorphic (having similar structure) to it. That
is, Zs(x) has the same covariance C(h), as Z (x).
Then the same kriging procedure leads to a com-
parable result (i.e., or any sampling of the random
function):

Zs(x) = Z∗
sk(x) + [Zs(x) − Z∗

sk(x)].

Because Eqs. 14.1 and 14.2 are isomorphic equiva-
lents (realizations of the same random function), it is
possible tomix components on their right sides to pro-
duce a new realization of the same random function,
as follows:

Zc(x) = z∗
k (x) + [Zs(x) − Z∗

sk(x)]

where Zc(x) is constructed by combining the residuals
of the second random function Zs(x) with the kriging
Z∗
k (x) of the initial random function.
Thus, simulation can be seen to be the addition of a

simulated-error factor to a kriged value. Hence, krig-
ing is a product of the overall simulation procedure.
Equation 14.3 also demonstrates that the simulation is
conditional on the original data (i.e., reproduces the
original data) because, for the conditioning sample
sites, kriging reproduces the sample value, and the
error term disappears.

14.5: SEQUENTIAL GAUSSIAN
SIMULATION

Of the several simulation procedures in use (e.g., turn-
ing bands, LU decomposition, sequential Gaussian),
only the sequential Gaussian procedure is considered
here. The method is based on the principal that an ap-
propriate simulation of a point is a value drawn from
its conditional distribution given the values at some
nearest points. The sequential nature rests on the fact
that subsequent points that are simulated make use
not only of the nearby original conditioning data, but
also the nearby previously simulated values. Software
for this purpose is readily available in Deutsch and
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Journel (1998). The general procedure is as follows:

(i) Select a set of conditioning data.
(ii) Transform conditioning data to equivalent nor-

mal scores.
(iii) Develop a semivariogram model for the trans-

formed data.
(iv) Check transformed data for bivariate normal-

ity by comparing sample indicator semivari-
ograms for different thresholds (lower quartile,
median, upper quartile) to a theoretical bivariate
model.

(v) Proceed with sequential Gaussian simulation
routine (from Deutsch and Journel, 1998).

(vi) Conduct several checks to demonstrate that sim-
ulation has honored the desired constraints.

It is important to compare a histogram of the sim-
ulated values with a histogram of the conditioning
data and compare experimental semivariograms of the
simulated values with the semivariogram model de-
termined for the normal scores of the conditioning
data. A contour plot of the simulated values is also
useful for comparison with a contoured plot of the
conditioning data.

14.6: SIMULATING GRADE CONTINUITY

There are many practical mineral exploration pro-
grams in which the physical continuity of ore-bearing
rock is less than the spacing between drill sections
that form the basis of data collection. In this situ-
ation, a particular mineralized structure intersected
on one drill section is not represented on adjoin-
ing drill sections (e.g., Fig. 3.10). The Shasta ep-
ithermal precious-metal deposit (see Section 3.5.2)
is such an example. In this case, the lengths of
many of the mineralized quartz veins within an al-
tered zone are much less than the spacing between
drill sections. Hence, information from drill sections
is not a sound basis for interpolation of grade be-
tween sections. Two horizontal and vertical simula-
tions (Nowak et al., 1993) clearly indicate the scale on
which additional data are required in order to provide
data that can be used to interpolate with confidence
(Fig. 3.11).

This general situation (widely spaced data sites
relative to the average physical continuity of local
ore-bearing structures) is common to many deposits;
in particular, shear-controlled deposits such as many
gold-bearing shear veins. When the exploration of
such deposits has advanced to a stage that includes
underground workings (raises and drifts within the
structure) in addition to widely spaced piercement
by diamond-drill holes, information can be collected
to construct a semivariogram model for gold grade
or accumulation and thickness. Underground access
provides the database with which to construct a semi-
variogram model; diamond-drill intersections pro-
vide the conditioning data with which to develop
simulations.

14.7: SIMULATION TO TEST VARIOUS
ESTIMATION METHODS

14.7.1: Introduction

A set of 302 Cu grades of blasthole cuttings for a part
of one bench (bench height = 40 ft) of the Similka-
meen porphyry copper deposit (cf. Raymond, 1979)
is used as an example of the use of conditional simula-
tion to compare the effectiveness of various estimation
methods. These data are largely at a spacing of 20 to
25 ft. The aim of the study is twofold:

(i) To produce a closely spaced two-dimensional ar-
ray of values with the same mean, standard de-
viation, and spatial structure as the original data

(ii) To test various block estimation techniques
(nearest neighbor, inverse distance weighting,
ordinary kriging) that use the original data to
estimate 45 × 45 × 30 ft3 blocks whose mean
grades are known (average of all contained sim-
ulated values).

14.7.2: Procedure

A sequential Gaussian method of conditional simula-
tionwas selected for illustrative purposes (see Section
14.4) using software from thewidely availableGSLIB
software package (Deutsch and Journel, 1998). In
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Figure 14.2: Contours for 302 blasthole Cu values (Sim-
ilkameen deposit). Data locations are omitted for clarity
but values are more or less uniformly distributed over the
field, with a general spacing of about 20 to 25 ft. Contours
demonstrate a preferential trend in a roughly northeasterly
direction.

brief, the simulation procedure involves the follow-
ing steps:

(i) Select a specific area for which the simulation
will be performed (Fig. 14.2).

(ii) Transform the original 302 data to a normal dis-
tribution using a generalized normal transform
(e.g., Journel and Huijbregts, 1979).

(iii) Determine a semivariogram model for the trans-
formed data (Figs. 14.3 and 14.4 and Table 14.1).

(iv) Check for bivariate normality (Fig. 14.4).
(v) Conduct sequential Gaussian simulation of

18,000 points using the SGSIM program
(Deutsch and Journel, 1998).

(vi) Check the validity of the resulting simulation.

(vii) Repeat steps (v) and (vi) for as many additional
simulations as are required.

The test program reported here, based on Similka-
meen blasthole Cu grades as conditioning data, in-
volved 10 independent simulations.

14.7.3: Verifying Results of the
Simulation Process

Histograms of the conditioning data and the simulated
values are compared in Fig. 14.5. It is evident both
from the forms of the two histograms and from the
accompanyingmeans and standard deviations that the
simulation process has faithfully reproduced the basic
statistical character of the conditioning data. The con-
toured plot of the simulated values (Fig. 14.6) shows
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Figure 14.3: Pictorial summary of the semivariogrammodel
derived for normal score transforms of the 302 blasthole Cu
grades (conditioning data) representing a part of one bench
(bench height = 30 ft) of the Similkameen porphyry copper
deposit. The two ellipses represent anisotropic ranges of
two structures. The radii shown are those used to construct
experimental semivariograms to develop the model. The
model differs slightly from that obtained using the entire
1,181 blastholes for the bench.
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Table 14.1 Two-dimensional semivariogram model
for 302 blasthole copper values, Similkameen
porphyry-copper deposit, Princeton, British
Columbia

Structure Range (ft)a C Anisotropy ratio

Nugget 0 0.3 1
Spherical 1 40 0.4 0.625
Spherical 2 160 0.3 0.688

Note: aThe indicated longest range is along a 035
azimuth.

the same general character as the contoured condi-
tioning data (Fig. 14.2), except, as anticipated, the
relatively few and more widely spaced conditioning
data are incapable of showing the local detail con-
tained in the simulated values. A more formal test
of the similarity of spatial character is illustrated by
a comparison of the experimental semivariogram of
the simulated values with the semivariogram model
that characterizes the conditioning data. Figure 14.7
clearly demonstrates that the model for the condition-
ing data could just as well serve as a model for the
experimental semivariogram of the simulated values.
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Figure 14.4: A check for bivariate normality. Dots are an ex-
perimental indicator semivariogram for the 302 condition-
ing data using a cutoff grade of 0.385 percent Cu (median
grade). The smooth curve is a fit by a Gaussian theoretical
model calculated using normal scores for the 302 condi-
tioning data. This example for an azimuth of 125 degrees
is typical of the fits obtained.
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Figure 14.5: Histograms for (a) 302 blasthole Cu values
(conditioning data) and (b) 18,000 simulated Cu values,
Similkameen porphyry copper deposit. Note the similarity
of the two histograms.

Clearly, this simulation has been successful in re-
producing the statistical and spatial character of the
conditioning data.

14.7.4: Application of Simulated Values

As a practical application of the simulated values gen-
erated for part of one level of the Similkameen por-
phyry copper deposit, consider their use as a standard
against which to measure the effectiveness of vari-
ous estimation procedures. A 45 × 45 ft2 grid is su-
perimposed on the 360 × 450 ft2 field (Fig. 14.2) of
simulated values (recall that the values represent
blasthole assays for a bench height of 40 ft). Each
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Table 14.2 Parameters for traditional least-squares linear models describing estimates versus true block
values, Similkameen test

Estimation method Correlation coefficient y Intercepta Slopea Scatter

Ordinary kriging 0.894 0.0999 (0.0791) 0.818 (0.151) 0.0951
1/d2 0.819 0.0304 (0.0320) 0.941 (0.0604) 0.1093
1/d3 0.754 −0.0994 (0.0480) 1.229 (0.0902) 0.1677
n = 80

a Bracketed number is one standard deviation error.

cell (block) of the resulting array of 80 cells (8 × 10)
is then estimated by several methods; in this case,
nearest neighbor, various inverse-distance weighting
procedures, and ordinary kriging using only the origi-
nal data. The true value of each block is taken to be the
average of all simulated points within the block. In-
dividual estimation techniques can then be compared
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Figure 14.6: Contoured plot for 18,000 simulated Cu val-
ues for the same area shown in Fig. 14.2.

against these true values on an x–y plot. Because the
expectation is for unbiased results with each estima-
tion technique, on average, producing the correct re-
sult, the data on x–y plots can be approximated by a
linear model. Three examples are shown in Fig. 14.8
for ordinary kriging, inverse-distance weighting –
exponent 2; and inverse-distance weighting – expo-
nent 3. Statistical and linear model parameters are
summarized in Table 14.2.

This test demonstrates the relative quality of
various estimation methods as applied to an ideal-
ized array of block values generated from a parent
population with statistical and spatial characteristics
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Figure 14.7: Comparison of the semivariogram model for
302 blasthole Cu values (smooth solid line) and the ex-
perimental semivariogram for the 18,000 simulated values
(dotted, irregular line). Note that the model based on the
conditioning data could serve equally well for the simulated
data.
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Figure 14.8: Examples of block estimates by various estimation methods versus true block grades. (a) Ordinary kriging
estimates versus true block grades (x axis) (b) Inverse squared distance estimates versus true block grades. (c) Inverse
cubed distance estimates versus true block grades. Filled squares are individual 45× 45× 30 ft3 blocks. Linear models
are traditional least-squares fits, with error entirely in the ordinate (i.e., the y axis, which represents the estimation method).
Parameters for the linear models are listed in Table 14.2.

comparable to those of a part of the Similkameen
porphyry copper deposit. In particular, kriging and
1/d2 are clearly better than 1/d3, as indicated by the
statistics in Table 14.2. Specifically, the conditional

bias (slope) and scatter of values (error) are greatest
for 1/d3. The choice between kriging and 1/d2 is not
so clear, although, statistics aside, the kriging results
show much less scatter than do the1/d2 results.
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14.7.5: Sequential Indicator Simulation

Anothermethod also available inDeutsch and Journel
(1998) is sequential (multiple) indicator simulation
(SISIM). This does not require a Gaussian distribu-
tion of the data and uses multiple indicator kriging,
as described in Section 10.11.2, to model complex
grade distribution patterns. The general procedure is
as follows:

(i) Select a set of conditioning data.
(ii) Select a set of cutoff (threshold) grades and trans-

form to a set of indicator (0 or 1) data.
(iii) Develop semivariogram models for the various

sets of indicator-transformed data.
(iv) Proceed with the simulation routine (from

Deutsch and Journel, 1998).
(v) Conduct several checks to demonstrate that the

simulation has honored the desired constraints.

In this case, the simulation routine randomly se-
lects blocks for multiple indicator kriging (MIK) us-
ing the original data and any nearby blocks already
simulated. A random number (0 to 1) is selected and
applied to the MIK probability of being between two
of the specified thresholds. The grade is interpreted
linearly between the two threshold grades defined by
the random number selected.

14.8: PRACTICAL CONSIDERATIONS

1. To be useful in the mineral industry, most simu-
lations of grade distributions must be conditional
(i.e., in addition to reproducing the mean and dis-
persion of the original data, the simulated values
must also reproduce the spatial characteristics of
the original data).

2. Generating a conditional simulation is a nontriv-
ial undertaking that requires a reasonable level of
geostatistical sophistication. Software to conduct
conditional simulations is readily available (e.g.,
Deustch and Journel, 1998), but its implementa-
tion requires a fundamental understanding of a
range of geostatistical procedures.

3. Conditional simulation is far more warranted than
the limited practical applications in the technical

literature would suggest. Most reported practical
applications relate to production scenarios, but
substantial scope for the use of conditional simu-
lations exists prior to exploitation at the advanc-
ed exploration and feasibility stages of deposit
development.

4. When detailed semivariogram models are ob-
tained confidently by the judicious collecting of
data early in an exploration program, conditional
simulation can provide remarkable insight into
grade continuity and how continuity can influ-
ence the development of an adequate sampling
program, especially as regards sample spacing.
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14.10: EXERCISES

1. Simulate a grade profile of 20 5-m composites.
The mean grade is 2.3 g/t and the standard devia-
tion is 3.1 g/t. Assume a lognormal distribution.
Step1: Calculate the mean logarithmic value ml

and the logarithmic variance s2l from the
arithmetic data provided, using equations in
Chapter 4.

Step2: Draw 20 values from a table of random z
scores for a normal distribution (e.g., from a
mathematics handbook).

Step3: Transform each randomly selected z score
into a corresponding logarithmic value us-
ing the relation z = (x − m)/s (i.e., x =
zsl + ml).

Step4: Plot the profile of 20 successive x values
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at sites 0 to 19, inclusive. Note that this pro-
cedure produces a profile of a variable with a
pure nugget effect.

2. Assume that at sites 0, 9, and 19 in Question 1, the
values are known (and are to be used to condition
the remaining values). The deposit is known to
have alternating high- and low-grade zones on a
scale of 40 to 50 m. In this example, conditioning
means that the position of intermediate samples
relative to a line joining two random end points
that coincidewith conditioning sites ismaintained
relative to a line joining the two conditioning
points.

Suppose the random values for Sites 0 and 9
are 1.8 and 3.1, respectively, and the known values

at these sites are 1.2 and 4.1, respectively. Sup-
pose further that a random value at Site 2 is 1.1.
The conditioned value at Site 2 is determined as
follows. A line based on the two random points
has the equation y = 1.8 + (3.1 − 1.8) × /9.
For site x = 2, the corresponding line value of y is
2.1 (1.0 higher than the random value of 1.1). This
difference must be maintained relative to a line
through the two known conditioning points. The
equation for the conditioning line is y′ = 1.2 +
2.9 × /9 which, for site x = 2, gives y′ = 1.84.
The conditioned value for Site 2must be 1.0 lower
than this point on the conditioning line; hence, the
conditioned value at Site 2 is 1.84 − 1.0 = 0.84.
Produce a profile of conditioned values from the
randomly selected values of Question 1.



15
Bulk Density

A more detailed investigation of the specific gravity of the two types of ore was made in an effort to determine
more accurate tonnage factors. The results of this work showed that there was considerable variation in the
specific gravities throughout the orebody and that there was no acceptable average tonnage factor. (Brooks and
Bray, 1968, p. 178)

Bulk density determinations of ores and waste
require close attention because they directly af-
fect the conversion of volumes to tonnages. The
factors that control bulk density are variations in
mineralogy and porosity, and the scale of varia-
tions in these factors controls the scale at which
bulk densities, must be recorded. Practical meth-
ods of dealingwith the complex interplay ofmin-
eralogy and bulk density are discussed.

15.1: INTRODUCTION

Density, defined asmass per unit volume (e.g., pounds
per cubic foot or grams per cubic centimeter), is an im-
portant rock and ore characteristic used to transform
measured volumes into tonnages. Practical consider-
ation of ore and waste in the mineral industries com-
monly dealswith volumes of in situ or brokenmaterial
with a significant porosity (void space within the vol-
ume) that reduces the effective density of the volume
below that of the solid and perhaps nonporous mate-
rial. A density that takes voids into account is termed
a bulk density. Of course, when porosity is negligible,

density of the solid material and bulk density are es-
sentially equivalent.

Specific gravity, a term that is widely used inter-
changeably with density, is relative density, and is
therefore unitless. A specific gravity of 2.0 indicates
that a substance is twice theweight of an equal volume
of water (at standard temperature and pressure). In its
mineralogic use, specific gravity applies to solid, non-
porousmaterials; consequently, use of the term should
be avoided in general reference to ore and waste,
with deference to the term bulk density. Of course,
when porosity is negligible, the numeric value of spe-
cific gravity is identical with the numeric value of
density.

Potential ore and related waste material generally
are defined initially by volume and then transformed
to tonnage by calculations that use an appropriate con-
version factor that reflects the average bulk density of
the volume under consideration. It is common prac-
tice in the mineral industry to determine an average
volume (tonnage) factor for very large volumes; in the
extreme, a single conversion factor for an entire de-
posit. Such an approach is rarely appropriate because
of the variations in mineralogy and physical charac-
ter that are so prevalent throughout a single mineral
deposit.

294
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There are a variety of methods for estimating bulk
density that can be categorized into the following gen-
eral procedures:

(i) Archimedes-type measurements on whole core
(in the field) or core or rock fragments (in the lab)

(ii) Lab measurements of pulverized material (gen-
erally unsatisfactory in resource/reserve estima-
tion)

(iii) Physicalmeasurements for long lengths ofwhole
core on-site (dimensions and weight) (This
method provides small-scale bulk densities, but
can be impossible when appropriate core cannot
be obtained or cumbersome when appropriate
core is available.)

(iv) Stoichiometry based on whole-rock chemical
analyses

(v) Gamma–gamma logging of drill holes (spectra
from this geophysical procedure must be cali-
brated against physical measurements of corre-
sponding core segments)

15.2: IMPACT OF MINERALOGY
ON DENSITY

Mineral zoning is a feature of many mineral deposits
and is the principal reason why there are systematic
differences in bulk density within a single deposit.
Consider the following example, summarized from
Sinclair (1978, p. 130):

Suppose that the central part of a layered,
massive sulfide deposit consists of 10(vol)%
sphalerite (s.g. = 4.0), 45(vol)% pyrrhotite
(s.g. = 4.6) and 45(vol)% pyrite (s.g. = 5.1).
The (bulk density) of the ore is 4.77 (g/cc) assum-
ing no porosity. The tonnage conversion factor in
the British system is 6.71 (ft3/ton). If the fringes
of the same deposit consist of 60(vol)% argillite
(s.g. = 2.7), 30(vol)%pyrite, 4(vol)% sphalerite
and 6(vol)% galena (s.g. = 7.6) the ore has a
(bulk density) of 3.77 g/cc (tonnage conversion
factor = 8.49 ft3/ton). Note that the two bulk
densities differ by more than 20%. Even if an
average bulk density of 4.27 g/cc were used to

make tonnage estimates, estimates for both zones
would be in error by 100(0.5/4.27) = 11.7%,
one zone being overestimated, the other under-
estimated. In the second case containing argillite,
an increase in the argillite content to 70vol.%and
a corresponding decrease in pyrite to 20 vol.%
results in a 7% reduction in bulk density, which
translates into a 7% error in tonnage estimates.

A practical example is provided by Brooks and
Bray (1968) in their discussion of tonnage factors for
massive sulfides forming a core zone at the Geco de-
posit, northern Ontario, surrounded by “an envelope
of disseminated sulfides” (see the quote at beginning
of this chapter).

Bulk density varies among rock types at the Mac-
tung tungsten skarn deposit, Northwest Territories,
ranging from an average of 2.9 g/cc for hornfels to
3.4 g/cc for pyrrhotite skarn (Fig. 15.1). Mustard and
Noble (1986, p. 75) describe how geologic mapping
of skarn types improves the local estimation of an
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Figure 15.1: Bulk density of tungsten skarns as a func-
tion of skarn types, Mactung scheelite deposit, northern
Canada. Note the substantial density differences for waste
(hornfels, marble) and tungsten mineralization (garnet,
pyroxene, and pyrrhotite skarns). Redrawn from Mustard
and Noble (1986).
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appropriate bulk density, leading to high-quality local
tonnage estimates: “Definition of the spatial distribu-
tion of skarn and rock type allowsmore accurate local
estimation of (bulk density) than can be achievedwith
an overall average value.”

Improved local tonnage estimates based on ge-
ologic mapping and an appreciation of the spatial
distribution of bulk density values lead to closer rec-
onciliation of local estimates with production.

15.3: IMPACT OF POROSITY
ON BULK DENSITY

Voids in a rock mass have zero specific gravity and
must be weighted appropriately in the determination
of bulk density. Consider the following example, in
which samples have been “image analyzed” to pro-
duce the mode (vol %) in column one of Table 15.1.
Column two contains the specific gravities of themin-
erals obtained from a mineralogic text. Note that the
specific gravity of sphalerite can vary substantially,
and an average figure has been used. The carbonate is
assumed to be calcite. In practice, measurements of
the specific gravities of sphalerite and carbonate can
be obtained so that figures appropriate for a specific
deposit are used. With the information in columns
one and two, a number of calculations are possible,
as follows:

Bulk density of dry ore = 378.4/100

= 3.78 g/cc.

Note that the specific gravity of ore material, as-
suming zero voids, can also be determined using in-
formation derived from columns one and three, as
follows:

Specific gravity of ore (zero porosity)

= 378.4/(100 − 8.3) = 4.13 g/cc.

The specific gravity (voids not taken into account) is
numerically 8 percent higher than the true bulk den-
sity. If these figures were representative for a deposit
and specific gravity rather than bulk densitywere used
to convert volume into tonnes, this 8 percent error

Table 15.1 Modal analysis of a Pb–Zn–Ag ore

Vol.% SG Vol. × SG Wt.%

Galena 24.0 7.5 180.0 47.6
Sphalerite 18.2 3.5 63.7 16.8
Argentite 0.2 7.3 1.5 0.4
Carbonate 49.3 2.7 133.2 35.2
Voids 8.3 0.0 0.0 0.0

TOTAL 100.0 378.4 100.0

would translate directly into an 8 percent overestima-
tion of “ore” tonnage.

As a matter of interest, metal assays can be de-
termined from the estimates of weight percent metal
using the following relation:

metal wt.% = mineral wt.%(molar wt. metal/

molar wt. mineral)

Pb% = 47.6(207.21/(207.21 + 32.06)) = 41.2%

Zn% = 16.8(65.38/(65.38 + 32.06)) = 11.3%

Ag% = 0.4(215.8/(215.8 + 32.06)) = 0.35%

= 3.5 kg/t

= 3,500 g/31.103(2,000/2,204.62)

= 102.1 troy oz/t.

If similar calculations are done for modal data ob-
tained from grain or point counts, it is possible to
assign an error to the volume estimates, the mineral
weight estimates, and the metal weight estimates.

15.4: IMPACT OF ERRORS
IN BULK DENSITY

Consider Purdie’s (1968, p. 187) comment regarding
the A zone at Lake Dufault, Quebec:

The volume factor for the A zone was calculated
from an estimate of the average mineral content
of the massive sulfides and the specific gravities
relative to each mineral constituent. This was
checked during surface exploration of theA zone
by weighting several core samples of massive
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Table 15.2 Sample lengths, densities, and assays

Sample Bulk Assay %
length (L) density (D) L.D Cu (T) L.T L.D.T

3.0 3.0 9.0 1.0 3 9.0
4.0 4.2 16.8 30.0 120 504.0
4.0 3.5 14.0 3.0 12 42.0
2.0 4.0 8.0 1.0 2 8.0
2.0 3.0 6.0 1.0 2 6.0

15.0 53.8 36.0 139
569.0

sulfides and calculating a volume factor from
these weights. The results were

(i) Estimated by mineral content: 7.6 ft3/t @
5% Cu, 12% Zn

(ii) Average of 490 feet of massive sulfide core:
6.9 ft3/t @ 5.7% Cu, 11.8% Zn.

These two estimation methods produce tonnage (vol-
ume) factors that differ by about 10 percent, a differ-
ence that is translated directly to tonnage estimates.
Estimate (i) is based on the average mineralogy for
the entire A zone; estimate (ii) is based on a number
of direct local core measurements. The results clearly
indicate substantial local variability in bulk density.
Clearly, an understanding of the spatial variability of
bulk density of ore (and waste) is necessary in order
to make confident local estimates of tonnage.

Dadson (1968, p. 4) provides several examples
comparing the differences in use and nonuse of bulk
density in determining average grade, one of which
is reproduced in the following. Data are given in
Table 15.2. “Example: ‘Assume copper ore, a mix-
ture of massive and disseminated sulfides in siliceous
gangue; drill core . . . samples are taken.’ ” The aver-
age grade calculation using data of Table 15.2 is

(i) Weighted by bulk densities: m = 569/53.8 =
10.58 percent Cu

(ii) Weighted by length: m = 139/15= 9.27 percent
Cu.

The difference in estimated grades by the two
methods is about 10 percent; in this case, the incor-

rect method that does not take density into account
produces an underestimation of the true grade.

15.5: MATHEMATICAL MODELS
OF BULK DENSITY

Consider an ore that is a mixture of quartz and spha-
lerite and has zero porosity. The bulk density (ρb) of
the ore can be expressed in terms of the specific grav-
ities of the individual minerals as follows:

ρb = 2.7 fq + 7.8 fg

where fq + fg = 1 are the volume proportions of the
minerals quartz and galena, respectively. If a small
variable component of porosity is present, the model
becomes

ρb = 0 f p + 2.7 fq + 7.8 fg ± e (15.1)

where f p + fq + fg = 1 and e is a random measure-
ment error. Note that the first term of Eq. 15.1 is zero;
therefore

ρb = 2.7 fq + 7.8 fg ± e but( fq + fg) ≤ 1.

(15.2)

When f p is very small, the relation fq = 1− fg holds
approximately, and Eq. 15.2 reduces to

ρb = K + 5.1 fg ± e.

Hence, in this simple, mineralogic system, bulk den-
sity has a simple linear relation with the volume abun-
dance of galena. Because theweight/percent of galena
is directly related to the volume/percent, a linear re-
lation also exists between bulk density and weight/
percent galena (Eq. 15.3):

Gnw = 100{7.8 fg/[7.8 fg + 2.7(1 − fg)]}
= 100{7.8 fg/[5.1 fg + 2.7]} (15.3)

where Gnw is the weight/percent galena and other
symbols are as shown. Because a direct relation exists
between weight percent galena and weight/percent
Pb, a linear relation also holds between metal assay
and bulk density. The relation betweenweight/percent
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Figure 15.2: Linear models of bulk density versus volume/
percent galena, weight/percent galena, and weight/percent
lead for mixtures of galena and quartz with zero porosity.

galena and metal/percent, based on atomic weights of
constituent atoms, is as follows:

%Pb = Gnw(207.21/239.27) = 0.866Gnw.

All three of the foregoing relations are illustrated
in Fig. 15.2 and data are listed inTable 15.3. This same
type of simple linear pattern can exist when small
amounts of other minerals are present (see Fig. 4.17);
the presence of additional minerals contributes to the
constant K and the magnitude of the random error e.
Of course, as the number and amounts of additional
minerals increase, the relation gradually breaks down.

It is surprising how commonly a simple linear
model provides an adequate definition of bulk den-
sity. However, ore mineral assemblages are gener-
ally much more complex than the simple example
described. Bevan (1993) describes such a case for Cu-
Ni ores of the Sudbury camp, where he demonstrates
bulk density to be a quadratic function of sulphur
content.

A more fundamental approach to developing a
mathematical model for bulk density is the use of
multivariatemodels, such asmultiple regression. This
arises because bulk density is an exact function of
mineralogy and porosity. For example, the bulk den-
sity of the mineralogic data of Table 15.1 can be

Table 15.3 Bulk density values and corresponding
weight and volume percentages of galena and Pb
assays (see Fig. 15.2)

Vol.% Qtz Vol.% Gn Wt.% Gn Wt.% Pb Bulk density

100 0 0 0 2.70
99 1.0 2.84 2.46 2.751
97 3.0 8.20 7.50 2.853
95 5.0 13.2 11.43 2.955
93 7.0 17.9 15.5 3.057
91 9.0 22.2 19.2 3.159
89 11.0 26.3 22.8 3.261

expressed as a multivariate equation as follows:

ρb = fgxρg + fsxρs + faxρa

+ fcxρc + fvxρv

= 7.5x fg + 3.5x fs + 7.3x fa
+ 2.7x fc + 0x fv (15.4)

where ρ is specific gravity and f is volume propor-
tions (fractions) of minerals; subscripts are g, galena;
s, sphalerite; a, argentite; c, carbonate; and v, voids.

Substituting the volume abundances of Table 15.1
in Eq. 15.2 gives

ρb = 0.24 × 7.5 + 0.182 × 3.5

+ 0.002 × 7.3 + 0.493 × 2.7 = 3.78.

More generally, if only Pb and Zn metal abundance
(assays) are to be used to estimate bulk density,
Eq. 15.4 would take the form

ρb = b0 + b1Pb% + b2Zn% ± e (15.5)

where b is constant. Obviously,more complexmodels
(involvingmore variables) are possible. In practice, an
equation such asEq. 15.5would be determinedusing a
least-squares fitting procedure applied to samples for
which both grades and bulk densities were known.
In cases where the error term is small, the model is
an acceptable means of estimating bulk density with-
out going to the cost and effort of physical measure-
ments. If the error term is too large, the model is
inadequate. Commonly, a linear, least-squares model
is sufficient.
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15.6: PRACTICAL CONSIDERATIONS

1. Bulk density differs from specific gravity in tak-
ing account of porosity in an otherwise solidmass.
Idealized estimates of bulk density can be calcu-
latedwhen (a) themineral content and the porosity
are known and (b) specific gravity of eachmineral
component is available.

2. Bulk density is a variable much like grade. Hence,
bulk density can vary significantly with spatial
location.

3. Variations in bulk density arise from variations
in mineralogy, porosity, and the chemical com-
position of minerals that permit a wide range
of solid solution. In many deposits, mineralogic
variation is the principal control on bulk den-
sity; thus, mineralogic zonation is commonly a
practical guide to systematic variations in bulk
density.

4. It is important that bulk density measurements be
conducted early in the exploration of a deposit.
Commonly, it is sufficient to make direct mea-
surements on large pieces of core before the core
is split or deteriorates. For many ore types, this is
a simple undertaking; for others, difficulties can
be encountered, mostly arising from lack of co-
hesiveness of core or porosity on a scale larger
than can be represented by core. In some difficult
cases, the use of bulk samples may be required.
In such cases precise measurements of both the
volume and weight of a bulk sample (e.g., a drift
round) must be obtained.

5. In many cases, a systematic relation exists be-
tween bulk density and one or more metal abun-
dances. When such a model exists, it provides a
simple way of incorporating density into the esti-
mation procedure at the level of individual blocks.
Average grades estimated for the blocks can be in-
serted into the model to provide a bulk-density es-
timate that translates into local tonnage estimates.
This procedure improves on the widespread use
of a single average density factor everywhere in
a large domain, a procedure that can lead to sub-
stantial disparity in estimated tonnage versus pro-
duced tonnage over short periods.

6. With improvements in miniaturization of down-
hole geophysical instruments, continuous esti-
mates of bulk density are becoming more readily
available in exploration drill holes for mineral-
deposit evaluation (e.g., Mutton, 1997). Such
information is desirable wherever possible be-
cause of their abundance, a spatial distribution
that coincides with much of the assay informa-
tion, and a uniformity of quality of bulk density
measurements.

7. In reconciling production tonnages with esti-
mates, it can be important to consider wet tonnes
that are being moved through the production
phase; these may differ by as much as 5 percent
relative to tonnes in place (e.g., Parrish, 1993).

15.7: SELECTED READING

Bevan, P. A., 1993, The weighting of assays and
the importance of both grade and specific grav-
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Hazen, S.W., Jr., 1968, Ore reserve calculations; Can.
Inst. Min. Metall. Spec. v. 9, pp. 11–32 (esp. pp.
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15.8: EXERCISES

1. Table 15.4 is a grain count of a concentrate from a
beach sand that is under evaluation (grains ap-
proximately 2 mm in diameter). (a) Using the
available data, calculate the specific gravity of the
solid matter. (b) Assuming a reasonable porosity
for sand grains, determine the bulk density of the
concentrate. (c ) Assuming an ideal mineral com-
position for zircon, calculate the Zr assay for the
concentrate.

2. Vein mineralogy changes abruptly along strike
from a quartz-sulfides assemblage (bulk den-
sity= 3.15 g/t) to a quartz-carbonate-sulfides as-
semblage (bulk density= 3.48 g/t). Suppose the
incorrect density were used to estimate tonnage
of a 147× 55 m stope in quartz-carbonate-sulfide



300 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

Table 15.4 Grain count of a beach sand concentrate

Mineral Grains (no.) Specific gravity

Ilmenite 762 4.8
Altered ilmenite 330 4.72
Manaccanite 14 5.0
Rutile 160 4.5
Rutile/gangue 8 3.5
Zircon 184 4.68
Monazite 14 5.1
Silicates 140 3.0
Unidentified 14 4.0
Plucked grains 12 4.5

ore with an average thickness of 1.83± 0.13 m,
what would the error in tonnage estimate be?
Is the error an overestimate or an underesti-
mate? What are the tonnage and grade if an addi-
tional thickness of overbreak dilution (zero grade,
bulk density= 3.05 g/t) were added to the vein
material?

3. If ore is crushed, there is a very significant increase
in volume because of the pore space produced.
This pore space commonly amounts to about
35 percent of the total volume of crushedmaterial.
What is the bulk density of a crushed ore whose
in situ bulk density is 3.73 g/t?

4. Transported crushedmaterial commonly becomes
wet with handling and in transit. Consequently, a
dry bulk density of crushed material is an inap-
propriate basis for determining shipping weight.
The amount of water absorbed by crushed ma-
terial prior to shipping is variable and should be
estimated in advance by comparing weights of
wet and dry material. Suppose that one-seventh
of the pore space were replaced by water retained
in the crushed material, calculate the increase in
bulk density (and thus increased shipping costs)
for the crushed material of Question 2. This ques-
tion does not consider the loss of finematerial that
commonly occurs during transport.



16
Toward Quantifying Dilution

Ore losses and dilution are present at all stages of mining and while several models can investigate the influence
of dilution it is its quantification that poses the most serious challenge. (Pakalnis et al., 1995, p. 1136)

Chapter 16 considers dilution, either internal or
external to ore. Both categories of dilution can be
further subdivided on the basis of geometric con-
siderations about the deposit itself or of the dilut-
ing material. External dilution involves that re-
lated tominimumminingwidth, contact dilution,
and overbreak of wallrock relative to planned
mining margins. Internal dilution can be consid-
ered from the perspective of volumes of barren
ground within an ore zone or the inherent di-
luting effect resulting from either increasing the
size of SMUs or the effect of misclassification
of blocks arising from sampling and analytical
errors occurring in grade control.

16.1: INTRODUCTION

Dilution, the “contamination” of ore with waste ma-
terial, is an important consideration in all planned or
operating mines because some amount of dilution is
virtually unavoidable in most practical mining oper-
ations (e.g., Elbrond, 1994; Scoble and Moss, 1994).
Dilution arises from a variety of causes (Figs. 1.7
and 16.1) that include deposit form (especially highly
irregular deposit contacts), geomechanical properties
of ore and country rock, determination of cutoff grade,
sampling error, and the mining method itself. For

purposes here, it is convenient to consider two broad
categories of dilution: external dilution and internal
dilution. External dilution refers to all those types of
dilution originating external to defined ore zones. In-
ternal dilution refers to those types of dilution that
occur within the ore zones themselves. These defini-
tions imply that it is possible to define the geometry
of ore. An important concept not always appreciated
is that for some kinds of dilution (e.g., dilution from
block estimation error and dilution due to highly sin-
uous ore/waste contacts), there is a corresponding
loss of ore material as well as the addition of waste
to ore.

16.2: EXTERNAL DILUTION

External dilution (e.g., wall slough, contact dilution,
minimum mining width dilution, overbreak) is not
easily quantifiable in totality, and commonly is ap-
proximated on the basis of experience. As Stone
(1986) suggests, the estimation of dilution is too com-
monly done in retrospect and is “designed to force a
reserve calculation to match the observed mill feed”
(p. 155). Highly formalized empirical methods of es-
timating dilution in operating underground mines are
summarized by Pakalnis et al. (1995) and involve
an extensive study of the physical characteristics of
a deposit and the development of a deterministic
model that relates these characteristics to dilution.

301
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Mineralized zone

Planned
dilution

Unplanned
dilution

Planned mining surface

Figure 16.1: Conceptual view of dilution associated with
“tabular” deposits. Note that the planned mining surface
cannot be duplicated exactly during production; there is al-
ways a tendency toward overbreak. Redrawn from Scoble
and Moss (1994).

Such detailed modeling is difficult enough in oper-
ating mines, but is intractable for deposits that are un-
dergoing development or for which a feasibility study
is planned or in progress. However, some components
of external dilution can be estimated geometrically
(Fig. 16.2); thus, it is useful to consider various types
of external dilution as follows:

Vm = [Vore − Vrem] + Vmmw + Vc + Vob

where

Vm is the volume mined
Vore is the volume of ore
Vrem is the volume of ore (remaining)

not mined (e.g., underbreak)
Vmmw is the volume of dilution due to

thicknesses less than minimum
mining width

Vc is the contact dilution arising from
sinuous contacts relative to more
regular mining margins

Vob is the volume resulting from
overbreak of country rock, relative
to planned mining margins.

16.2.1: Vein Widths Partly Less Than
Minimum Mining Width

In certain cases, a significant component of external
dilution can be estimated with reasonable confidence
in advance of production, particularly at the feasi-
bility stage, when there is some underground access.
Consider the case of a continuous vein that can be
mined to sharp boundaries, except in those parts of
the vein where vein width is less than the minimum
mining width wm (Fig. 16.2). An unbiased histogram
of vein widths for a large part of the vein (Fig. 16.3)
provides an estimate of the proportion of the vein that
has widths less than the minimum mining width pc.
The average vein thickness wc of this proportion pc
can be determined from the unbiased histogram as
a weighted average of the appropriate class intervals
(i.e., those class intervals less than wm) and can be
compared with the minimum mining width. The dif-
ference between the two widths (wm − wc) is the av-
erage ideal (point) dilution perpendicular to the plane
of the vein over that portion of the vein that is less than
minimum mining width (i.e., So · pc, where So is the
area in the plane of the vein represented by the data).
In this way, the point estimate of dilution is modified
to a volume of diluting material (Eq. 16.1):

vd = So · pc(wm − wc) (16.1)

where vd is the volume of diluting material and So is
the known area extension of the vein in the plane of

Wallrock

Wallrock

Vein

Minimum
mining
width

Figure 16.2: Idealized plan of a vein, part of which (propor-
tion pc) is less than the minimummining width (wM) leading
to unavoidable dilution (darkest pattern).
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Figure 16.3: Histogram of vein thickness measurements
in mine drift, Silver Queen vein deposit, central British
Columbia. A normal curve with the same parameters as
the data (n = 364; see Table 16.1) has been fitted to the
histogram. Frequency is in absolute numbers of measure-
ments; thickness is in feet. Data from Nowak (1991).

the vein. Consequently, the new volume Vp of mined
(produced) material is

Vp = Vo + vd (16.2)

whereVo is the original vein volume.This newvolume
Vp has a weighted average grade

gp = (Vo · go + v · gw)/(Vo + vd) (16.3)

assuming that the vein material and the diluting coun-
try rock have the same bulk density. When densities
differ, Eq. 16.4 becomes

gp = (doVo · go + ddvd · gw)/(ddVo + ddvd).

Inmanypractical situations, gw is approximately zero.
A comparable approach can be used where an

unbiased histogram is approximated by a normal or
lognormal distribution. When the histogram has the
form of a normal distribution, the proportion of vein
that is thinner than the minimum mining width (pc in
Eq. 16.1) can be estimated with Eq. 4.6 and the av-
erage thickness of that portion below minimum min-

ing width (wc in Eq. 16.2) can be determined with
Eq. 4.9. Application of Eqs. 4.6 and 4.9 requires
that the minimum mining width be transformed to
a standard normal score (z value). If z is positive,
the equations apply directly; if z is negative, they re-
quire some attention. Comparable equations and pro-
cedures exist for the case of a lognormal distribution
(see Chapter 4).

16.2.2: Silver Queen Example

As an example of the application of the forgoing pro-
cedures, consider 365 thickness determinations taken
at short equal intervals along the 2600 level of the
Silver Queen epithermal vein deposit (Nowak, 1991).
For the sake of example, these data are assumed to
be representative of a large portion of the vein. A his-
togram of the data is shown in Fig. 16.3. A normal
curve with the same mean (4.13 ft) and standard de-
viation (1.74 ft) as 364 of the values has been fitted
to the histogram (a single outlier value of 13 has been
omitted).

Assume that the minimum mining width is 4 ft.
Using the absolute frequencies of the class intervals
below 4 ft (Fig. 16.3), it is straightforward to deter-
mine that pc = 0.46 and wc = 2.75 (calculations are
summarized in Table 16.1). The values of pc and wc

can be used in Eqs. 16.1 to 16.3 to quantify dilu-
tion resulting from veinwidths less than theminimum
mining width for a particular area So within the plane
of the vein (or other tabular deposit). The estimate
for wc assumes that all measurements in each class
interval could be approximated by the mean of the
class interval. The potential error from this assump-
tion is probably much less than the error inherent in
the assumption that the histogram represents the vein
thicknesses perfectly over area So.

A comparable estimate for external dilution at
Silver Queen, resulting from some vein widths being
less than minimummining width, can be made on the
assumption that the vein widths have a normal distri-
bution. The standard score for the minimum mining
width is z = (4.0− 4.13)/1.74= −0.08. Substitution
of this value in Eqs. 4.6 and 4.9 gives pc = 0.468
and wc = 2.42 ft (Fig. 16.3). These estimates are
close to those obtained from the histogram analysis



304 APP L I E D M I N ERA L I NV EN TOR Y E S T IMA T I ON

Table 16.1 Summary, minimum mining width dilution, Silver Queen vein deposit, central British Columbia

Thickness interval (ft) Mean thickness (ft) Frequency (no.) Cumulative (t × f )

1.0–1.5 1.25 12 15.0
1.5–2.0 1.75 13 37.75
2.0–2.5 2.25 34 114.25
2.5–3.0 2.75 36 213.25
3.0–3.5 3.25 50 375.75
3.5–4.0 3.75 23 462.0
P<4.0 = 168/364 = 0.462
t<4.0 = 462.0/168 = 2.75 ft
Vein thickness parameters, Silver Queen drift

n x s
365 4.15 1.86
364a 4.13 1.74

a Ignores one large value of 13 ft.

discussed previously. The value for wc based on the
assumption of normality may be a slight underesti-
mate because a small portionof thenormal tail extends
to low values not reflected in the histogram and the
lowest extremity of the tail extends to negative values
that are physically impossible. Nevertheless, the simi-
larity of the twoapproaches, both ofwhich are approx-
imate, demonstrates the viability of each approach.

16.2.3: Dilution from Overbreaking

In general, it is virtually impossible to mine exactly
to a planned mining limit or a contact, however sharp;
instead, there is a tendency for overbreak with the ob-
vious result of attendant dilution by some amount of
wallrock. This effect is clearly a function of wallrock
properties and mining procedures (cf. Pakalnis et al.,
1995); when rock is highly competent and the mining
process highly selective, the effect can be relatively
minor. In some cases, limited experience gained from
exploratory and development work provides informa-
tion that permits reasonable estimation of the average
overbreak to be anticipated. For example, in the case
of the Silver Queen deposit, the wallrock is mostly
highly competent and overbreak will be minimal, per-
haps on the order of 1 ft of added thickness throughout
the vein. This additional dilution amounts to

Vob = f · So ft3

where Vob is a volume of overbreak material, easily
transformed to tonnage with an appropriate bulk den-
sity factor. The total volume of mined material deter-
mined fromEq. 16.2 is thus increased to (Vp + f · So),
and a corresponding weighted, average grade can be
determined using a relation comparable to Eq. 16.4.
Such a procedure is used at the Lupin gold mine
(Bullis et al., 1994), where “reserve dilution is es-
timated by adding 1 m, at assay grade, on both sides
of the ore in the Centre zone. In the West zone, re-
serve dilution is estimated by the addition of 0.5 m, at
assay grade, on both sides of the ore outline” (p. 75).
Bullis et al. (1994) document the practical difficulty
of reconciling production with estimates, because of
the common uncertainty of quantifying dilution accu-
rately.

16.2.4: Contact Dilution

Stone (1986) describes an empirical deterministic
approach to the estimation of a type of external dilu-
tion that he refers to as contact dilution. This particu-
lar component of external dilution results from inter-
mittent protrusions of wallrock that penetrate beyond
smooth, interpreted mining margins into ore. Stone’s
estimation procedure for this form of dilution is com-
plex and difficult to implement because appropriate
information is rarely available with which to make an
estimate to a reasonable level of confidence.A simpler
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Figure 16.4: An approach to measuring “contact dilution” as defined by Stone (1986). Vertical lines extending from the
irregular deposit margin to the smooth interpreted margin along the upper margin contact of the hypothetical deposit have
been superimposed on the original diagram and their lengths measured to characterize the ore loss and dilution populations
relative to the planned mining unit. An arbitrary scale (32 m between drill holes) has been assumed for the purposes of
illustration. See text for details.

approach that meets his aim can be applied when ex-
ploration exposes a representative length of deposit–
wallrock contact such that it can be examined and
characterized with confidence. Given sufficient infor-
mation that the ore/waste contact is known in detail
in one or more parts of a deposit, it is a simple matter
to estimate the extent of waste protrusions into ore
on detailed sections and extend this estimate to the
third dimension. When such detail is known only at a
few, local parts of a deposit, an alternative procedure
is useful.

Consider Fig. 16.4 (modified from Stone, 1986),
for which a scale has been assumed for purposes of
illustration. Lines have been superimposed on Stone’s
original diagram parallel to the bordering section
traces and are sites used tomeasure distances from the
interpreted average contact or mining margin (dashed
line) to the true ore/waste contact. Negative values
are ore that is lost to wallrock; positive values rep-
resent dilution by lobes of wallrock extending across
the mining margin into ore. A histogram of these dis-
tances is prepared and serves as a basis for estimat-
ing the proportion of length between control points,
where waste penetrates across the mining margin into
ore. The average thickness of such waste extending
into ore can be determined as a weighted average, us-

ing class frequencies as weights for the mid-values
of corresponding class intervals. If the distribution of
measurements is found to be approximately normally
distributed, then Eqs. 4.6 to 4.9 can be used to deter-
mine the proportion of positive values and the average
thickness of the positive values. Of course, the length
over which positive values occur can be measured di-
rectly from the figure. The thickness data measured
along the lines shown on Fig. 16.4 are presented as a
histogram in Fig. 16.5. The positive values represent
44 percent of the measurements (this compares with
43 percent of the actualmeasured length of themining
limit assumed in Fig. 16.4) and have a weighted mean
value of 1.4 m. For the assumed scale, the proportion
of positive values is the proportion of the 32-m length
between control points that is represented by waste
protruding into ore, a length of 14.1 m. The product
of this length and the average thickness of protru-
sions is a two-dimensional estimate of the quantity
of contact dilution along one mining margin, in this
case about 19.7 m2, or about 4.7 percent of the area
mined.

A comparable estimate made along the oppo-
site margin shows that the total contact dilution in
this hypothetical example is about 5.1 percent of
the area outlined for mining. Several such estimates,
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Figure 16.5: Histogram of measurements of thickness of
contact diluting ground obtained from the hypothetical ex-
ample in Fig. 16.4. There are 67 equally spaced measure-
ments in total. Negative measurements are ore beyond the
mining limit (i.e., ore lost to waste); positive values repre-
sent wallrock dilution.

averaged, provide a global estimate. The method has
the advantage that it uses point estimates and thus can
combine information from another dimension (e.g.,
when both a drift and a raise provide information on
the nature of the true ore/waste contact, each can be
used for independent estimates of contact dilution or
they can be combined to a single estimate).

16.3: INTERNAL DILUTION

16.3.1: A Geostatistical Perspective

David (1988) and David and Toh (1989) discussed
internal dilution from a geostatistical perspective. The
principal causes of inherent internal dilution relate to

(i) Size of the selective mining unit (SMU)
(ii) Density of sampling
(iii) Small-scale ore continuity
(iv) Position of the cutoff grade relative to the mean

of the probability density function.

A component of internal dilution is considered
inherently in the concept of the changing dispersion
of average grades with changing support. This is the

so-called block size effect on dilution (David and
Toh, 1988). As the SMU size increases, selectivity
decreases, and there is a corresponding increase in
tonnageminedwith a decrease in average grade. Such
dilution can be considered automatically with the ap-
plication of the volume–variance relation of geostatis-
tics (cf. Journel and Huijbregts, 1978):

D2(SUM, D) = D2(v, D) − D2(v,SMU)

(16.4)

where D2(a, b) is the dispersion variance of small vol-
ume a in large volume b. The parameters in Eq. 16.4
can be determined with a knowledge of the semivari-
ogram. For example, D2(v, D), the dispersion of sam-
ple grades in the deposit, is the sill of the semivari-
ogram, and D2(v,SMU), the dispersion of sample
grades in an SMU, is the F function of geostatis-
tics and can be determined from graphs (e.g., David,
1977; Journel andHuijbregts, 1978) or by an appropri-
ate computer program (e.g., Clark, 1976). This effect
can also be viewed in terms of regularization (i.e., the
smoothing of grades as support increases). For exam-
ple, the nugget effect varies as a function of volume
over grade, which is determined, as follows:

Co(v) = A/v

where Co(v) is the nugget effect for grades of sample
volumes v and A is a constant. As v becomes very
large, A/v becomes negligibly small, and the nugget
effect disappears. There is a corresponding decrease
in the sill of a spherical model for a variable regular-
ized over increasing volumes, and thus a concomi-
tant decrease in the dispersion variance. Normally,
the SMU volume is controlled by the mining method.
Sample size v can be variable and theoretically may
have a minor impact on Eq. 16.4. For this reason, it
is useful to use a database with as uniform a support
as is practical. For unbiased data of common support,
the dispersion variance is equivalent to the sill of the
semivariogram

γv(∞) = D2(v, D).

The information effect also produces an apparent
dilution (David, 1988). Selection ismadeonestimated
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values (e.g., by kriging blocks), which imposes
smoothing on results according to an established
relation (Journel and Huijbregts, 1978):

D2(SMU∗, D)= D2(SMU, D)−σ 2
k (16.5)

where

D2(SMU∗, D) is the dispersion of estimated
grades of SMUs

D2(SMU, D) is the dispersion of true grades
of SMUs

σ 2
k is the average kriging variance

of SMUs.

Clearly, the better the estimate, the less the
smoothing effect and the fewer errors made during
selection. Note that the dispersion of estimated-block
(SMU) grades is greater during mining than for esti-
mates based on exploration diamond drilling because
more information available at the mining stage (e.g.,
blastholes) means the average kriging variance is re-
duced. Equation 16.5 can be used during the explo-
ration stage to estimate the average kriging variance
from an expected blasthole array; hence, it is possible
to calculate the estimated dispersion of grades at the
production stage.

The continuity model has an important effect on
dilution in the case of geostatistical block estimates
because with better continuity, fewer classification er-
rors are made and less internal dilution results. Thus,
highly continuous variables such as sedimentary iron
values suffer little in the way of internal dilution, rel-
ative to less continuous grade distributions such as
epithermal gold deposits.

The relation of cutoff grade to the mean of the
density distribution function also affects dilution. In
general, as the cutoff grade increases, the number
of classification errors (ore or waste) increases, and
more dilution results. For a situation of constant
error, the absolute number of classification errors in-
creases as the cutoff grade approaches the peak of
the distribution because of the increased frequency of
values.

16.3.2: Effect of Block Estimation Error
on Tonnage and Grade of Production

Block-estimation error can have a dramatic impact
on production tonnage (e.g., Postolski and Sinclair,
1998b). Clearly, if some blocks of ore are inadver-
tently classed as waste, tonnes are lost, metal is lost,
and profit is decreased relative to expectations. Sim-
ilarly, if blocks of waste are included in ore, total
tonnage is increased but average grade is decreased
(i.e., dilution occurs), and operating profit is less
than expectated. The problem is illustrated clearly in
Fig. 16.6, where error curves are superimposed on
very narrow grade ranges both above and below cut-
off grade and the proportions of misclassified blocks
are indicated. Of course, if the error curve had greater
dispersion (e.g., 20 percent error instead of 10 percent
error), the proportion ofmisclassified blockswould be
larger for any specific narrow-grade range.

When block-grade distributions can be approxi-
mated by a normal or lognormal distribution, a cutoff
grade can be defined and the error can be taken to
be normally distributed. The equations in Chapter 4
allow rapid calculation of (i) the proportion of a dis-
tribution that is above (or below) the cutoff grade (this
is equivalent to the proportion of tonnes that are mis-
classified) and (ii) the average grade of that propor-
tion above the cutoff grade. This procedure can be
repeated for many narrow contiguous-grade ranges in
the manner illustrated (Fig. 16.6) and the total num-
ber ofmisclassified blocks can be calculated. Because
manual application of this procedure to many class
intervals is time-consuming, tedious, and thus sub-
ject to error, Postolski and Sinclair (1998) produced
a computer program, GAINLOSS, to carry out and
summarize such calculations (see publisher’s website
for GAINLOSS software).

As an example, consider the case of the
Bougainville porphyry-copper deposit (David and
Toh, 1988). The distribution of blasthole grades (log-
normal with a mean of 0.45 percent Cu and natural
logvariance of 0.21) is assumed to represent the true
distribution of grades (parameters are summarized in
Table 16.2). Small departures from this assumed dis-
tribution have a negligible impact on the principal
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Table 16.2 Parameters of blasthole grade
distribution, Bougainville copper minea

x s2 s

Raw data 0.45 0.0473 0.218
Natural logs −0.9035 0.21 0.458

a Cu metal in wt.%.
Source: After David and Toh (1988).

conclusions that follow. The cutoff grade is quoted as
0.215 percent Cu; therefore, Eqs. 4.14 to 4.17 can be
used to demonstrate that 91.9 percent of true grades
are above cutoff grade, 97 percent of the contained
metal is in the material above cutoff grade, and the
average grade of material above cutoff grade is 0.475
percent Cu.

X X

X X

Proportion of waste blocks
with true grade of x
misclassified as ore

m

cm

L U

X X

XX

Proportion of ore blocks
with true grade of x
misclassified as waste 

m
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b

Figure 16.6: A normal curve representing 10 percent random error is superimposed on a narrow class interval (X L to X U). This
interval is one of many such intervals that define a block-grade distribution represented by the positively skewed (lognormal)
distribution. (a) The normal distribution is below cutoff grade X C and a proportion of waste blocks (hachured area) of average
grade Xm are included in ore. (b) The normal distribution is above cutoff grade X C and a proportion of ore blocks (hatched
area) of average grade Xm are included in waste.

For this example, an ideal situation is assumed
wherein each blasthole is considered to be centrally
locatedwithin a block of ore and the average grade as-
signed to the blasthole is used to classify the block as
ore or waste (i.e., a classic polygonal estimate). For
1,000 such blocks, only 919 are truly ore, although
classification of blocks as ore or waste is in error to
some extent if the true grades are near the cutoff grade.
The likelihood of misclassification is thus seen to be a
function of the true estimated grade and the error dis-
tribution curve. Consider a single short-grade interval
of 0.195 to 0.205 percent Cu, assumed to be centered
on 0.20 percent Cu and an estimation error of 10 per-
cent (i.e., error as one standard deviation is 0.020 per-
cent Cu). Equation 4.14 can be used to estimate the
proportion of blocks with a true grade of 0.20 percent
Cu that will be reported with a grade above cutoff
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Table 16.3 Number of waste blocks mistakenly included in ore due to various levels of error, Bougainville
porphyry deposit, for a cutoff grade of 0.215 percent Cu

Grade
interval Freq. in 10% error N > c∗ 20% error N > c∗ 30% error N > c∗

center 1,000 blocks P > c 10% error P > c 20% error P > c 30% error

0.11 1.1 0.000 0.000
0.12 1.8 0.003 0.005
0.13 2.7 0.000 0.001 0.012 0.033
0.14 3.9 0.003 0.010 0.034 0.131
0.15 5.2 0.013 0.067 0.071 0.373
0.16 6.7 0.000 0.001 0.040 0.268 0.124 0.833
0.17 8.4 0.003 0.024 0.090 0.754 0.187 1.568
0.18 10.1 0.023 0.232 0.164 1.647 0.258 2.592
0.19 11.8 0.091 1.075 0.255 2.994 0.330 3.883
0.20 13.4 0.226 3.032 0.354 4.751 0.401 5.390
0.21 15.0 0.406 6.104 0.453 6.807 0.468 7.044

Sum of misclassified waste blocks 10.468 17.298 21.854

Average true grade of misclassified 0.204 0.198 0.194
waste blocks

∗ N > c is the number of waste blocks per 1,000 blocks mined, mistakenly included in ore due to the indicated percentage
error and a cutoff grade of 0.215 percent Cu.

grade; that proportion is 0.226. Also, Eq. 4.14 can be
used to estimate the cumulative proportion of grades
from infinity to each side of the grade interval; the
difference in these two cumulative percentages is the
frequency within the interval and is estimated to be
0.013. Thus, for the 1,000-block example, 13 blocks
will have true values between 0.195 and 0.205 percent
Cu, and 13× 0.226 = 2.9 (round to 3) of these waste
blockswill bemisclassified as ore if the error is 10 per-
cent. A similar procedure can be followed for many
contiguous short-grade intervals below cutoff grade,
and the number of misclassified blocks can be deter-
mined in each case. Results of such a calculation us-
ing theGAINLOSS software are summarized in Table
16.3 for assumed errors of 10 percent, 20 percent, and
30 percent. The table includes the average total num-
ber of diluting blocks (per 1,000 blocks) and their true
average grade for each of the three error secenarios
(e.g., 10.5 blocks of waste, averaging 0.204 percent
Cu incorrectly classed as ore in the case of 10 percent
error). The true average grades were determined as a
weighted average of the central grade of each grade
interval, weighted by the number of diluting blocks.

Of course, errors of misclassification also apply to
grades above but near cutoff grade; some ore blocks
are inadvertently classed as waste. In this case, for
any short grade interval it is possible to determine
the proportion of ore blocks that will be classed in-
correctly as waste, using a procedure comparable to
that described previously. For each short-grade inter-
val above cutoff grade, it is possible to estimate the
proportion of blocks that will be classed incorrectly
as waste due to any specified error. Calculations of
this nature for the Bougainville Cu distribution are
summarized in Table 16.4 for errors (as standard de-
viations) of 10 percent, 20 percent, and 30 percent.
In the case of the 10 percent error scenario, an av-
erage of 17.3 blocks of low-grade ore are classed as
waste. These blocks average 0.233 percent Cu, sub-
stantially above cutoff grade, and the loss of profit is
evident.

The results are of considerable significance for
several reasons. Return to the 1,000 block and 10 per-
cent error scenario; 919 blocks are truly above cut-
off grade. Of these 919 blocks, 17 are inadvertently
classed as waste, leaving 902 blocks with average
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Table 16.4 Number of blocks of ore mistakenly classed as waste due to verious levels of error, Bougainville
porphyry deposit, for a cutoff grade of 0.215 percent Cu

Grade
interval Freq. in 10% error 20% error 30% error
center 1,000 blocks P < c N < c∗ P < c N > c∗ P < c N < c∗

0.22 16.6 0.410 6.787 0.455 7.527 0.470 7.776
0.23 17.9 0.256 4.602 0.372 6.676 0.414 7.427
0.24 19.2 0.147 2.819 0.301 5.776 0.364 6.989
0.25 20.3 0.078 1.580 0.241 4.896 0.320 6.499
0.26 21.3 0.039 0.821 0.192 4.084 0.282 5.984
0.27 22.1 0.018 0.400 0.152 3.361 0.248 5.467
0.28 22.7 0.008 0.185 0.121 2.738 0.219 4.962
0.29 23.2 0.004 0.082 0.095 2.212 0.193 4.481
0.30 23.6 0.002 0.036 0.075 1.777 0.171 4.029
0.31 23.8 0.001 0.015 0.060 1.420 0.152 3.612
0.32 23.9 0.000 0.006 0.047 1.132 0.135 3.229
0.33 23.9 0.000 0.003 0.038 0.900 0.120 2.881
0.34 23.8 0.000 0.001 0.030 0.715 0.108 2.567
0.35 23.7 0.000 0.000 0.024 0.568 0.097 2.285
0.36 23.4 0.019 0.451 0.087 2.032
0.37 23.1 0.016 0.358 0.078 1.807
0.38 22.7 0.013 0.285 0.071 1.606
0.39 22.2 0.010 0.228 0.064 1.428
0.40 21.7 0.008 0.182 0.058 1.270
0.41 21.2 0.053 1.129
0.42 20.6 0.049 1.005
0.43 20.0 0.045 0.895
0.44 19.4 0.041 0.797
0.45 18.8 0.038 0.711
0.46 18.2 0.035 0.634
0.47 17.6 0.032 0.566
0.48 17.0 0.030 0.506
0.49 16.3 0.028 0.452
0.50 15.7 0.026 0.405
0.51 15.1 0.024 0.363
0.52 14.5 0.022 0.325
0.53 13.9 0.021 0.292

Sum of misclassified ore blocks 17.339 45.284 84.410

Average true grade of misclassified 0.233 0.261 0.298
ore blocks

∗ N < c is the number of ore blocks per 1,000 blocks mined that are mistakenly classed as waste for the indicated percen-
tage error and a cutoff grade of 0.215 percent Cu.

grade (g902), as follows:

902 × g902 = 919 × 0.475 − 17 × 0.233

g902 = 0.480%Cu.

Adding the dilution resulting from the 10 blocks of
waste (cf. Table 16.3) that are incorrectly classed as

ore, the resulting average grade is

912 × g912 = 902 × 0.480 + 10 × 0.204

to give g912 = 0.477% Cu.
The important point to bemade is that although di-

lution has occurred, the average grade of mined ore is
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slightly higher than the overall average grade above
cutoff (0.477 percent Cu vs. 0.475 percent Cu), be-
cause the effect of losing 17 blocks of low-grade ore
slightly overshadows the diluting effects of including
10 blocks of relatively high-grade waste. Thus, a loss
in tonnage has resulted in somewhat higher grade than
expected from all true ore blocks. This effect occurs in
reverse if the cutoff grade is on the upper tail of the dis-
tribution of real grades (i.e., if a high absolute number
of waste blocks are included with ore relative to the
number of ore blocks lost as waste). In the latter case,
the effect of dilution predominates over the effect of
losing ore to the waste dump, and the mean grade of
material classed as ore is less than the mean grade
of all ore blocks. Moreover, the tonnage of material
classed as ore is greater than the tonnage of true ore.

The effects of error are likely to be overlooked if
they are on the scale indicated by the 10 percent error
case discussed previously because there is a minimal
improvement in grade and a relatively small loss in
tonnes, although the actual metal loss is significant.
However, as the level of error increases, the impact be-
comesmore significant. The results for 20 percent and
30 percent errors applied to the Bougainville exam-
ple are summarized as metal accounting in Table 19.5
and clearly demonstrate the serious loss of metal as
the level of sampling plus analytical error increases.
For the 30 percent relative error scenario, the loss
of metal is 150 tonnes of Cu metal (block size is
2,000 tonnes).

The effect on grade of waste material classed as
ore can be calculated, as was done above for the
10 percent error scenario. For example, the effect of
84 blocks of lost ore is

919 × 0.475 − 84 × 0.299 = 835 × g835

fromwhich g835 is found to be 0.493 percent Cu.Now,
add the 22 blocks of dilution

0.493 × 835 + 0.194 × 22 = 857 × g857

from which g857 is found to be 0.485 percent Cu.
Note that the average grade of material classed as
ore is significantly higher than the expected average
(0.475 percent Cu); however, the loss of tonnes is
(919− 857)2000 = 124,000 tonnes per 1,000 blocks

mined. For distributions for which the cutoff grade
were on the high-grade tail (rather than the low-grade
tail, as is the case here), the average grade would be
below the expected grade because the effects of di-
luting with waste would be greater than the relatively
small loss of ore. Although idealized, these calcu-
lations provide useful insight into the need for high
quality in both sampling and assaying so that block-
estimation errors are minimized.

16.4: DILUTION FROM BARREN DYKES

In many producing mineral deposits, the presence of
barren dykes represents a significant source of actual
or potential dilution. Although the geologic control
of the dykes may be understood in a general way, the
estimation of where dykes occur and their quantita-
tive impact on grade is commonly notwell understood
in detail, and is estimated in highly subjective ways
based on local geologic knowledge involving time-
consuming manual methods. Practical situations in-
volving dilution of ore by barren dyke material in two
different geologic and production environments are
discussed for the Snip mesothermal gold vein (under-
ground) and the Virginia Cu–Au porphyry-type de-
posit (open pit). In each of these cases, indicator
kriging has been an aid to local estimation of dilu-
tion by barren dykes (e.g., Sinclair et al., 1993).

16.4.1: Snip Mesothermal Deposit

The Snip Mine is about 110 km northwest of Stewart,
northwestern British Columbia, Canada. Published
reserves are about 870,000 tonnes grading approx-
imately 28 g Au/mt with minor amounts of silver
and copper. The ore deposit is a small, complex,
mesothermal gold vein system known as the Twin
Zone in a sequence of stratified rocks, mainly felds-
pathic graywackes. A longitudinal section is shown
in Fig. 16.7. The metasedimentary unit is intruded by
lamprophyre dykes that dip about 85 west and cross-
cut the gold-bearing structure. Rhys and Godwin
(1992) indicate that these dykeswere emplaced late in
the mineralization and structural history of the Twin
Zone. Some of these dykes, locally referred to as the
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Figure 16.7: Longitudinal section of the Snip mesothermal
gold–quartz vein, northern British Columbia, showing the
test panel for which a study was done of the impact of bar-
ren dyke dilution on ore grade. Redrawn from Sinclair et al.
(1993).

biotite spotted unit (BSU), are spatially associated
with the Twin Zone; one prominent dyke roughly par-
allels the Twin Zone partly in the adjoining hanging-
wall, but in places internal to and subparallel with
the Twin Zone (Fig. 16.8), dividing the vein into two
tabular sheets (hence the name Twin Zone). Mining
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Figure 16.8: Illustration of the relation of barren dykes
(BSU) to mineralized vein, Snip mesothermal gold–quartz
deposit. Redrawn from Sinclair et al. (1993).

procedures require that, where present within the
Twin Zone, the barren BSU must be mined with vein
material. Thus, for any position on the longitudinal
section of the vein, it is important to determine where
BSU exists and, if present, to estimate the amount
of BSU.

In a recent geostatistical study of the Snip deposit,
Sinclair et al. (1993) developed a procedure for the
sequential estimation of reserves that includes

(i) Estimating presence or absence of BSU dykema-
terial using indicator kriging

(ii) Where BSU is present internally within the Twin
Zone, estimating the thickness of the BSU by or-
dinary kriging to quantify dilution.

In this way, the BSU is handled as an estimation prob-
lem independent of the estimation of vein material.
Thus, where appropriate, internally diluted reserves
can be determined in blocks (or stopes) in longitudi-
nal section as a weighted average of a vein estimate
and barren dyke (BSU) estimate. Relatively few thin
horses of weakly mineralized graywacke are included
in Twin Zone intersections; hence, this small source
of dilution is included in what are referred to as undi-
luted reserves.

Indicator kriging results were used to produce a
contour map of the probability that condition (i) pre-
vails (i.e., the probability that the BSU occurs within
the Twin Zone; Fig. 16.9). Overlaying a block model
on such a contour map allows those blocks with inter-
nal BSU to be identified. The amount of internal dilu-
tion by BSU depends on its average thickness where
it occurs within the Twin Zone; BSU thickness was
estimated by ordinary kriging.

Diluted block grades are weighted grades over the
combined (vein+BSU) thickness. Results for 15m×
15 m blocks (in longitudinal section) in the test panel
under study have been estimated. The total undiluted
reserves (cutoff = 13 g Au/t) for the test panel are
115,000 tonnes at an average gold grade of 34.4 g/t
and an average thickness of 2.47 m. Corresponding
internally diluted reserves are 134,000 tonnes averag-
ing 30.3 g/t gold and 3.08 m thickness (Sinclair et al.,
1993). The internal dilution is thus about 16 percent
of in situ tonnes.
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Figure 16.9: Contour plot (for test panel) of estimated prob-
abilities that BSU (barren dyke) occurs within the Snip vein.
Redrawn from Sinclair et al. (1993).

16.4.2: Virginia Porphyry Cu–Au Deposit

The Virginia copper–gold porphyry-type deposit is in
the Copper Mountain Camp near Princeton, British
Columbia. Mineralization occurs at the contact of
the Lost Horse Complex and the Nicola Group. The
Lost Horse Complex is a composite body of dykes,
sills, and irregular stocks that range in composition
from syenite to diorite; Nicola Group rocks consist of
coarse-grained agglomerates, tuff breccias, tuffs, and
flow rocks. Mineralization occurs mainly as a vari-
ety of magnetite–pyrite veins, some of which contain
Cu (mainly chalcopyrite) and significant amounts of
Au. Veins strike roughly easterly and dip steeply to
vertically. Numerous felsite dykes occur within the
proposed pit; these are unmineralized and represent a
serious dilution problem during mining. Dykes strike
roughly northerly and have near vertical dips; they are
a few feet to a few tens of feet thick.

The effect of dilution by felsite dykes on ore grade
and tonnage for production purposes was estimated
at nodes (10× 25× 10 ft3 or 3.05 × 7.62× 3.05 m3)
of a horizontal grid by indicator kriging (Nowak and
Sinclair, 1993). The estimated value at each node rep-
resents the probability of occurrence of a felsite dyke;
if the probability is high (e.g., > 0.5), the presence
of a dyke is indicated. These data were used to es-
timate the total volume of dyke material in a much
larger volume of ore/waste (one bench) to provide an

estimate of the proportion of dyke material present in
a large panel (e.g., 3540 bench). A manual estimate
by mine staff is in close agreement with the results
by indicator kriging. The proportion of the volume to
be mined represented by dykes is estimated manually
to be 13 percent, which compares favorably with the
14 percent estimate from the more automated proce-
dure of indicator kriging.

16.4.3: Summary: Dilution by Barren Dykes

For the Snip mesothermal gold–quartz vein, dilution
by BSU dyke material within the vein structure (so-
called internal dilution) was estimated by a two-step
procedure.AverageBSU thickness for each block (de-
fined on a long section through the deposit) was es-
timated by ordinary kriging. To determine which ore
blocks were to be diluted, indicator block kriging was
performed, using an indicator for presence or absence
of the BSU within the mineralized zone. Blocks for
which the probability of BSU occurrence within the
mineralized zonewas equal to or greater than 0.5were
diluted by the estimated amount of BSU taken at zero
grade.

The Virginia study shows that indicator kriging
can be used as a practical estimation method of the
position and the proportion of dykes in a large vol-
ume (e.g., one bench). Thus, the technique could be
implemented as a practical procedure for estimating
dilution at the mine site or could be used as a supple-
ment to the manual method (i.e., as a checking pro-
cedure). One of the strengths of the kriging approach
is that it can be implemented as an automated method
based on exploration data, and thus can serve as a
basis for early mine planning. It is also less time con-
suming and in turn cheaper than themanual approach,
although there is certainly room for potentially dan-
gerous errors if care is not taken in establishing an ap-
propriate autocorrelation model. Such a model must
represent anisotropies and ranges of continuity that
truly reflect reality.

Alternative approaches can be used to deal with
internal dilution of large, easily mappable geologic
units. Sinclair et al. (1994) describe a simple method
that they used for the south-pit mineral inventory
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estimates at theNickel Plate skarn gold deposit, south-
ern British Columbia. In this case, large diabase dykes
cut the ore, but can be mapped easily in drill-core
logging and can be interpolated onto plans and sec-
tions with confidence because of their regularity. A
three-dimensional block array is superimposed on the
geologic interpolations and for each block an estimate
is made of the proportion that is dyke and the propor-
tion that is nondyke (see Fig. 3.13). The method used
for these estimates was to digitize the dyke outlines
and use Techbase software tomerge this digitized out-
line with the block array in order to estimate the re-
quired proportions. Subsequently, interpolated grade
estimates for each block were used to produce a final
weighted block estimate as follows:

greported = fm × gm + fb × gb

where greported is the grade estimate reported for a
block, gm is the interpolated grade of the block,
gb is the grade of dilutingmaterial (in this case, barren
dyke; hence, gb = 0), fm is the fraction of the block
that is mineralized, and fb is the fraction of the block
that is barren dyke.

16.5: PRACTICAL CONSIDERATIONS

1. A component of internal waste is incorporated
into block estimates that are formed by averaging.
This process is automatic for kriging estimates
and increases as block size increases because of
the decrease in selectivity with increasing block
size. The effect cannot be quantified easily for es-
timates based on empirical weighting procedures.

2. In some cases, it is possible to estimate dilution at
the margins of deposits resulting from (i) deposit
thickness less than minimum mining thickness,
(ii) sinuous ore/waste contacts, and (iii) over-
break.

3. Measurements at short regular intervals of (i) the
thickness of waste included in ore and (ii) the
thickness of ore included in waste can be used
to produce a histogram that quantifies both con-
tact dilution and lost ore, respectively, for local
accessible parts of a deposit. Geology indicates if
such estimates are representative of large parts of

a deposit. Use of this procedure achieves the same
purpose aimed for by Stone (1986), but avoids his
complicated geometric approach.

4. An unbiased histogram of vein thicknesses for a
well-sampled part of a deposit provides informa-
tion on the proportion of the deposit below min-
imum mining width and the average thickness of
diluting material over the surface represented by
the measurements.

5. Overbreaking is not easily estimated with confi-
dence from exploration data without a basis of
actual measurements. In some cases, such infor-
mation can be obtained from exploratory under-
ground workings and development workings.

6. The common example of large barren dykes cut-
ting ore zones can be dealt with in a variety of
ways, including (i) mining such dyke material as
waste and (ii) independent estimates of both the
grade of the mineralized part of a block and the
proportion of dykematerial present in a block.Us-
ing these two pieces of independent information
prior to an ore/waste decision, appropriate blocks
are diluted.

7. Dilution as a function of random error of block-
grade estimates can be quantified in a general way
if the level of error is known. Although estimation
errors can never be reduced to zero, it is possible to
determine the effect of various errors on a specific
grade distribution and estimate howworthwhile it
is to improve (decrease) the level of sampling and
analytical error.
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16.7: EXERCISES

1. The programGAINLOSS is available on the inter-
net at the publisher’s website. This program pro-
vides a rapid means of estimating both dilution
and loss of ore that accompanies a random block
estimation error (combined sampling and analyti-
cal error). Recall that dilution arises because some
waste blocks are incorrectly identified as ore; ore
loss occurs because some ore blocks are incor-
rectly classed aswaste. The program requests user
input, including normal or lognormal distribution,
mean and standard deviation of true grades (e.g.,
estimated from blasthole distribution), units, per-
centage error to be assumed, and cutoff grade, and
then outputs a detailed table and summary of dilu-
tion and ore loss. A block grade distribution for a
Zinc deposit is lognormal; the mean of raw data is
6.5 percent and the standard deviation is 7.5. The
present block estimation error averages 22 per-
cent; determine the additional metal that would
be available if the average error were reduced to
10 percent, given that each block is 15,000 tonnes
and annual production is 1,000 blocks.

2. It is virtually impossible to mine a tabular deposit
to a predetermined simple geometric limit; there

is a general tendancy to “overbreak” beyond the
idealized mining limit. Overbreak is commonly
estimated as an average additional thickness deter-
mined by experience fromminingwallrock of var-
ious breakage characteristics. A 100 m× 350 m
rectangular longitudinal projection of a verti-
cal vein deposit cuts highly altered volcanic
rocks for 73 percent of its planar extent (average
thickness = 1.7 m; average grade of vein =
14.3 g Au/t) and cuts competent granitic rocks for
the other 27 percent of its planar extent (average
thickness = 1.4 m; average grade = 18.4 g Au/t).
Experience has shown that mining in volcanic
rocks results in a total overbreak (both sides of
the vein) of about 0.7 m, averaging 2.1 g Au/t,
and that comparable dilution in the granitic rock
is 0.3 m, averaging 0.0 g Au/t. Assume bulk den-
sities of 2.7 g/cc for vein material, 3.0 g/cc for
volcanic rock, and 2.9 g/cc for granitic rock. Cal-
culate themined tonnages and grades (i.e., includ-
ing dilution) for each country rock type.

3. A near-vertical tabular deposit has a thickness dis-
tribution closely fitted by a normal distribution
withmeanof 2.5mand a standard deviationof 0.9.
What is the proportion of the deposit that is less
than theminimumminingwidth of 1.3m?What is
the average thickness of that portion of the deposit
below minimum mining thickness? Calculate the
idealized dilution from mining that part of the de-
posit below minimum mining width.



17
Estimates and Reality

Time and again numbers reported as “ore reserves” have failed the practical test of full-scale mining and pro-
cessing. The primary shortcoming usually is the grade of the material extracted from the ground and sent to the
processing facility; the secondmost shortcoming is the inability of the mine to produce ore at the designed-for
rate. . . . The cause of these problems often can be traced to improper reporting of resource/reserve numbers. In
particular, insufficient attention is paid to the significant difference between a mineral resource as delineated in
place and the reserves which can be extracted therefrom. (Grace, 1986b, p. 47)

Chapter 17 draws attention to comparative esti-
mation projects in which the results of two or
more estimation methods are compared, or one
or more estimation methods is compared with
production information. Because of the impor-
tance this text places on geostatistical methods
of estimation, consideration is given to some of
the more vociferous antagonists of the subject.

17.1: INTRODUCTION

The practical validity of any resource/reserve esti-
mation technique lies in a comparison of estimates
with production, a procedure commonly referred to
as a reconciliation study. Such studies are carried
out routinely throughout the industry but are rarely
published; even when published, too few details are
normally provided with which to undertake a true
evaluation of the estimation methods. Case histories
involving comparative studies of resource-estimation
techniques and production are an important source of
public technical information regarding the validity of
particular estimation procedures. There are two types

of reconciliation studies: those based on a simulated
database and those based on a real mineral deposit.
Simulated data provide ameans of comparing estima-
tion methods with an idealized reality and can be con-
ducted prior to actual production. In the end, however,
estimation methods must be shown to be adequately
successful in applications to real deposits. Table 17.1
is a selected list of a variety of types of geostatisti-
cal studies that incorporate elements of reconciliation
between estimates and production. There are other
examples scattered throughout the literature, some of
which discuss the relative quality of a variety of esti-
mation methods. In general, such comparisons show
that carefully conducted geostatistical studies consis-
tently produce estimates that are either the best or
among the best relative to production.

Unfortunately, in the nontechnical literature, there
are all toomany examples of a basicmisunderstanding
of the process of estimation, which leads to misrep-
resentations of comparative studies. As a result, rec-
onciliation studies involving various estimation tech-
niques andproduction also canbemisrepresented. It is
unfortunate when ill-conceived and even misleading
views of estimation results are publicized in such a
fashion.Of course, allmethods are subject to criticism

316
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Table 17.1 Selected case histories involving reconciliation of geostatistical estimation techniques
with production

Deposit type Brief description Reference

Porphyry Cu Similkameen deposit: comparison of ordinary block
kriging, “conditional probability,” and polygonal
estimates with production

Raymond, 1979

Valley copper deposit: similar to Similkameen deposit Raymond and Armstrong, 1988

Skarn Au Comparison of ordinary block-kriging, inverse-distance,
and conditional probability estimates with production

Sinclair et al., 1993

Mississippi Valley–type
Pb–Zn

Comparison of conditional probability, ordinary kriging,
and production

Raymond, 1984

Porphyry Mo–Cu Comparative study of mill-head grades with kriging and
inverse-distance-squared estimates

Johnstone and Blackwell, 1986;
Norrish and Blackwell, 1987

Epithermal Au Golden Sunlight: blasthole kriging versus production Roper, 1986
Cresson Mine: various kriging estimates versus
production

Pontius and Head, 1996

Massive sulphide Louvem deposit: compares method of sections,
production, and postmortem ordinary block kriging

Vallée et al., 1982

and geostatistics is no exception (see later). Perhaps
much of the concern with geostatistics arises because
of the complexity of geostatistical estimation proce-
dures relative to more traditional estimation methods.
There are many methods of resource/reserve estima-
tion, some geostatistical in nature (e.g., ordinary krig-
ing, simple kriging, multiple indicator kriging) and
some empirical (e.g., method of sections, polygonal,
inverse-distance weighting). Any one method may be
appropriate in a specific case. Many of these methods
(and variations of them) have been described in text-
books and the technical/scientific literature and have
been tested in practice over many years.

17.2: RECENT FAILURES IN THE
MINING INDUSTRY

The mining literature contains numerous examples of
mine failure, many of which stem from the inability
of production to match reserve estimates, either in
terms of grade (Fig. 17.1) or tonnage. Error in each
of these quantities is inevitable, but the expectation
is that appropriate estimation procedures, performed
by professionals, will produce estimates that are rela-

tively close to and perhapswithin 10 percent of reality.
Unfortunately, most cases of serious error involve
overestimation (i.e., production cannot attain the
goals anticipated as quantified in earlier estimates).

Mining and exploration failures can be classed in
two extreme categories: those that are outright fraud
and those for which evaluation suffers from one or
more flawed technical procedures. Of course, these
two end member causes of failure are not mutually
exclusive. Moreover, a failure might be attributable to
several causes, despite our tendency to emphasize a
specific cause inmany cases. Clow (1991) presented a
concise and particularly astute consideration of many
of the Canadian gold mine failures of the 1980s.
He suggests that the most important general cause
of vein-type gold mine failure during that decade
is the inexperience of those conducting the evalua-
tion. Explorationists tend to be generalists without the
necessary detailed background in mining geology to
take into account properly all the necessary aspects
of structure, continuity, wallrock conditions, num-
ber of work sites, mining methods, and production
infrastructure. In addition, he voices a general com-
ment regarding the complexity of geostatistics and the
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Figure 17.1: Reported deviation of production grades from
estimated grades for 23 Australian mineral deposits. Note
that only in a few cases are estimates within about
10 percent of production. Redrawn from Rossi (1999).

common lack of integration of geology with a geosta-
tistical resource/reserve estimate (Clow, 1991, p. 34):

Even the most ardent proponents of geostatistics
will concede that their science (art?) encounters
the most difficulty when applied to vein-type
gold deposits. To compound the problem, this
type of treatment [geostatistics] is very poorly
understood by the average mining engineer and
geologist and, as a result, the output is frequently
misapplied.Despite the best efforts of the geosta-
tistical practitioners, geology is often forgotten.

This is not so much a complaint against geostatis-
tics per se as it is against the poor integration of ge-
ology into the estimation process. Geostatistics is not
alone in having difficulty producing high-quality es-
timates for gold-bearing veins; all resource/reserve
estimationmethods have difficulty in this regard.Geo-
statistics has the advantage over other techniques that
it is best by a quantitative criterion (i.e., the estimation
variance is minimized); other methods cannot make
such a claim. More generally, geostatistics takes into
account the autocorrelation characteristics of a grade

variable during the estimation process, a feature that
other estimation methods generally cannot guarantee.

17.3: RESOURCE/RESERVE ESTIMATION
PROCEDURES

Resource/reserve estimates are just that – estimates.
After all, one is using sample information represent-
ing 1/100,000 to 1/1,000,000 of a deposit to deter-
mine an estimate of the metal content of the deposit.
Clearly, interpretations and assumptions are neces-
sary in arriving at tonnage and grade estimates to
be used in economic evaluations and mine planning.
Significant failures of estimates relative to production
have been documented for many cases (e.g., King,
1982; Knoll, 1991). Unfortunately, most of the seri-
ous disparities between estimates and production are
on the side of underestimation (i.e., not as much ore
is found in a place as was estimated). Serious finan-
cial difficulties can ensue. One compendium of the
range of errors that were encountered in a number of
Australian gold deposits is indicated in Fig. 17.1.

Professional people of many backgrounds depend
on resource/reserve estimates; however, not all are
involved in the day-to-day procedures used to ob-
tain these estimates. Consequently, many are un-
aware of the details of various methodologies or
the advantages/disadvantages of any one method.
The so-called traditional methods include polygonal,
sectional, inverse-distance weighting, triangular, and
contouring methods. A second group of geostatistical
methods includes several kriging procedures such as
simple kriging, ordinary kriging, and indicator krig-
ing. Except for small deposits with small amounts of
data, the application of any of thesemethods generally
requires a significant level of computer use. Which
methods are appropriate in any specific case depend
on geologic features, characteristics of the variable
being estimated, data density, experience of the es-
timator, and so on. It is important to realize that the
development of the three-dimensional geometry of an
orebody (geometric model) is based on geologic in-
terpolation and extrapolation. Estimates of individual
blocks within that defined geometric body are then
commonly done to produce a “block model” of the
deposit. The estimation method itself has no control
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over which estimates will be made; that decision is, in
part, predeterminedby the geology (i.e., the geometric
model) and, in part, depends on the number and ar-
ray of data available for each block that is considered
for estimation. Providing the criteria regarding quan-
tity and array of data near a block are met, a block
within a zone defined geologically will be estimated
by whatever method is used.

All methods of estimation produce estimates that
only approach the truth. For a specific geologic char-
acter, some estimation procedures are likely to be
better than others. It can be difficult to ascertain in
advance of production which method of estimation
is best (i.e., has an acceptably small error and can
be integrated into mine planning with available per-
sonnel and facilities). Selection of the best method
can be based on cross validation (e.g., Isaaks and
Srivastava, 1989), bulk sampling for grade verifica-
tion (e.g., John and Thalenhorst, 1991), trial mining
and theoretical considerations (as discussed in various
textbooks on resource/reserve estimation). Of these
approaches, cross validation and theoretical consider-
ations are cheap and easy to undertake, whereas trial
mining implies a scale of operation that is very costly.
Bulk sampling is an important advanced exploration
procedure that can provide the necessary confidence
in an estimation procedure that uses small samples at
the feasibility stage. Too often, none of these proce-
dures are applied to the question of selecting an appro-
priate estimation method or they are applied in poorly
conceived ways. Formal commentary on any individ-
ual resource/reserve estimation procedure should be
technically correct. Sadly, this is often not true, and
is particularly unfortunate when incorrect or partially
correct statements are made in a public venue that
reaches a large number of professionals.

Simplistic views of the complex problem of re-
source/reserve estimation can lead to doubt and un-
certainty of results. Consider the example of any
“black box” approach, such as the occasional analyt-
ical scam involving a claim that a new (unexplained)
analytical method finds 10 times as much gold as
does the traditional fire-assay approach. Clearly, no
responsible professional can accept such claims until
the method is proved. Claims about technology must
be backed up with appropriate verification.

It is worth recalling that high grades invariably
have different continuity (geologic) characteristics
than do low grades (e.g., McKinstry, 1948; Sinclair,
1995), a feature that is too often overlooked in
resource/reserve estimation. How these values are
considered in a mineral inventory study can be of
the utmost importance because outlier samples repre-
senting less than 1 percent of the available data might
account for 10 to 20 percent of the metal content of
estimated resources/reserves.

17.4: GEOSTATISTICS AND ITS CRITICS

Geostatistics deals with spatial correlations of a vari-
able; mining is but one field among its wide range
of applications (e.g., forestry, fisheries, oil and gas,
hydrogeology, soil science). Within the mining in-
dustry, geostatistics has found extensive applications
both in resource/reserve estimation and in simulat-
ing grade distributions in mineral deposits as an aid
to mine/mill planning. These applications are widely
documented in established textbooks and traditional
technical/scientific publications, and most authors
have been reviewed by their peers. An extensive
global community of consultants has been provid-
ing geostatisitical services since the mid-1970s. It is
through such public examination, critical review, and
practical application that the subject has evolved from
concepts described initially byMatheron in the 1950s
and 1960s to themuchmore extensive arsenal of tools
now available and in use globally.

Over the years, a variety of criticisms have been
leveled at geostatistics by prominent professionals
with interests in the field of mineral inventory estima-
tion. These include the following:

1. In contrast to other methods of estimation, the
gain in information (i.e., estimation variance) pro-
vided by kriging is negligible.Many case histories
now exist to show that this criticism is incorrect
in a significant proportion of cases. Moreover,
the validity of the criticism can be demonstrated
only by conducting both geostatistical estimates
and at least one independent estimate of mineral
inventory and conducting a reconciliation with
production data.
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2. The method is costly. However, any method done
well is generally costly. Geostatistics requires
both highly trained personnel (who are still in
limited supply) as well as substantial computing
capability, both of which can add to costs. Any
estimation done incorrectly is extremely costly.
Many reserve-estimation failures in Australia
(e.g., King et al., 1982) and Canada (Knoll, 1989)
were related to projects that were not based on
geostatistical estimation techniques, indicating a
need for a theoretical as well as an empirical basis
for mineral inventory estimation.

3. The subject is too complex. There is little question
that geostatistical methods are complex relative to
many empirical approaches to mineral inventory
estimation. Understanding the principles is rel-
atively easy, but understanding them adequately
to carry out an involved geostatistical study that
is well integrated with equally complex geologic
features requires guidance or experience. Fortu-
nately, the pool of capable geostatisticians is in-
creasing as the result of a greater selection of
university courses, a broad availability of short
courses, a burgeoning theoretical and applied lit-
erature, and a wide range of accessible software.

4. Geostatistical procedures are too time-consum-
ing. Geostatistics demands close attention to data
quality and geologic interpretation, as does any
method of estimation. The principal additional
time required by geostatistics is related to semi-
variogram modeling, and without doubt, this can
be a time-consuming undertaking. It is worth
noting, however, that semivariogram modeling
provides information that could improve inverse
distance estimates, and in cases of significant
anisotropy, invalidate any empirical method that
assumes isotropy. Thus, semivariogrammodeling
should be a component of data evaluation even in
estimation cases in which geostatistics is not to be
used.

The subject has undergone scrutiny since the early
1960s by applied and theoretical scientists and a myr-
iad of mining practitioners, quite apart from the mul-
titude of users in fields other than mining. As a result

of this scrutiny, a very small group of professionals
raised concerns about certain aspects of geostatistics,
concerns that have beenwell publicized and discussed
in both peer-reviewed and non-peer-reviewed litera-
ture. These are real concerns that have been the sub-
ject of ongoing public discussion. This public forum
approach has been a positive influence that has led
to improvements in the understanding/application of
geostatistics. Published critiques have appeared since
themid-1980s under such names as Philip andWatson
(1986), Shurtz (1994), and Merks (1992, 1993), and
there have been responses in the scientific/technical
literature by well-known members of the geostatis-
tical community, including Journel (1986b), Srivas-
tava (1986), Myers (1986), Champigny (1992), Krige
(1986), Deutsch (1994), and Matheron (1986). Thus
far, concerns about geostatistics have been dealt with
in considerable detail through a series of responses
from the geostatistical community, largely in the
International Journal of Mathematical Geology.

Philip and Watson (1986) have many problems
with geostatistics: specifically, the assumptions, the
semivariogram definition, the validity of linear krig-
ing as the best interpolator, and the significance of
the estimation variance. Their principal concern with
assumptions relates to stationarity, which they feel
is simply not possible in the context of ore de-
posits. However, in most geostatistical applications,
only local stationarity of the grade differences is re-
quired. The use of relative semivariograms is another
way in which nonstationarity is taken into account.
Srivastava (1986) has pointed out that their attack on
stationarity is an “attack” on all statistics. In fact, it
is the model (random function) that requires station-
arity; the model is simply applied to data because it
proves to be an adquate representation of data.

It is a concern to Philip and Watson that the semi-
variogram is a global autocorrelation function, yet it
is used for local estimation. This procedure is applied
when there are relatively few data, and is justifiable
as a best approximation. When there are abundant
data, semivariograms can be determined locally and
used to optimize local estimation (e.g., Johnson and
Blackwell, 1986). Concerns about the treatment of
outliers expressed by Philip and Watson have been
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taken into account in a previous discussion of this
topic (Chapter 7). Philip and Watson express con-
cern that all parameters of a semivariogram model
are determined subjectively. Although this is true, it
is important to remember that one is attempting to ap-
proximate a function whose form is not really known.
Just as one commonly fits normal or lognormal dis-
tributions to histograms using particular assumptions,
so it seems appropriate to fit models that reasonably
describe the form of an experimental semivariogram.
In fact, the particular model fitted is not as important
as the necessity that the model describe the semivari-
ogram adequately over the distances for which it will
be used.

Philip andWatson (1986) question the advantages
of kriging relative to many other interpolation proce-
dures because (i) a global semivariogram is used to
make local estimates, (ii) local trends within the data
are ignored, and (iii) a kriged surface is discontinu-
ous, requires that large matrices be inverted, and suf-
fers from outlier problems. Some of these concerns
have been dealt with previously and are of minimal
importance; that local trends are ignored is simply un-
true. Regarding the “discontinuous” nature of kriged
results, Srivastava (1986) points out that surface dis-
continuities are a product of many interpolation tech-
niques, but not of kriging theory; discontinuities arise
only because of implementation procedures. Local
trends are taken into account by the values of data
themselves. If the local trends are on a large enough
scale to be represented by the local semivariogram,
they are taken into account to an even greater degree.
Their concern about the weakness of kriging in the
face of outlier values has led to the use/development
of alternative techniques such as multiple indicator
kriging and restricted kriging. Their criticism in this
case has led to the implementation of different geosta-
tistical procedures than those usedpreviously for deal-
ing with outliers. Note that nongeostatistical methods
have equal difficulty of dealing with outlier values.

The kriging process produces the kriging variance
that is recognized as an index of data configuration
(Philip and Watson, 1986; Srivastava, 1986). In dis-
cussing their concern with the estimation variance,
Philip and Watson (1986) emphasize that different

types of continuity exist from one locality to another
in a deposit. This criticism largely disappears if an ore-
body can be subdivided into more homogeneous do-
mains, each characterized by its own continuitymodel
(e.g., Krige, 1986).

The fundamental nature of the complaints made
byPhilip andWatson areminimized in the recognition
by Journel (1986b) and Srivastava (1986), who em-
phasize that geostatistics is a model or methodology
based on random functions; thus, it does not need a
priori justification, but can be proved adequate on the
basis of comparative studies with reality (cf. Krige,
1986).

Shurtz (1985, 1991, 1994, 1998) also complains
vociferously about geostatistics. One of his widely
publicized concerns (Shurtz, 1994, 1998) relates to
the peculiar distribution of weights in the common
case when strings of data (e.g., samples along a drill
hole) are used to make point or block estimates by or-
dinary kriging. The problem that arises is that mem-
bers of a string furthest from the point/block being
estimated have the highest weights, certainly a fea-
ture contrary to expectation. This peculiar pattern
of weights is most extreme when the continuity is
greatest (e.g., zero nugget effect and long range) and
becomes less extreme as the nugget effect increases.
A detailed study of this topic by Deutsch (1994) in-
dicates that the problem arises in ordinary kriging,
in which the mean of the data field is unknown. The
highest weights for themost distant data are explained
by Deutsch as an attempt to compensate for the un-
known mean value, with the most distant values be-
ing surrogates for this unknown mean. The problem
can be minimized in a variety of ways, including the
use of simple kriging when appropriate. When or-
dinary kriging is used, precautions include limiting
the number of data used from any one drill hole to
two, requiring data from three or more drill holes,
and compositing data into longer lengths so that abun-
dant small sample informationwill not be lost. In fact,
this is a particularly sound reason for using compos-
ite grades for estimation purposes. It must be recog-
nized that this question of peculiar weights is most
pronounced in cases of extreme continuity that are
rare features ofmineral deposits (i.e., no nugget effect,
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very long range, and perhaps a Gaussian semivari-
ogram model).

Shurtz (1999) also points out the mathematical
instability that results from solving the kriging equa-
tions if one sample of a string (i.e., the sample nearest
the point being estimated) is shifted imperceptibly
off the linear trend of samples, a common situation
in drill holes that have been surveyed at regular inter-
vals (i.e., there is a slight periodic directional shift that
stems from the intermittent nature of the surveying).
The nearest sample can take on an unusually large
weight that is either positive or negative, depending
on the direction of a small departure from a linear
trend of samples. This problem is avoided if the sug-
gestions of the previous paragraph are implemented.
Open discussion has led to an understanding of the
phenomenon leading to the criticism, as well as sug-
gestions to minimize or avoid the problem.

The principal complaint made by Merks (e.g.,
1992, 1993) against geostatistics is that degrees of
freedom are not taken into account in geostatistical
theory. Of course, degrees of freedom are not es-
sential in the development of a theory in which en-
tire populations are considered. Hence, this complaint
against geostatistics is invalid. Nevertheless, there are
arguably practical situations in geostatistics in which
degrees of freedom might well be considered (e.g., in
the construction of an experimental semivariogram).
When abundant data are available (a necessary sit-
uation in most mining geostatistics applications), it
is immaterial from a practical point of view whether
degrees of freedom are considered in the estimation
of the semivariogram. The resulting estimates of the
experimental semivariogram are affected only negli-
gibly, because n is large. Because a kriging estimate
is based on the semivariogram model and a particu-
lar data array in space, a block estimate will also be
affected negligibly.

Merks (1992, p. 113) further complains, “The
kriged variance violates the requirement of indepen-
dence.” As Chiles (1993, p. 6) observes, “the kriging
error is a linear combination of point values, but since
no independence is required for computing its vari-
ance, nothing is violated.”

Two additional concerns relating to Merks are
matters worthy of comment, partly because of how

they might be interpreted by the uninitiated. A view
attributed to Merks (Northern Miner, Sept. 28, 1998,
p. 4) is that kriging “tends to inflate expectations for
the continuity of mineralization between measured
data points.” This statement is incorrect and seems to
indicate a lack of understanding of the estimation pro-
cedure. In resource/reserve estimation, the inferred
continuity of mineralization is an independent geo-
logic decision that precedes the selection/application
of any estimation method. Once acceptable limits of
mineralization have been defined on the basis of ge-
ology, it is possible to proceed to estimation. Clearly,
it is unwise to make grade estimates where mineral-
ization is known not to exist, regardless of the estima-
tionmethod in use. A second view attributed toMerks
and pertaining to kriging states, “applying the brute
force of computers to fabricate more data from mea-
sured data is somewhat similar to perpetual motion”
(Northern Miner, Sept. 28, 1998, p. 4). This loose
statement gives the impression that geostatistics cre-
ates data. Of course, kriging does no such thing, nor
has any responsible geostatistician ever made such a
claim. Kriging provides estimates of points or blocks,
just as do other estimation methods. It may be that
this view pertains to simulation, but this is not evi-
dent from the context. The widely accepted process
of simulation does create values with similar statis-
tical and spatial characteristics to the grades in a de-
posit. A range of simulation methods exist (some of
which predate the field of geostatistics), all of which
are used to study a mass of data having similar sta-
tistical characteristics to the deposit. Unfortunately,
most of Merks’s comments against geostatistics are
short on theoretical or practical support.

17.5: WHY IS METAL PRODUCTION
COMMONLY LESS THAN THE ESTIMATE?

A common practical problem is that tonnage pro-
duced from a deposit is less than tonnage estimated.
This problem arises because selection during mining
is based on closely spaced data obtained during pro-
duction, in contrast to the widely spaced exploration
data used for mine planning. Ideally, if blocks orig-
inally outlined as ore were the blocks mined as ore,
then production tonnage should equal the estimated
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tonnage, at least within reasonable error limits. How-
ever, during mining, the block on which selection is
based is generally much smaller than the blocks used
in preliminary evaluation. Consequently, the tonnage
above cutoff changes, even when the cutoff grade is
unchanged.

Estimates commonly contain an element of con-
ditional bias (i.e., on average, high grades are over-
estimated and low grades are underestimated; some-
thing also known as the regression effect). When the
entire distribution is mined, the overestimates might
be compensated for by the underestimates; globally,
the estimates might be unbiased. When a cutoff grade
is applied to such a distribution of estimates, the low-
grade part of the distribution is sent to waste. This
leaves the overestimated high grades to be mined.

Consider an ideal case in which there is a small
error in block estimates but no conditional bias. Even
in this best-case situation, there is somemisclassifica-
tion of blocks relative to a cutoff grade because of the
small random error in block estimates. Hence, some
ore is classed as waste and some waste is classed as
ore. When the cutoff grade is below the mean of the
distribution for a given block estimation error, there
is more ore lost to waste than waste included in ore.
Thus, solely because of inherent random error in the
estimation procedure, there is less metal recovered
than estimated.

Outlier values can be spread far beyond their true
physical extent in space by many methods of esti-
mation that derive block estimates as weighted aver-
ages of nearby sample values. This problem has been
more prevalent in the past; much more attention is
now paid to defining and incorporating outliers into
the estimation process. Assays that are one or two or-
ders of magnitude larger than the great mass of data
must be dealt with cautiously in order to offset the
common problem of gross overestimation that might
arise.

Of course, there are many other reasons why pro-
duction does not attain estimates, including overly
optimistic geologic definition of the extent of min-
eralized ground, lower than expected metal recovery
in the mill, and so on. The emphasis here has been
on overestimation arising from the assay data them-
selves and the procedure of estimation (i.e., condi-

tional bias, random error, outliers, and ore/waste clas-
sification based on a different block size for estimates
and production).

17.6: PRACTICAL CONSIDERATIONS

1. Errors are inevitable in making mineral inventory
estimates. The aim of professional procedures is
to minimize those errors by thorough analysis of
each situation, followed by the use of appropriate
estimation methods for the deposit under study.
Most imperative to the success of the undertaking
is the thorough integration of geology into the
estimation procedure.

2. Estimates in general should be done by at least
two independent methods. Essential to the overall
process is a detailed reconciliation of results ob-
tained from the various estimation methods used.

3. At least one of the estimation methods used for
mineral inventory estimation of a deposit should
be an appropriate geostatistical approach.

4. Detailed case histories of mineral inventory esti-
mation, including reconciliation information, are
an important basis for appreciating which estima-
tion methods are best adapted to a specific deposit
type.

5. Reconciliation studies ultimately need produc-
tion informationwithwhich to compare estimates.
However, there commonly are significant differ-
ences between what is estimated and what is pro-
duced, so care must be taken that reconciliation
conclusions are stated fairly.

17.7: SELECTED READING

Case histories such as those discussed in Table 17.1
are important background for understanding present
practice.
Deutsch, C., 1994, Kriging with strings of data;Math.
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Myers, D. M., 1986, Matheronian geostatistics –
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pp. 699–700.
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17.8: EXERCISE

1. Case histories describing “successful” reserve es-
timation procedures commonly must necessarily
abbreviate the abundant information in company

reports, and thus generally provide incomplete
comparative information for the reader’s evalua-
tion. A critical analysis of a published case history
is a useful exercise for a resource/reserve student.
In such an analysis, attention should be directed
toward matters such as: uniformity(?) of cutoff
grade through the study, variation(?) in block
sizes estimated, details of each estimationmethod
reported and compared (search radius, required
data), a description of how geologywas taken into
account in each estimation method (e.g., adapta-
tion of estimation method to style of mineraliza-
tion, recognitionof domains, estimation at domain
margins, deleterious minerals), documentation of
the differences in volumes estimated by various
methods, and so on.



18
Resource/Reserve Classification

Every mining operation from a simple sand-and-gravel pit to the largest integrated mine-mill-concentrator-smelter-
refining complex has as its foundation, a quantity of extractable natural resource – the reserves. Without reserves,
there is no mine and any concentrating or extracting plant, no matter how sophisticated, is simply so much
scrap metal. Without resources there are no reserves. It is remarkable, therefore, especially in this age of careful
planning, high-quality engineering and state-of-the-art financial analysis, that such a fundamental and vital concept
as resources/reserves is so little understood and the subject of so much confusion. (Grace, 1984, p. 1446)

Chapter 18 considers the thorny problem of clas-
sification of resources/reserves in view of the
many conflicting demands on such a system.
A fundamental geologic base to a classification
scheme is emphasized, as is the necessity of doc-
umenting classification criteria so that classifica-
tions are easily reproducible by external auditors.

18.1: INTRODUCTION

Classification of mineral inventory estimates is nec-
essary for several reasons, including the following:

(i) Creation of a formal inventory of the principal
assets of a mining company

(ii) Documentation of assets to demonstrate poten-
tial for medium- or long-term production

(iii) Raising development funds in the speculative
money market

(iv) Providing a reasonable confidence level for se-
nior financing institutions

(v) Providing a basis for royalties, taxation, land use
management, and so on.

Formal classifications were first suggested about the
start of the 20th century and pertained only to ore
(Table 18.1). More recently, there has been recogni-
tion that many mineral deposits or mineralized zones
can be well estimated even though a sufficiently thor-
ough study has not been done to define material as
ore. This situation had led to a widely accepted trend
to define both (mineral) resources and (ore) reserves
as mineral inventory.

An abundance of recent literature on the topic
of resource/reserve classification seems to depend
on two principal motivations: the hope to introduce
a semiquantitative or quantitative measure of uncer-
tainty into the classification process and a hope that
a set of international standards can be developed
(e.g., McOuat, 1993; Riddler, 1996; Stephenson and
Miskelly, 1999). For the most part, resource/reserve
classification concerns relations between those with
some element of day-to-day operational control of the
mining property in question and other groups (share
holders, senior financiers) who have supplied or will
supply funds for the operation. There are different
vested interests on the parts of both parties that gen-
erally are constrained or controlled to some degree by
government legislation.With the increasing tendency
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Table 18.1 Early definitions of mineral inventory

Quality of estimate

Source Highest Middle Lowest

Kendall et al., 1901–2 Puritan Cavalier Others
Ore in sight, ore blocked out,
ore in reserve, ore available
for extraction out, probable
ore in sight

Ore reasonably expected,
visible ore not blocked,
ore probable but not
blocked out

Witwatersrand drill-inferred
geologic projection

Hoover, H. C., 1909 Proven ore Probable ore Possible ore
Ore in which there is
practically no risk of failure
of continuity out, probable
ore in sight

Ore in which there is some
risk, yet warrantable
justification for
assumption of continuity

Ore that cannot be incuded
in the proven–probable
classes, nor definitely
known or stated in any
terms of tonnage

Leith, C. K., 1935 (see
Taylor, 1994)

Assured ore Prospective ore Possible ore
Ore blocked out in three
dimensions by mining or
drilling, risk of failure
remote

Extensions near at hand;
probability high, but
extent is less precise

Presumptive evidence of
ore, but of indeterminate
quantity

Fennel, J. H., 1939 Ore blocked out Probable ore Prospective ore
Ore exposed on three or four
sides

Partly exposed on one or
two sides

Not exposed

USBM/USGS, 1976 Measured ore Indicated ore Inferred ore
Sampled tonnage from
dimensions in workings,
trenches and drill holes;
tonnage or grade estimates
good

Tonnage partly from
measurements and partly
projected within 20%

Few measurements, but
some geologic knowledge
presumed

Source: After Taylor (1994).

toward global operations bymanymining companies,
there are increasing problems with the reporting of
resource/reserves because regulations from one juris-
diction to another can vary widely. This has led to
a call for international standards in the classification
of mineral inventory estimates (e.g., Stephenson and
Miskelly, 1999), and various proposed classifications
have emerged more recently that are directed toward
such an end (e.g., Australian system, U.S. proposal,
IMM proposal). The general framework of two clas-
sification systems are outlined in Section 1.3.4 and
Fig. 1.6. An example of definitions (the Australasian
system) of both reserves (proved, probable) and re-
sources (measured, indicated, inferred) is given in
Chapter 1.

Of course, classification must be viewed from
two perspectives: that of the regulator requiring a
standard means of reporting resources/reserves as
protection for the public (including boards of di-
rectors) and that of the user (of a classification
scheme), who must use specific criteria to meet
the aims of two masters, viz. the regulating author-
ity and internal company requirements. Ultimately,
the classification of resources/reserves for a min-
eral deposit should be a reproducible undertaking.
Without a clear description of the criteria and how
they are applied, a classification scheme is not re-
producible and is of little value. Consequently, the
criteria used for classification must be spelled out
clearly.
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18.2: A GEOLOGIC BASIS FOR
CLASSIFICATION OF MINERAL INVENTORY

There are two important stages in arriving at an ac-
ceptable level of geologic knowledge for resource/
reserve classification. The first is the gathering of
high-quality data, and the second is a rational inter-
pretation of those data. A classification of resources/
reserves depends first and foremost on an appre-
ciation of mineralization continuity. Deposits are
generally known at widely spaced sampling points
(e.g., drill holes), surface exposures, and limited un-
derground workings; substantial interpolation is re-
quired based on an understanding of the geologic
character of a mineral deposit. The topic has been dis-
cussed at length by Sinclair and Vallée (1993), who
recognize both geologic continuity and value conti-
nuity (see Section 1 and Chapter 3).

In general, geologic continuity is a present or ab-
sent condition. A mineralized zone is interpreted to
exist between control points. However, even when
continuity is based on thorough study and docu-
mentation, an interpretation remains subjective, per-
haps dependent on the deposit model. Consequently,
although arbitrary relativemethods of quantifying ge-
ologic parameters exist, such as the subjective nu-
meric scales of Blanchet and Godwin (1972) and
Kilburn (1990), geologic continuity cannot be quan-
tified in an absolute manner. Nevertheless, geologic
information is the basis on which interpolations re-
garding geologic continuity are made; thus, geologic
concepts are the underlying basis for mineral inven-
tory estimates and their classification. Observations
regarding style of mineralization and known phys-
ical extent in space of each style of mineralization
(domains) are two of the important features that con-
tribute to confidence in defining the limits to miner-
alized volumes within which estimates are made and
classified.

No matter how quantifiable some components of
the data may be, the interpretation remains subjective
and might change significantly as new information
is gathered or new concepts come to light. Hence,
mineral inventory classification must always be con-
sidered with respect to a particular set of geologic as-
sumptions that should be stated explicitly, with both

supporting and contrary (ambiguous) evidence; justi-
fication of a model should not be left to the imagina-
tion.

The second aspect of continuity important to clas-
sification concerns grade continuity, commonly quan-
tified by a three-dimensional autocorrelation model
(Chapter 9). The distinction between geologic and
grade continuity can be visualized by reference to
a vein for which grades are clearly separated into
high- and low-grade segments (e.g., ore shoots within
a much larger vein). Such a scenario demands that
the physical continuity of high grades be much less
than the physical continuity of the vein. Samples rep-
resent 1/100,000 to 1/1,000,000 of the volume of
a deposit. Hence, available data must be extended
in some manner to nearby mineralized ground in
order to make estimates of larger volumes. How
far sample grades can be extended in any direction
is a function of grade continuity. Grade continuity
in the form of an average autocorrelation function
(e.g., a semivariogram) provides quantitative insight
into how grade at a data site correlates (on average)
with the adjoining mineralized ground. Note that in
applying the concept of grade continuity to a vol-
ume, there is a prior assumption that geologic con-
tinuity occurs (i.e., the volume is mineralized). In
the past, there was often ambiguity in use of the
term continuity; for example, grade continuity, espe-
cially high-grade continuity, has been assumed, mis-
takenly, to be extensive just because geologic con-
tinuity (the mineralized zone) is established with a
high level of confidence. Note that the characteriza-
tion of grade continuity by an autocorrelation func-
tion is independent of the grade estimation method
used.

18.3: SHORTCOMINGS TO EXISTING
CLASSIFICATION SYSTEMS

There are a number of reasons why existing re-
source/reserve classification systems have been found
wanting. In particular, attempting to satisfy several
masters is seen as one of the principal sources of dif-
ficulty in arriving at acceptable definitions of various
categories of both resources and reserves. More spe-
cific problems include the following:
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1. Classifications are not uniform from one gov-
ernment (or securities) jurisdiction to another. In
some cases, differences result in substantial addi-
tional work to classify resources/reserves appro-
priately in response to jurisdictional requirements
inmore than one country. For example, an interna-
tionalmining companymay be required to present
resources/reserves in a particular form for taxation
purposes in the country in which a mine is operat-
ing, yet may have to report them quite differently
for financial reporting purposes at the head office
in another country.

2. Taylor (1993, p. 146) summarizes the practical
problemof resource/reserve classification that has
evolved as a function of changing technology and
changing emphasis of mining procedures:

Definitions were first devised for ore ex-
posed in developed undergound mines,
which sought recurrent or marginal profit
because the interval between valuation and
extraction was at most a few years and of-
ten much less. What existed was known well
and what might happen to it wasn’t far away.
But even then, inclusion of profit in defini-
tions was not without difficulty. Today, most
primary valuation is by drilling, even when
reliabilitymaybe low.Estimationof reserves
is advanced too long before production, and
feasibility must require prediction of a pro-
tracted and distant absolute profit. But still
we use the same terms, implying falsely that
earlier standards remain, though these can-
not now be replicated until secondary valu-
ation and production.

3. Although relative quality or certainty of the value
of a resource/reserve is implicit in all mineral
inventory classification schemes in widespread
use, none contains a detailed reliability index
for either global or local estimates. “[T]he cate-
gory of Measured Resource does not imply 100%
knowledge or 100% confidence in the estimate”
(Stephenson and Stoker, 1999, p. 57).

4. Classification codes for coal inventories are tradi-
tionally distinct from those for mineral invento-

ries. There is some question as to how general a
mineral inventory classification scheme should be
(e.g., perhaps some industrial mineral resources
need not be covered by a classification system de-
signed for metallic mineral deposits).

5. The widespread use of geostatistics into the min-
eral inventory estimation scene has led to the pos-
sibility that quantitative measures might become
part of a classification system (e.g., Froidevaux,
1982; Vallée, 1992; Vallée and Cote, 1992) and
thus improve on the qualitative/subjective aspects
of existing classification schemes.

6. Ambiguity of existing definitions of categories in
a classification system leads to subjectivity and
variability in practical use of terms. Definitions
of various categories of resources and reserves
in many jurisdictions are quite general, and their
application is more dependent on traditional use
and the experience of the user than on objective
criteria.

7. The distinction between resources and reserves
is not as rigorous in some jurisdictions as in
others. In Australia, for example, “appropriate as-
sessments, which may include feasibility studies”
(JORC Code 1999, p. 8) are required in order to
demonstrate which of the identified resources can
be mined at a profit, and therefore classed as re-
serves. Other jurisdictions may be more or less
demanding in this regard.

8. The limitednumber of resource/reserve categories
(classes) means that a wide range of quality is
included within each class.

18.4: FACTORS TRADITIONALLY
CONSIDERED IN CLASSIFYING
RESOURCES/RESERVES

Resource/reserve classification commonly involves
the following considerations:

1. Geologic continuity. For each block being esti-
mated, an evaluation must be made of the like-
lihood that mineralization persists through the
block. This fundamental geologic decision must
preempt the consideration of all other criteria
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Area of influence

r

Figure 18.1: The concept of using a zone of influence
around individual grades results in complex intersections
and volumes that are impractical to estimate (see Readdy,
1986). The circular zones of influence shown here are cylin-
drical in the third dimension.

(cf. Sinclair and Vallée, 1994). Clearly, if there
is no geologic continuity, there is nothing to be
classified.

2. Distance from a sample site is a widely used
method for resource classification (Fig. 18.1). A
short radius is used to define a cylinder ofmaterial
that is placed in a high-quality category; a larger
radius adds an additional hollow cylindrical shape
that is categorized in a lower class of resource. By
itself, the method is inadequate. Considered with
other parameters listed here, it might be useful.
However, the method is widely used to produce
intersecting cylindrical volumes and is awkward,
if not impossible, to deal with in practice.

3. Sample density in the vicinity of each block to
be estimated. The size of this vicinitymust be de-
fined and is very different from one deposit type to
another. It is common practice to require a mini-
mumnumber of sampleswithin the search volume
in order to proceed to an estimate; this minimum
number should be specified. When data are abun-
dant, it is also routine practice to specify a max-
imum number of data, generally those closest to
the block being estimated (cf. Isaaks and Srivas-
tava, 1989). Classic polygonal arrays (a centered
sample in a polygonal volume) are an extreme and
generally undesirable basis for resource/reserve
classification.

4. The geometric array of data relative to each block
to be estimated. There is a significant difference
between n samples on one side of a block to

be estimated (extrapolation) and n samples dis-
tributed around the block to be estimated (interpo-
lation), as shown in Fig. 18.2. Better-known cate-
gories of resources/reserves might be based only

Interpolation

Extrapolation

Three Samples

Nine Samples

Search
radius

a

b

Figure 18.2: (a) Dots are sample locations relative to a
block to be estimated. Interpolation intuitively provides
better-quality block estimates than does extrapolation. Sim-
ilarly, an increase in the number of nearby samples im-
proves the quality of an estimate. (b) Circles and triangles
are sample locations relative to a block to be estimated.
Triangles are those samples within the search radius se-
lected for estimation. Note that the nearest sample in each
octant has been selected. The number of samples used in
obtaining a block estimate depends on the search radius
and sample density. Judicious choice of a search radius is
essential. Simply enlarging the search radius to increase
the number of samples does not necessarily improve the
quality of an estimate adequately to change a classification.
Samples can be required in three or four quadrants (or five
or six octants) in order to proceed to an estimation.
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on interpolation, whereas a less-precisely known
categorymight be based on limited (but specified)
extrapolation (e.g., to allow for limited extrapo-
lation in a direction when data are limited, but a
deposit is known to extend).

5. Estimated block grade must be categorized
relative to a meaningful cutoff grade. In general,
resource/reserve classification schemes are based
on the fact that the material being considered for
classification has the potential to be produced at a
profit. Consequently, realistic assumptions must
be made as to likely production costs so that an
estimate can be made of a justifiable specified
cutoff grade.

6. Various types of data might be of significantly
different quality. For example, high core recovery
might be necessary in areas where estimates are
made with a high degree of certainty, whereas low
core recovery may preclude the use of grade but
may verify geologic continuity. Similarly, such
features as variable sample support or reverse
circulation drilling versus core drilling can affect
assignment of blocks to resource categories (e.g.,
Stephenson and Stoker, 1999).

7. Criteria other than grade that might reject
ground from a resource classification system. An
extremely fine-grained character of base metal
deposits could mean abnormally low metallurgic
recovery such that, despite a relatively high
grade, ore minerals cannot be recovered with
adequate efficiency to classify the material as
potentially profitable. Deleterious components
(e.g., S in coal or As in gold deposits) can lead to
penalties that might exceed the benefits of grade
of the valuable metal (cf. Fairweather, 1997).

The forgoing considerations are easily applied to
any two- or three-dimensional arrays of blocks that
approximate a deposit or a mineralized domain. At
the outset, it is necessary to define the block size(s)
for which estimates will be made and on which clas-
sification will be based. There is no general agree-
ment on this matter, as evidenced in the discussion
by Stephenson and Stoker (1999). From a practical
point of view, an appropriate block size is one that

corresponds to an SMU (the relatively small volume
on which a physical separation of ore and waste is
possible by the mining method to be used). More
generally, classification, especially at a prefeasibil-
ity stage, might be based on a somewhat larger block
size, if demanded by the available data or the estima-
tion method.

In underground operations, individual ore blocks
are commonly irregular in shape and can be as large as
individual stopes. Resource/reserve classification cri-
teria must be adapted to these less regular situations.
For example, a large volume defined geologically can
be approximated by a regular array of smaller blocks,
as shown in Fig. 1.1, and each block can be classified
using factors indicated previously. Alternatively, the
array of sampling information (data density) in the
block as a whole, or in large subsets of the block, can
be used as the basis of classification. The classification
criteria determined for such blocks should be consis-
tent with criteria used for more regular block arrays.
Figure 18.3 is an example of a vein in longitudinal
section, showing blocks classified principally on the
basis of relation to underground openings. A common
method to define block size is to limit block extent to
midway between adjoining drill sections. Such a pro-
cedure is generally inappropriate unless drill sections
are very closely spaced because it results in single in-
tersections being extended great distances, commonly
with little confidence.

18.5: CONTRIBUTIONS TO
CLASSIFICATION FROM GEOSTATISTICS

The increasing widespread use of geostatistics in
resource/reserve estimation since the mid-1980s
(Champigny and Armstrong, 1993; Kwa and
Mousset-Jones, 1986) led to new parameters as an aid
to resource classification (e.g., Wellmer, 1983). This
arises because, in addition to providing a block esti-
mate, geostatistical procedures provide various quan-
titative objective measures, including the average
range of influence of a sample (range of the semivar-
iogram) and the block-kriging variance (estimation
error). Froidevaux and Roscoe (1983) suggest that
the range of the semivariogram serve as the basis for
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Figure 18.3: Longitudinal section of vein showing blocks of resources/reserves classified on the basis of location of workings
relative to the block. Proved reserves are surrounded by workings; probable reserves are surrounded on two or three sides
by workings or involve slight extrapolation from a working; unclassified resources are extrapolated from workings based on
a high likelihood of geologic continuity of the vein. Modified from Rostad (1986).

resource classification in a particular case history, and
define three classes as follows:

(i) Blocks that are within the sampled area and for
which grade has been computed fromdatawithin
the range of influence

(ii) Blocks within the sampled area, but that are ei-
ther beyond the range of available data or that
have only one sampled drill holewithin the range

(iii) Blocks within the deposit as defined but remote
from data (e.g., at the periphery of the deposit).

However, the range alone is not generally adequate as
the basis of a resource classification scheme because
it does not take nugget effect into account. If the
structured component of the error is a small propor-
tion of the total variability, the range is of little use
as a classification criterion. Furthermore, the range
of an autocorrelation function (e.g., semivariogram)
commonly is not well defined with exploration data.
The use of range is further complicated by the com-
mon occurrence of multiple structures and multiple
models (with very different ranges depending on the
anisotropy characteristics from place to place).

Royle (1977), Sabourin (1984), and Froidevaux
et al. (1986) recommend that block-kriging variances

be used to classify individual blocks based on arbi-
trary values that separate measured, indicated, and
inferred categories. Royle further standardizes this
approach by basing his classification on blocks the
size of the sampling grid. This latter suggestion has
found little acceptance because the block estimation
error is not only a function of the size of block, but
also closely tied to the autocorrelation characteristics
of a particular deposit (e.g., Froidevaux and Roscoe,
1983). Even with few data, it is possible to estimate
themean grade of a large volumewith a fairly high de-
gree of confidence (e.g., where the grade distribution
is fairly uniform). The confidence, however, is de-
posit specific and should not be assumed a priori for
estimation and public reporting of resources – sound
geologic and sampling information is essential.More-
over, selective ore and waste mining is conducted
within this large volume; hence, the average grade
estimate of a large volume is of limited use for mine
planning.

Blackwell (1998) demonstrates a practical use of
relative-kriging variance (or relative-kriging standard
deviation) as an important component of a resource
classification scheme for porphyry-copper and large
epithermal gold deposits. The general sequence of
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classification is as follows:

(i) Identify mineralized blocks (i.e., verify geologic
continuity).

(ii) Identify mineralized blocks above cutoff grade.
(iii) Classify blocks above cutoff grade based on se-

lected values of relative kriging standard de-
viation (RKSD). Blackwell’s applications to
porphyry-copper and epithermal gold deposits
suggest that useful values of RKSD for classi-
fying resources as measured, indicated, and in-
ferred are as follows:

Measured 0.3 ≤ Indicated 0.5 ≤ Inferred.

Results for an epithermal gold deposit (Fig. 18.4)
clearly demonstrate the advantage of RKSD over the
widely used amount of data in the search volume.
The simple parameter “amount of data” does not take
into account the disposition of the data relative to the
block being estimated. In contrast, the value of RKSD
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Figure 18.4: A typical example of RKSD versus number of samples used to obtain grade estimates for a large epithermal gold
deposit. The closest two samples per octant within the semivariogram range were used for grade estimation. There is a broad
correlation between the RKSD and the number of samples used; more samples generally improve the quality of estimates.
The variation in RKSD for each number of data is a function of data geometry relative to the block being estimated. Resource
categories are based on arbitrary RKSD values of less than 0.3 for measured, 0.3 to 0.5 for indicated, and more than 0.5 for
inferred. These arbitrary values provide acceptable results for both epithermal gold and porphyry-copper deposits. Modified
from Blackwell (1998).

incorporates the effects of both amount and location
of data. It must be remembered that the kriging er-
ror for a block is not actually an estimate of the lo-
cal variability; rather, it is a global or average error.
However, the block-kriging error is a clear indicator
of the number of data and the array of data relative
to the block. Because it represents the interaction of
these two contributors to error, the kriging error is an
excellent empirical basis onwhich to base a classifica-
tion of relative quality of block grades. Of course, the
kriging error must be calibrated by selecting thresh-
olds that provide a classification comparable to those
derived from other widely used empirical criteria.
Once satisfactory thresholds of the kriging error
become widely accepted, they have the potential of
becoming a standard against which other classifica-
tion criteria can be evaluated for adequacy.

The increasing use of multiple indicator kriging
(MIK) as a basis for resource/reserve estimates has
led to new approaches to the problem of classifica-
tion. The product of MIK is (i) an estimate of the
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probability that an SMUwill be above a specified cut-
off grade, and (ii) the average grade to be expected.
In some cases, a large panel is estimated and the MIK
output is the expected proportion of SMUs within the
panel and above cutoff grade (as well as the average
grade of those blocks). The problem is that the exact
positions of the estimated ore blocks within the panel
are not known, leading to an uncertainty that, at least
superficially, this does not exist in other, more de-
terministic estimation procedures. Second, the MIK
method does not provide error estimates for blocks,
and so requires other classification criteria. The MIK
method has proved useful in practice and has become
popular in dealing with deposits having highly irreg-
ular grade distribution, such as large epithermal gold
deposits. Consequently, some combination of number
and array of data used in the estimate of a panel could
be used to classify those blocks estimated to be above
cutoff grade.

18.6: HISTORICAL CLASSIFICATION
SYSTEMS

A concise summary of the North American history
of resource/reserve classification (Taylor, 1993) is
summarized in Table 18.1. A variety of classification
systems throughout the English-speaking world have
been reviewed recently by Vallée and McCutcheon
(1997). As an example of the general nature of these
classification schemes, the Australasian system (Joint
Ore Reserve Committee, 1999) is reproduced here be-
cause in the absence of an international standard, it
has been widely used and since the early 1990s has
become a de facto international classification system.
A general outline of the system is contained in Section
1.3.4 and Fig. 1.6.

A mineral resource is a concentration or occur-
rence of material of intrinsic economic interest in
or on the Earth’s crust in such form and quantity
that there are reasonable prospects for eventual eco-
nomic extraction. The location quantity, grade, ge-
ologic characteristics, and continuity of a mineral
resource are known, estimated, or interpreted from
specific geologic evidence and knowledge. Mineral
resources are subdivided in order of increasing ge-

ologic confidence into inferred, indicated, and mea-
sured categories.

An inferred mineral resource is that part of a min-
eral resource for which tonnage, grade, and mineral
content can be estimated with a low level of con-
fidence. It is inferred from geologic evidence and
assumed but not verified geologic or grade continu-
ity. It is based on information gathered through ap-
propriate techniques from locations such as outcrops,
trenches, pits, workings, and drill holes that may be
limited or of uncertain quality or reliability.

An indicated mineral resource is that part of a
mineral resource for which tonnage, densities, shape,
physical characteristics, grade, and mineral content
can be estimated with a reasonable level of confi-
dence. It is basedonexploration, sampling, and testing
information gathered through appropriate techniques
from locations such as outcrops, trenches, pits, work-
ings, and drill holes. The locations are too widely
or inappropriately spaced to confirm geologic and/or
grade continuity but are spaced close enough for con-
tinuity to be assumed.

A measured mineral resource is that part of a
mineral resource for which tonnage, densities, shape,
physical characteristics, grade, and mineral content
can be estimated with a high level of confidence. It
is based on detailed and reliable exploration, sam-
pling, and testing information gathered through ap-
propriate techniques from locations such as outcrops,
trenches, pits, workings, and drill holes. The locations
are spaced closely enough to confirm geologic and/or
grade continuity.

The appropriate mineral resource category must
be determined by a competent person or persons.

An ore reserve is the economically mineable
part of a measured or indicated mineral resource. It
includes diluting materials and allowances for losses
that may occur when the material is mined. Appropri-
ate assessments, which may include feasibility stud-
ies, have been carried out, and include consideration
of and modification by realistically assumed min-
ing, metallurgic, economic, marketing, legal, envi-
ronmental, social, and governmental factors. These
assessments demonstrate at the time of reporting that
extraction could reasonably be justified. Ore reserves
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are subdivided in order of increasing confidence into
probable ore reserves and proved ore reserves.

A probable ore reserve is the economically mine-
able part of an indicated and in some circumstances
measured mineral resource. It includes diluting ma-
terials and allowances for losses that may occur
when thematerial is mined. Appropriate assessments,
which may include feasibility studies, have been car-
ried out and include consideration of and modifi-
cation by realistically assumed mining, metallurgic,
economic, marketing, legal, environmental, social,
and governmental factors. These assessments demon-
strate at the time of reporting that extraction could
reasonably be justified.

A proved ore reserve is the economically mine-
able part of a measured mineral resource. It includes
diluting materials and allowances for losses that may
occurwhen thematerial ismined. Appropriate assess-
ments, which may include feasibility studies, have
been carried out, and include consideration of and
modification by realistically assumed mining, met-
allurgic, economic, marketing, legal, environmental,
social, and governmental factors. These assessments
demonstrate at the time of reporting that extraction
could reasonably be justified.

The choice of an appropriate category of ore re-
serve is determined primarily by the classification of
the correspondingmineral resource andmust bemade
by the competent person.

Classification, in general, is accomplished by pro-
fessionalswith demonstrable experience in estimation
projects of the type being reported. These profession-
als are referred to by such terms as competent person
(Australia) and qualified person (Canada).

Comparable resource/reserve definitions that dif-
fer only in detail are included in a report published by
the Society ofMining Engineers (Anonymous, 1999).
A general comparison of various international defini-
tions is given by Vallée and McCutcheon (1997).

18.7: THE NEED FOR RIGOR
AND DOCUMENTATION

The increasing emphasis on protection of the public
against outright fraud and low-quality work on min-

eral deposits by professional earth scientists requires
that reports of mineral inventory be of a high stan-
dard. Important contributions to high-quality reports
include the following:

(i) Estimates are made only when indicated by an
appropriate geologic argument that is clearly
documented.

(ii) Within a domain interpreted to be continuously
mineralized, mineral inventory estimates can be
classified using clearly documented criteria such
as those in Sections 18.4 and 18.5.

(iii) The general procedure for classification should
be easily reproducible by an independent auditor.

A report on mineral inventory should include the fol-
lowing:

(i) A brief statement regarding the basis for confi-
dence in the geologic continuity of a mineral-
ized zone for which resource/reserve estimates
are being prepared

(ii) A concise commentary on sample density and
various sample types

(iii) A justification of the block size used as a basis
for classification

(iv) A concise list of criteria used to classify individ-
ual blocks, including, when possible, reference
to levels of confidence for estimates

(v) Justification of the cutoff grade used to distin-
guish ore from waste.

With the increasing use of geostatistical estima-
tion methods, various statistical parameters and prob-
abilistic approaches have emerged as a basis for
classification. Generally, relatively small blocks are
estimated and each block is categorized individu-
ally.

Rules regarding each of these factors must be
described explicitly, otherwise they are not easily sub-
ject to audit. For example, geologic continuity inmany
cases can be established with a high degree of cer-
tainty from a combination of outcrop patterns, sam-
pling patterns, geophysical surveys (down-hole and
surficial), and applied geochemical surveys. Within
this zone of geologic continuity, individual blocks can
be classified on the basis of various parameters using
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deterministic rules. Such a clearly defined procedure
provides a sound basis for audit.

18.8: EXAMPLES OF CLASSIFICATION
PROCEDURES

1. A vertical vein (0.5 to 2 m thick) is intersected by
cored drill holes. Geologic continuity was assured
for a zone of dense drilling. A 10-m grid was su-
perimposed on the plane of the vein. (a) Each 10×
10 m2 cell was estimated if it met the following
criteria: a minimum number of four data occurred
within a search radius of 15 m; blocks were esti-
mated for thickness and accumulation (grade×
thickness); and the average grade was determined
from these estimates. Those blocks with a mini-
mum grade of 0.1 percent eU3O8 (i.e., 0.1 percent
U3O8 equivalent) and a minimum accumulation
of 0.01 percent were categorized as measured.
(b) The criteria of (a) were relaxed by requiring
only three data for block estimation and a mini-
mum accumulation of 0.08 percent – the addi-
tional blocks estimated were classed as inferred
resources.

2. Porphyry-type and large epithermal gold deposits.
A resource/reserve classification scheme based on
geologic continuity and RKSD for these large
deposits is documented in Section 18.3.1. A
more detailed description is given by Blackwell
(1998).

3. A company evaluating a large open pit gold
project used a combination of the number of
samples and the distance to the nearest sam-
ple, generated during interpolation of block
grades, to provide a block by block subdi-
vision of the resource estimate into varying
levels of confidence. This automated classi-
fication informationwas plotted and overlain
on the interpreted geology complete with the
plotted drilling data base. The project geol-
ogists and the competent person used this
data as the basis for common-sense classifi-
cation using all the projects geologists’ and
competent person’s knowledge of the con-

fidence in the interpretation and estimation.
(Stephenson and Stoker, 1999, p. 66.)

18.9: PRACTICAL CONSIDERATIONS

1. Classification schemes are a function of individual
political jurisdictions; consequently, agreement
on an internationally acceptable classification is
difficult and highly desirable. Classificationsmust
adhere to the requirements of the appropriate
jurisdiction.

2. Resource/reserve estimation depends first and
foremost on a geologic model that provides a
sound and confident expectation that a well-
defined volume (deposit, domain) is mineralized
throughout. Without this explicit decision regard-
ing geologic continuity of a delimitedmineralized
zone, neither estimates nor classification of min-
eral inventory is possible.

3. Establishing a reasonable cutoff grade is required
even at the resource classification stage because
various jurisdictions indicate the need for classi-
fied resources to have economic potential.

4. Within a continuously mineralized zone, re-
sources/reserves can be classified through the
rigorous application of appropriate and clearly
defined criteria. These criteria should be docu-
mented so they are easily reproducible by an ex-
ternal auditor.

5. Wherever possible, an array of uniformly sized
blocks is desirable as a basis for resource/reserve
classification because local criteria are then used
to classify each block and because the block array
approach lends itself to reproducible procedures
that facilitate audit.

6. Invariably, individual cases of estimation arise
that are difficult to classifywithin the broad frame-
work of existing schemes. This arises because
rules for classification are defined very generally
and ambiguities can arise in applying them. Inno-
vation may be necessary in such cases and should
be clearly described.

7. In all cases of resource/reserve classification a
clear, detailed listing of criteria used is essential.
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8. Geostatistically based criteria for classification
of mineral inventory are arbitrary and require
standardization relative to more traditional ap-
proaches.
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18.11: EXERCISES

1. Comment on the usefulness of relative-kriging er-
ror as a basis for resource/reserve classification.

2. How would you incorporate the geologic charac-
ter of a mineral deposit into a resource/reserve
classification system? Note that continuity is an
explicit component of many legal and quasi-legal

classification schemes that have been suggested
in the past. In replying to this question, it is
appropriate to consider a specific deposit with
which you are familiar.

3. Data density within a search radius is a criterion
commonly used to classify a block as a mea-
sured, an indicated, or an inferred resource. Is
this a sufficient criterion? Explain your answer in
detail.

4. Describe a data selection algorithm that guaran-
tees that all blocks to be estimated/classified will
be interpolated rather than extrapolated. How can
the algorithm be modified to permit limited ex-
trapolation estimates that will be classified in a
lower-quality category than the interpolated esti-
mates?

5. It is common practice to limit the number of data
to be used to estimate/classify an SMU for grade-
control purposes. In some cases, the maximum
number of data is 16 or 20. Is this a reasonable
operating procedure?

6. Describe how a block might be classed as a mea-
sured, an indicated, or an inferred resource, based
on an estimation procedure that produced a cu-
mulative grade distribution for the block.

7. For purposes of estimation/classification, vein
deposits commonly are approximated by a num-
ber of rectangular blocks on longitudinal sections.
These rectangular outlines generally vary in size.
Describe an approach to resource classification
for such a scenario.



19
Decisions from Alternative Scenarios:

Metal Accounting

Several empirical methods and attitudes [regarding gold sampling and analysis] developed in earlier generations
are still alive and thriving. Many of these earlier procedures have not been reviewed in the light of modern sampling
and statistical practices. Significant improvements could be made without great effort . . . (Vallée, 1992, p. 161)

Chapter 19 emphasizes the need for anopenmind
in the decision-making processes leading to the
preparation of a mineral inventory estimation.
Standard methodologies must be viewed criti-
cally, as alternatives generally exist and might
be better suited to achieving estimation goals.
Here, a simplemechanism of accounting is intro-
duced, based on metal grades and an established
cutoff grade as a practical means of comparing
experimental results from various action scenar-
ios. These examples are illustrative; what is im-
portant is the philosophy of critical appraisal.

19.1: INTRODUCTION

The expressions lost grade or extra tonnes are com-
monly used in the mineral industry to refer to metal
losses or gains that result from one course of action
relative to an expectation. It is not always clear that
the terms are appropriate for the situations to which
they are applied. Traditionally, such terms are used in
reconciliations that compare or contrast estimates of
contained metal with production. Clearly, it is useful
to have a procedure that permits a rigorous compar-
ison of various scenarios in terms of differences in
operating profit. The simple concept ofmetal account-

ing is in relatively common use for such purposes, if
only in an informal way.

The formalization of metal accounting is a practi-
cal and easy procedure for evaluating the results of a
wide range of situations involving alternative actions,
including the comparison of (i) sampling procedures
and (ii) various methods of mineral inventory estima-
tion. In general, metal accounting as used here is ap-
plied to those situations in which an operation or cal-
culation produces a result in terms of metal grade that
can be compared with a cutoff grade. Thus, the grade
difference represents an operating profit (or loss) in
terms of mineral or metal and, when applied to ton-
nage, can be transformed to a quantity of metal.

19.2: DEFINITION

A metal operating profit (loss) qi can be defined as

qi = (gi − gc) · T (19.1)

where qi is quantity of metal (profit if positive, loss
if negative), gi is the grade of an estimate or action,
gc is the cutoff grade, and T is tonnes. Units of grade
determine the units of quantity of metal.

Consider a volume V of tonnage T that has
been estimated by two methods to have average
grades of g1 and g2, respectively. Substitution of these
figures in Eq. 19.1 gives metal contents of q1 and q2,

337
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each of which can be compared with the quantity of
metal eventually produced. Such a simple example of
retrospective metal accounting might be part of a
reconciliation study to optimize future production.
However, the methodology has much wider use and
is discussed here relative to several different applica-
tions, as follows:

(i) Evaluation of the impact of two blasthole sam-
pling procedures

(ii) Evaluation of the effect of using the wrong semi-
variogram model for the estimation of selective
mining units (SMUs)

(iii) Evaluation of the impact of block-estimation
error on block classification (i.e., the combined
effect of the amount of ore lost to thewaste dump
and the amount of dilution).

Because grades are rarely accurate to more than
two or three significant figures, some caution must be
exercised in how calculations are performed. There-
fore, instead of calculating small differences be-
tween pairs of very large numbers (e.g., 1,000,002
− 1,000,000 = 2), it is wiser to cast the problem in
such a way that large numbers are avoided. This com-
monly can be achieved by dealing with differences
that arise from two courses of action.

19.3: METAL ACCOUNTING: ALTERNATIVE
BLASTHOLE SAMPLING METHODS

As part of a quality control program at Equity Sil-
ver Mine Ltd., 42 blasthole cuttings piles were sam-
pled by twomethods, tube sampling and channel sam-
pling, described briefly in Fig. 5.7 and corresponding
text, and in more detail elsewhere by Giroux et al.
(1986). The analytical data for Ag and Cu assays are
listed in Table 5.3 and in modified form in Table 19.1;
only the Ag data are considered here because these
were the grades used in practice to select ore and
waste at the time of production. In this sampling ex-
periment, the bulkmaterial remaining after both types
of samples had been taken was also subsampled and
assayed (“Bulk” in Table 19.1) so that it was pos-

sible to estimate a weighted average grade for each
cuttings pile (“Best” in Table 19.1). Thus, results
of each of the two sampling methods can be com-
pared with corresponding best estimates of cuttings
piles.

For some of the comparisons reported here, each
blasthole is assumed to represent a block equivalent to
360 tonnes; this is comparable to selection by polygo-
nal estimation, as done at the mine site. So-called true
values in the following discussion are the weighted
mean values of tube, channel, and bulk samples of
Table 19.1 (i.e., “true” = best). Equation 19.1 can be
applied in a variety ofways to the information in Table
19.1 to compare real and estimated operating profits,
as summarized in Table 19.2.

The information in Tables 19.1 and 19.2 warrants
comment. Both tube and channel sampling methods
are seen to overestimate true metal content of ore
blocks. Tube sampling identifies 18 blocks as ore
with an estimated mean grade of 139.2 g/t Ag, ver-
sus a true mean grade of 127.7 g/t. Channel sampling
indicates a somewhat different 18 blocks as ore, es-
timated to average 143.3 g/t, compared with a true
average of 136.1 g/t. By comparison, the “best” esti-
mate identifies 19 blocks as ore with an average grade
of 132.3 g Ag/t; this average is lower than estimates
by both tube and channel sampling. Despite the rel-
atively low grade of the ore identified by the “best”
estimate, “best” returns a significantly higher “true”
quantity of metal as follows:

Tube “true” 127.7×18×360= 827,496 g Ag
Channel “true” 136.1×18×360= 881,928 g Ag
Best estimate 132.3×19×360= 904,932 g Ag.

In this case, both tube and channel sampling un-
derestimate metal that could be recovered because
they fail to identify some ore blocks. However, both
tube and channel samples are slightly biased on the
high side and overestimate those blocks that are iden-
tified as ore. The overestimate by tube sampling is
about twice that of channel sampling in terms of both
grade and metal content. Hence, channel sampling
is significantly better than tube sampling in two



Table 19.1 Assay data, blasthole sampling experiment, Equity Silver Mine – Cu (%), Ag (g/t)

Tube Channel Bulk Best

BH no. Cu Ag Cu Ag Cu Ag Cu Ag

1 0.14 5 0.25 18 0.26 22 0.246 20.0
2 0.06 20 0.05 22 0.04 15 0.043 17.9
3 0.02 11 0.02 6 0.01 4 0.014 4.98
4 0.08 123a 0.07 103a 0.07 101 0.068 102.4a

5 0.03 36 0.06 70a 0.04 54 0.046 59.9a

6 0.69 274a 0.97 393a 0.87 389 0.879 387.5a

7 0.69 148a 0.6 163a 0.52 151 0.540 155.7a

8 0.12 10 0.1 8 0.16 20 0.132 15.0
9 0.06 76a 0.06 62a 0.05 46 0.053 53.1a

10 0.11 85a 0.15 142a 0.14 117 0.139 126.0a

11 0.03 28 0.03 32 0.04 47 0.035 40.5
12 0.02 27 0.03 27 0.04 37 0.035 32.8
13 0.28 108a 0.07 55a 0.03 50 0.051 53.5a

14 0.07 76a 0.09 98a 0.09 86 0.087 90.5a

15 0.09 126a 0.09 160a 0.12 178 0.105 169.5a

16 0.06 42 0.07 35 0.06 48 0.062 42.7
17 0.47 11 0.44 131a 0.38 11 0.394 58.5a

18 0.56 325a 0.43 217a 0.45 226 0.433 225.1a

19 0 0 0.02 5 0.03 7 0.025 6.0
20 0.14 78a 0.09 45 0.08 40 0.083 43.0
21 0.33 199a 0.24 123a 0.3 147 0.271 138.9a

22 0.07 31 0.07 28 0.05 23 0.057 25.2
23 0.04 19 0.04 18 0.03 14 0.033 15.7
24 0.04 11 0.03 10 0.03 10 0.029 10.0
25 0.04 29 0.02 18 0.03 21 0.026 20.0
26 0.42 220a 0.39 233a 0.43 268 0.403 252.8a

27 0.18 52a 0.11 21 0.09 16 0.097 19.0
28 0.02 301a 0.76 175a 0.79 181 0.737 181.9a

29 0.24 43 0.27 89a 0.21 74 0.227 79.1a

30 0.02 10 0.02 9 0.02 11 0.019 10.2
31 0.19 15 0.15 26 0.16 24 0.15 24.5
32 0.24 4 0.19 4 0.23 3 0.209 3.4
33 0.15 141a 0.25 240a 0.17 167 0.194 195.2a

34 0.06 51a 0.03 22 0.03 21 0.03 22.2
35 0.02 16 0.06 57a 0.07 66 0.063 61.1a

36 0.03 22 0.01 10 0.02 13 0.016 12.1
37 0.07 6 0.03 12 0.01 7 0.019 9.0
38 0.05 28 0.08 45 0.11 78 0.094 63.6a

39 0.1 55a 0.03 17 0.05 26 0.043 23.2
40 0.2 68a 0.19 68a 0.16 54 0.168 59.9a

41 0.04 9 0.06 18 0.04 8 0.046 12.0
42 0 2 0.01 2 0.01 2 0.009 2
MEANb 139.2 143.3 132.3
TRUE MEANc 127.8 136.1

Note: Bold type indicates misclassified values.
a Grades above cutoff of 50 g/t Ag.
b Estimated mean value of those grades greater than cutoff of 50 g/t Ag.
c True mean value of those grades greater than cutoff of 50 g/t Ag (i.e., mean value based on corresponding data in
“Best” column.)
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Table 19.2 Metal accounting and sampling
experiments, Equity Silver Mine Ltd.

Tube sampling
Estimated operating profit 18× = 578,000 g Ag
(139.2− 50)×360

True operating profit 18× = 503,500 g Ag
(127.7− 50) ×360

Overestimation of operating profit = 74,500 g Ag
Lost profit (ore classed as waste) = 25,900 g Ag
5× (64.4− 50)×360

Channel sampling
Estimated operating profit 18× = 604,600 g Ag
(143.3− 50)×360

True operating profit 18× = 557,900 g Ag
(136.1− 50) ×360

Overestimation of operating profit = 46,700 g Ag
Lost profit (ore classed as waste) = 4,900 g Ag
1× (63.6− 50)×360

Note: All numeric expressions are in the form of Eq. 19.1.

respects: First, overall estimates by channel sampling
are much closer to true values, so productivity will be
closer to expectations thanwould be the casewith tube
sampling. Second, a hidden operating loss resulting
from ore erroneously identified as waste is much less
with channel sampling (4,900 g Ag) than with tube
sampling (25,900 g Ag). Note that of these 42 sam-
ples, 9 were misclassified by tube sampling whereas
only 1 was misclassified by channel sampling. Im-
proved metal recovery by channel sampling reflects
an improvement in block classification relative to
tube sampling.

If the 42 grades are assumed to be representa-
tive of material encountered during production, the
metal accounting results can be transformed quickly
to monetary equivalents. Assuming a production rate
of 3,000 tonnes per day (tpd) mined, the 42 blocks
represent 15,120 tonnes, or about 1 week of produc-
tion. The difference in true annual operating profit
by the two sampling methods is 52 (weeks)× 54,400
(g)/31.1 (transform to oz)= 91,000 ozAg, equivalent
to US$455,000 (assuming US$5.00 per oz Ag).

This example illustrates the need for tests of ex-
perimental design in establishing sampling method-
ologies for ore production. The simple transposition

of a sampling method from one deposit to another
deposit is not acceptable practice without a test to
demonstrate the adequacy of the sampling method in
the new situation. Significant and unnecessary operat-
ing losses can result both from bias and random error,
as illustrated here.

19.4: METAL ACCOUNTING: EFFECT
OF INCORRECT SEMIVARIOGRAM MODEL
ON BLOCK ESTIMATION

Sinclair and Giroux (1984) describe the differences
in block estimates obtained in a part of the South
Tail zone of Equity Silver Mine Ltd. when an incor-
rect semivariogram model is used to make estimates
instead of the correct model (as illustrated schemati-
cally in Fig. 3.3). In their example, 25 blocks (5× 5×
5m3 – equivalent to about 360 tonnes each), as shown
in Fig. 13.7 are used as a test panel. These 25 blocks
are estimated by ordinary kriging using first a gen-
eral semivariogrammodel for the entire Southern Tail
zone and then a model that is specific to the area in
question, in which the principal structural control is at
90 degrees to the general trend in the deposit. Block
estimates are summarized in Table 19.3. With a cut-
off grade of 50 g Ag/t, the operating profit under two
estimation scenarios can be determined and is sum-
marized as follows:

Operating profit using incorrect semivariogram
Nine blocks were estimated to be ore, with an
average grade of 65.2 g Ag/t.

Apparent operating profit

= 9× 360 (65.2− 50)= 49,248 gAg.

However, the correct semivariogram provided an
average kriged block grade of 58.4 g Ag/t for the
nine blocks selected by using the incorrect semi-
variogram model. Thus, the effective operating
profit in mining those nine blocks is

Operating profit = 9× 360 (58.4 − 50)

= 27,216 gAg.

That is, use of the incorrect semivariogram
model provided an overestimation (about
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Table 19.3 Ordinary kriging estimates for 25 blocks
(each 5×5×5 m3), northern part of the South Tail
zone, Equity Silver Mine

Kriged block estimates (g Ag/mt)

Block Correct semivariogram Incorrect semivariogram

1 89.8a 65.8a

2 92.0a 71.0a

3 71.0a 60.3a

4 31.7 44.0
5 22.1 26.4
6 37.6 61.0a

7 47.5 93.8a

8 53.6a 52.5a

9 55.6a 58.2a

10 50.4a 45.7
11 28.6 35.6
12 40.7 40.4
13 55.3a 50.0a

14 60.8a 62.6a

15 58.9a 58.7a

16 20.8 17.9
17 29.7 26.1
18 42.1 33.1
19 46.4 41.5
20 43.5 48.7
21 10.7 12.8
22 19.3 30.0
23 27.5 38.9
24 32.3 39.9
25 26.3 31.2

Note: Average estimated grade of “incorrect” ore
blocks=65.2 g/t.
Average “true” grade of “incorrect” ore blocks=58.4 g/t.
Average “true” grade of “correct” ore blocks=63.5 g/t.
aEstimate 50 g/t (cutoff grade).
Source: After Sinclair and Giroux (1984).

22,000 g Ag) for the nine blocks identified as
ore, amounting to approximately 80 percent of
the true operating profit for the nine blocks in
question. However, use of the correct semivar-
iogram model indicates that one of the nine
blocks is actually waste and that two additional
blocks identified as waste are really ore. The best
estimate of metal operating profit is therefore
obtained by considering the 10 blocks of ore

Table 19.4 Comparison of block estimates using
incorrect and correct semivariogram models,
South Tail zone, Equity Silver Mine

Incorrect semivariogram model
Apparent operating profit =49,248 g Ag

=9×360 (65.2−50)
Effective operating profit =27,216 g Ag

=9×360 (58.4−50)
Correct semivariogram model
“True” operating profit =48,600 g Ag

=10×360 (63.5−50)

identified by the correct semivariogram model
and is

“true” operating profit = 10× 360(63.5− 50)

= 48, 600 gAg.

Consequently, the potential operating loss by
using the wrong semivariogram model for 25
blocks (about 9,000 tonnes containing 3,600
tonnes of ore) is really (48,600− 27,200)
21,400 g Ag or about 5.9 g per tonne of ore
identified. Details of this example are provided
in Tables 19.3 and 19.4.

Assumptions about ore continuity are too often
generalized without an ongoing critical analysis as
more geologic information and insight become avail-
able. Incorrect models of continuity can lead to sub-
stantial errors in reserve estimation that can be re-
flected in significant losses to operating profit.

19.5: METAL ACCOUNTING: EFFECT
OF BLOCK ESTIMATION ERROR
ON ORE/WASTE CLASSIFICATION ERRORS
(AFTER SINCLAIR, 1995; POSTOLSKI
AND SINCLAIR, 1998)

Block estimation error can have a dramatic impact on
metal recovery. Clearly, if some blocks of ore are in-
advertently classed as waste, metal is lost; similarly,
if blocks of waste are included in ore, total tonnage is
increased, but average grade is decreased (i.e., di-
lution occurs). The problem is illustrated clearly in
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Table 19.5 Effect of dilution and ore loss on production grade for various errors imposed on a block-grade
distribution for the Bougainville porphyry-copper mine.

10% Error 20% Error 30% Error

No. of blocks Average gradea No. of blocks Average gradea No. of blocks Average gradea

True ore 919 0.475 919 0.475 919 0.475
Ore rejected as waste 17.3 0.233 45.3 0.261 84.4 0.298
Ore selected 901.7 0.480 873.7 0.486 834.6 0.493
Waste selected 10.5 0.204 17.3 0.198 21.9 0.194
Production 912.2 0.477 891 0.481 856.5 0.485

aAverage grades in wt% Cu.

Fig. 16.6. David and Toh (1989) were among the
first to provide quantitative documentation of the con-
cept of dilution due to block estimation error, us-
ing the Bougainville copper deposit as an example.
A computer program has been developed (Postolski
and Sinclair, 1998b) that quantifies dilution and ore
losses for particular grade distributions and any av-
erage block estimation error. The methodology is de-
scribed in Section 16.3.2 ; the impact of various block
estimation errors on tonnage and grade are summa-
rized for the Bougainville case in Tables 16.3 and
16.4. Information in these two tables is summarized
in Table 19.5 and is presented as a metal accounting
in Table 19.6.

Table 19.5 is important because it permits a com-
parison of the operating losses (expressed as metal)
that result from various error scenarios. The differ-
ences in losses from one scenario to another pro-
vide some insight as to the potential savings if block
estimation errors can be reduced. A comparable ex-
ample for the Huckleberry porphyry deposit (Postol-
ski, 1998) is summarized in Table 19.7. In this case,
an improvement in block-estimation error from
20 percent to 15 percent would result in an additional
profit of 205.1− 117.7= 87.4 tonnes of copper from
a production of 5.4 million tonnes of ore.

An important contributing factor to block-
estimation errors, regardless of the method of esti-
mation, is the combination of sampling and analytical
error. This is particularly the case for gold deposits, as
illustrated here for the Ortiz gold deposit, New Mex-
ico (Springett, 1984). The GAINLOSS software by

Postolski and Sinclair (1998) was used to provide in-
formation for the Ortiz deposit comparable to Tables
16.3 and 16.4 and summarized inTable 19.8. For these
estimates, the “true” Au grade distribution was taken
as lognormal with a mean of 1.75 g/t (0.051 oz/st),
a standard deviation of 1.23 g/t (0.036 oz/st), and
a block size taken as 30 st (ca. 27 tonnes). A cut-
off grade of 0.85 g/t (0.025 oz/st) was assumed for
illustrative purposes. The information in Table 19.8
can be recast in metal accounting form as illustrated
in Table 19.9. These results show that an improve-
ment in block-estimation error (1 standard deviation)
to 20 percent from 30 percent results in an operat-
ing profit of (2,627− 900)= 1,727 additional ounces
of gold (equivalent to US$492,000.00 @ $285/oz)
from the mining of 100,000 blocks (3,000,000
short tons).

These examples demonstrate the impact of vari-
ous levels of block-estimation error on metal losses
and dilution during production. Results are deposit
specific because they depend on the data distribution.
However, results are fairly robust and a small change
in the distribution of grades does not have a large im-
pact on the results. The procedure is worth repeating
for particular situations in order to estimate whether
the effort/cost of improving low-quality estimates is
worthwhile.

19.6: SUMMARY COMMENTS

Two examples illustrated here are entirely determin-
istic and are based on small data sets; hence, they
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Table 19.6 Metal accounting summary of operating loss for block misclassification due to various levels of
error, Bougainville porphyry deposit, for assumed cutoff grade=0.215% Cua

10% Error 20% Error 30% Error

Net cost of mining waste classed as ore (tonnes of metal) −2.24 −5.83 −9.15
Net loss of metal in ore classed as waste (tonnes of metal) −6.23 −41.63 −140.55

Total operating loss (tonnes of metal) −8.47 −47.47 −149.70

aFor a hypothetical scenario with 1,000 blocks (2,000 tonnes each).

Table 19.7 Metal accounting summary of operating loss for block misclassification due to various levels of
error, Huckleberry porphyry deposit, east zone (west domain) for assumed cutoff grade=0.4% Cu

10% Error 15% Error 20% Error

Net cost of mining waste classed as ore (tonnes of metal) −23.95 −50.77 −85.16
Net loss of metal in ore classed as waste (tonnes of metal) −29.01 −66.91 −119.91

Total operating loss (tonnes of metal) −52.96 −117.69 −205.07

Table 19.8 Effect of dilution and ore loss on production grade for various errors imposed on a block grade
distribution for the Ortiz gold mine, New Mexico

10% Error 20% Error 30% Error

No. of blocks Average gradea No. of blocks Average gradea No. of blocks Average gradea

True ore 79,569 2.05 79,569 2.05 79,569 2.05
Ore rejected as waste 1,957 0.92 4,744 1.02 8,176 1.17
Ore selected 77,612 2.08 74,825 2.12 71,393 2.15
Waste selected 1,451 0.79 2,709 0.77 3,672 0.75
Production 79,063 2.06 77,534 2.07 75,065 2.08

aAverage grade in g Au/t.

Table 19.9 Metal accounting summary of operating loss for block misclassification due to various levels of
error, Ortiz gold deposit

10% Error 20% Error 30% Error

Net cost of mining waste classed as ore (grams of metal) −2,152 −5,881 −10,085
(troy ounces of metal) −69.2 −189.0 −324.2

Net loss of metal in ore classed as waste (grams of metal) −3,920 −22,120 −71,951
(troy ounces of metal) −126.0 −711.1 −2,313.1

Total operating loss (grams of metal) −6,072 −28,001 −82,035
(troy ounces of metal) −195.2 −900.2 −2,627.3
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Table 19.10 Number of waste blocks mistakenly included in ore due to various levels of errors,
Ortiz gold deposit

10% Error 20% Error 30% ErrorGrade Frequency in
interval 100,000
center blocks P > c N> c P> c N> c P> c N> c

0.3 886.4 0.000 0.000
0.4 1996.8 0.000 0.000 0.000 0.065
0.5 3162.5 0.000 0.000 0.000 0.324 0.008 24.895
0.6 4131.3 0.000 0.016 0.016 66.228 0.080 328.617
0.7 4814.3 0.014 65.595 0.140 673.861 0.237 1139.483
0.8 5219.4 0.265 1385.163 0.377 1968.978 0.417 2178.874
Sum of misclassified waste blocks 1450.774 2709.391 3671.934
Average true grade of misclassified 0.795 0.770 0.749

waste blocks

P > c = proportion of waste blocks incorrectly assigned to ore. N > c = number of waste blocks per 100,000 blocks,
incorrectly assigned to ore.

are rough estimates and should be seen as examples
that illustrate a technique while emphasizing the need
for appropriate experimental design in real-life cases.
The third example, Bougainville Copper Evaluation,
is based on a real data distribution and the normal
distribution of errors, and thus is general in nature;
moreover, this example is statistical rather than deter-
ministic and provides a general insight into the im-
pact of errors on operating profit. Although deposit
specific, the results of the Bougainville example are
generally applicable to porphyry-type deposits with
not-too-dissimilar grade distributions.

19.7: PRACTICAL CONSIDERATIONS

1. Metal accounting has had applications in min-
eral inventory studies, especially for purposes
of conducting reconciliations and documenting
apparent operating profits for various scenarios.
The procedure has potential for extensive use in
many situations related to mineral inventory in
which alternative choices are possible. Any situ-
ation involves estimates by two or more meth-
ods, different levels of variability that arise due
to various sampling or analytical procedures, and
soon can be treated by “metal accounting,” pro-
vided a reasonable estimate of cutoff grade can be
made.

2. Sampling experiments are particularly amenable
to evaluation by metal accounting, especially
when a total mass balance can be determined, as
in the Equity blasthole sampling case cited here.

3. Mineral inventory estimates by two or more
methods can be compared, as illustrated for the
“correct” and “incorrect” semivariogram esti-
mates for the South Tail zone. In this example,
the true value is unknown, but the magnitude of
the difference between acceptable and unaccept-
able methods can be determined.

4. If the true grade distribution is known, the influ-
ence of error on ore selection can be determined
as shown, using an extension of a published case
history for the Bougainville porphyry copper de-
posit. The effects of both “loss of ore to waste”
and “inclusion of waste in ore” are considered. In
this example, the improvement in metal recovery
as sampling error decreases is quantified. The cost
of decreasing sampling and analytical errors can
be considered in the light of the expected increase
in operating profit. The general applicability of the
procedure is illustrated by theOrtiz gold example.

5. Any situation in which different sampling/ analyt-
ical/estimation methods lead to different numeric
results in terms of grades can generally be cast in
terms of metal accounting for comparative pur-
poses.
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Table 19.11 Number of ore blocks mistakenly included in waste due to various levels of error, Ortiz gold
deposit, for a cutoff grade of 0.85 g Au/t

10% Error 20% Error 30% ErrorFrequency in
Grade interval 100,000
center blocks P <c N <c P <c N <c P <c N <c

0.9 5393.6 0.289 1557.788 0.391 2106.382 0.427 2300.512
1.0 5392.2 0.064 343.742 0.226 1216.937 0.308 1661.934
1.1 5265.2 0.009 49.587 0.126 661.691 0.223 1176.183
1.2 5053.5 0.001 5.624 0.069 350.555 0.164 827.727
1.3 4788.7 0.000 0.583 0.039 184.949 0.122 584.210
1.4 4494.2 0.000 0.061 0.022 98.500 0.092 415.529
1.5 4186.7 0.000 0.007 0.013 53.390 0.071 298.602
1.6 3878.1 0.000 0.001 0.008 29.589 0.056 217.056
1.7 3576.4 0.005 16.805 0.045 159.669
1.8 3286.8 0.003 9.787 0.036 118.851
1.9 3012.5 0.002 5.845 0.030 89.490
2.0 2755.4 0.001 3.576 0.025 68.126
2.1 2516.1 0.001 2.239 0.021 52.404
2.2 2294.6 0.001 1.433 0.018 40.707
2.3 2090.7 0.000 0.936 0.015 31.912
2.4 1903.6 0.000 0.623 0.013 25.233
2.5 1732.3 0.000 0.423 0.012 20.113
2.6 1575.9 0.000 0.291 0.010 16.152
2.7 1433.4 0.000 0.204 0.009 13.063
2.8 1303.6 0.000 0.145 0.008 10.633
2.9 1185.5 0.000 0.104 0.007 8.709
3.0 1078.3 0.007 7.174
3.1 980.8 0.006 5.941
3.2 892.4 0.006 4.945
3.3 812.1 0.005 4.135
3.4 739.3 0.005 3.474
3.5 673.2 0.004 2.930
3.6 613.2 0.004 2.482
3.7 558.8 0.004 2.109
3.8 509.4 0.004 1.799
3.9 464.5 0.003 1.540
4.0 423.8 0.003 1.322
4.1 386.8 0.003 1.139
Sum of misclassified ore blocks 1957.393 4744.402 8175.791

P < c = proportion of ore blocks incorrectly assigned to waste. N < c = number of ore blocks per 100,000 blocks, that are
incorrectly assigned to waste.
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19.9: EXERCISES

1. The following information, summarized from
Knudson (1992), can be presented in terms of
comparativemetal operating profits, estimated vs.
real. Estimates for 442 blocks (420 tonnes each)
above cutoff (0.5 g Au/mt) for the Cherokee gold
deposit average 0.96 g Au/mt. Mill heads subse-
quently were found to average 0.75 g Au/mt. Cal-

culate the overestimate as a function of apparent
metal operating profit.

2. The metal accounting for silver summarized in
Table 19.2 can be enhanced by adding the ef-
fects of Cu (data provided in Table 19.1). For
purposes of the exercise, assume 100 percent
recovery of Cu.
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Appendix 1
British and International Measurement

Systems: Conversion Factors

Distance

1 inch = 2.54 centimeters
1 kilometer = 0.6214 miles
1 meter = 3.281 feet

= 100 centimeters
1 mile = 5,280 feet

= 1.609 kilometers
1 millimeter = 0.0394 inches
1 micron = 1.0× 10−3 millimeters

Area

1 acre = 4,840 sq. yards
0.404686 hectares
4,046.86 square meters

1 hectare = 10,000 square meters
= 11,959.9 square yards

Circular measure

Circle = 6.2832 radians
= 360 degrees

1 degree = 60 minutes
1 degree = 17.453×10−3 radians
1 minute (angle) = 0.2909×10−3 radians

Volume

1 cubic centimeter = 0.061 cubic inches
1 cubic meter = 1,000 liters

= 35.315 cubic feet
= 1.308 cubic yards

Mass

1 gram = 15.432 grains
= 5 metric carats
= 35.274 10−3 ounces
= 2.205×10−3 pounds

1 kilogram = 2.2046 pounds
= 1,000 grams

Mass

Gram/tonne = 1 part per million
= 0.5833 dwt (troy)/short ton
= 0.02917 ounces (troy)/short

ton
= 0.653 dwt (troy)/long ton

Gram/cubic centimeter = 1 tonne/cubic meter
= 62.428 pounds/cubic foot

1 ounce (avoirdupois) = 437.5 grains
= 28.350 grams

1 ounce (troy) = 20 pennyweights (dwt)
= 480 grains
= 31.103 grams

1 pennyweight (dwt, troy) = 24 grains
= 1.5552 grams

1 pound (avoirdupois) = 7000 grains
= 16 ounces
= 453.59 grams

1 pound (troy) = 12 ounces (troy)
= 5,760 grains
= 373.24 grams

1 stone = 6.3503 kilograms
= 32.6667 grams

1 long ton = 2,240 pounds
= 1.016 short tons

1 short ton = 2,000 pounds
1 metric tonne = 0.9842 long tons

= 1.1023 short tons
= 1,000 kilograms
= 2,205 pounds
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Appendix 2
U.S. Standard Sieves

Nominal dimensionsDesignation

National Bureau of Standards Tyler A.S.T.M sieve Sieve opening Wire diameter

Inches Mesh number Screen number mm Microns Inches mm
4 101.6 4.00 6.30
3.5 90.5 3.50 6.08
3 76.1 3.00 5.80
2.5 64.0 2.50 5.50
2 50.8 2.00 5.05
1 3/4 45.3 1.75 4.85
1 1/2 38.1 1.50 4.59
1 1/4 32.0 1.25 4.23
1 25.4 1.00 3.80
7/8 22.6 0.875 3.50
3/4 19.0 0.750 3.30
5/8 16.0 0.625 3.00
1/2 12.7 0.500 2.67
7/16 11.2 0.438 2.45
3/8 9.51 0.375 2.27
5/16 2 1/2 2 1/2 8.00 0.312 2.07
1/4 2 1/4 2 1/4 6.35 0.250 1.82

3 3 5,660 0.223 1.68
4 4 4,760 0.187 1.54
5 5 4,000 0.157 1.37
6 6 3,360 0.132 1.23
7 7 2,830 0.111 1.10
8 8 2,380 0.0937 1.000
10 9 2,000 0.0787 0.900
12 10 1,680 0.0661 0.810
14 12 1,410 0.0555 0.725
16 14 1,190 0.0469 0.650
18 16 1,000 0.0394 0.580
20 20 841 0.0331 0.510
25 24 707 0.0197 0.340
40 35 420 0.0165 0.290
45 42 354 0.0139 0.247
50 48 297 0.0117 0.215
60 60 250 0.0098 0.180
70 65 210 0.0083 0.152
80 80 177 0.0070 0.131
100 100 149 0.0059 0.110
120 115 125 0.0049 0.091
140 150 105 0.0041 0.076
170 170 88 0.0035 0.064
200 200 74 0.0029 0.058
230 250 63 0.0025 0.044
270 270 53 0.0021 0.037
325 325 44 0.0017 0.030
400 400 37 0.0015 0.025
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Appendix 3
Drill-Hole and Core Diameters

Diamond-drill-hole diameters

Core diameter Hole diameter

Size (Decimal inches) (mm) (Decimal inches) (mm)

AQ, AQ-U 1.062 26.97 1.89 48.01
BQ, BQ-U 1.432 36.37 2.360 59.94
NQ, NQ-U 1.875 47.63 2.980 75.69
HQ 2.500 63.50 3.782 96.06
PQ 3.345 84.96 4.827 122.61

Wireline drill-hole diameters

Core diameter Hole diameter

Size (Decimal inches) (mm) (Decimal inches) (mm)

AQ, AQ-U 1.06 27.0 1.89 48.0
BQ, BQ-U 1.44 36.5 2.36 60.0
NQ, NQ-U 1.87 47.6 2.98 75.7
HQ 2.50 63.5 3.78 96.0

Source: Cumming (1980).
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249, 250
Regularization, 11, 199, 212–213

Reject, 121
Relative Error, 108, 163
Replicate Analyses – see Data, Duplicate
Representativity, 63, 115–116
Reproducibility – see Precision
Resource – see also Classification

General, 274, 333
Global, 242–254
Grade-Tonnage, 255
Inferred, 242

Resource/Reserve, 2, 8–10, 59, 242, 268,
318, 325

Reserve – see also Classification
General, 8–10, 333
Grade-Tonnage, 256

Revenue – seeMine Revenue
Riffle, 121, 141
RMA – see Regression, RMA

Safety Line, 122–123, 124
Salting, 127–129
Sample

Contamination, 106, 126
Density, 115, 116, 329
General, 76–77, 104–108
Location, 108, 167, 269
Reduction, 120–124
Representativity, 115
Size, 115, 116, 150, 306, 322
Statistical, 76
Support, 11, 148–149, 165, 183, 212, 259,

306
Type, 104–106, 330

Sample Reduction Diagram, 121, 122
Sampling

Array, 113–116, 183, 199, 207, 243–244,
246–247, 286, 329

Bulk, 319
Chain of Custody, 128
Experiments, 116–120
Gy’s Constant, 122–124
Large Lots, 115, 118, 120
Methods, 104–107, 338–340, 344
Personnel, 141–142
Protocol, 121–129, 253
Safety Line, 122, 123, 124
Security, 127
Scanners, 141
Standards, 126, 128
Theory, 79, 104, 120–124

San Antonio Mine, 54
Scam, 319
Scatter Diagram, 5, 97, 99, 120, 126, 128,

136, 159–160, 171, 205, 222–223, 251,
277, 291

Screen Effect, 225–226
Search Radius (Ellipse, Ellipsoid, Volume),

219, 329
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Selective Mining Unit, 13–14, 55, 62, 150,
151, 187, 232, 245, 256, 259–262, 264,
268, 275, 285, 306, 330, 333

Semivariogram
Anisotropy, 201–204, 212, 276
Cloud, 171
Experimental, 192, 193–204
General, 107, 150, 186, 192–213, 232,

243, 245, 259, 287, 289, 290
Models, 184, 187, 189, 195, 196–207,

211, 229, 276–278, 282, 287, 288, 292,
306, 320, 322

Incorrect Model, 279, 340–341
Nested Structures, 192, 205–207
Relative, 176, 192, 199, 204, 205, 208,

221, 320
Robustness, 209, 210
In Curved Space, 192, 210, 211
Regularization, 139
Proportional Effect, 204–205

Shasta JM Zone, 68, 69, 71, 131, 132, 171,
251–252, 287

Sichel’s t-Estimator, 86–88
Significant Figures, 14
Silbak Premier Gold Mine, 99, 131, 132,

136, 138
Silver Queen Deposit, 66–68, 71, 221–223,

303–304
Sill, 107, 198
Silver Stack Deposit, 131, 132
Similkameen Porphyry Deposit, 205, 206,

253, 280, 288–290, 317
Simulation

Applications, 289–291
Conditional, 3, 142, 236, 284–293, 285
Sequential Indicator, 292
Sequential Gaussian, 286–287

Size Range Factor, 123–124
Skarn Deposit – see also Nickel Plate Mine,

279–280, 295
Skewed Distributions, 198
Skewness, 80
Sleeper Gold Mine, 173, 177
Smelter Contract, 14, 23–26
Smoothing, 150, 261, 269, 274, 280
SMU – see Selective Mining Unit
Snip Gold Mine, 163–164, 311–313
Spatial Dependence – see Autocorrelation

Specific Gravity, 248, 249, 294, 296,
299

Specimen, 104
Standards, Analytical, 108, 127, 128
Standard Deviate, 84
Standard Deviation, 79, 94, 99, 199, 303
Standard Error of the Mean, 79
Standard Normal Distribution, 84, 303
Standard Variables, 98
Stationarity, 185, 193, 218, 219, 235, 320
Stockpiling, 285
Stockwork, 35
Stoichiometry, 295
Stope, 247, 279, 280
Stratified Sampling – see Sampling, Array
Strip Ratio, 6, 7
Structure, 35–36, 193
Subpopulations, 71–73, 152, 174, 175, 177
Sudbury Nickel Deposits, 97, 98, 159, 160,

249, 298
Support – see Sample, Support
Sunnyside Gold Mine, 173, 174, 176, 177
Survey, Geochemical/Geophysical, 32, 51
Systematic Error, 14

t-Test, 152
Target Hardening, 128
Thompson-Howarth Method, 110–112
Threshold, 92, 93, 167, 173–176, 229, 247,

281, 287, 292
Transform, 98, 164, 204, 228, 229, 230, 287,

288, 292
Trend, 146, 156, 159, 161, 321
Triangular Diagram, 163–164
Triangular Estimation, 16, 19
Truncated Distribution, 112
Turning Bands, 286

Umpire Lab, 129
Uniform Grid, 82
Univariate Procedures, 151–155
Universe, 76
Uranium, 74, 164, 175

Valley Copper Mine, 140, 141, 205, 206,
277, 317

Value Continuity, 59, 63–65, 68–71, 139,
140, 172, 341

Variable
Dependent, 97, 99
Independent, 97, 99
Random, 185
Regionalized, 10–12, 190, 215

Variance
Analytical, 79
Dispersion, 181, 189, 245, 259, 262,

269–271, 284, 306
Estimation, 216, 238
Extension, 186–188, 243
General, 79, 185, 198, 199, 235, 243
Sampling, 79
Kriging, 307, 330
Subsampling, 79
Two–Population, 80

Variogram – see Semivariogram, 96, 186,
192

Variogram Cloud, 208, 209
Variography, 189, 192, 279
Vein, 32, 33, 34, 37, 50, 66–69, 71, 331
Vein Density, 32
Virginia Porphyry Deposit, 152, 161, 162,

311, 313
VMS/Volcanic Massive Sulphide Deposit,

46, 47, 51
Volume-Variance Relation, 152, 189, 232,

245–246, 258–264, 266, 275–276,
306

Voronoi Tessellation, 18

Warrego Gold Deposit, 202
Waste, 314
Weathering, 50
Weight(ing), 77, 78, 216, 218, 257, 321
Weight, Negative, 169–170, 224–226
Weighted Average, 149, 231, 257, 281, 303
Whitehorse Copper Mine, 279–280
Woodlawn Deposit, 40, 51, 53

ZERROR Software, 112
Zonation – see Zoning Patterns
Zone, 37–39, 152, 274, 299, 327
Zone (Area, Range, Volume) of Influence –

see also Radius of Influence, 183–184,
329

Zoning Patterns – see alsoMineral Zoning,
48–49, 53, 54, 248, 295, 299
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