Basic P/M Steps

- Powder Production
- Raw Material
- Mixing
- Forming
- Sintering
- Optional Operation
- Finished products

The P/M Process

Powder Production

 Many methods: extraction from compounds, deposition, atomization, fiber production, mechanical powder production, etc.

Atomization is the dominant process

(a) Water or gas atomization; (b) Centrifugal atomization; (c) Rotating electrode

Methods of Powder Production

Atomization

- Produces a liquid-metal stream by injecting molten metal through small orifice.
- The stream is broken up by jets of inert gas, air, or water.

Reduction

 Uses gases (<u>hydrogen and CO</u>) to remove oxygen from metal oxides.

Electrolytic deposition

- Utilizes aqueous solutions or fused salts.
- Produces <u>purest form of metal powder</u>.

Carbonyls

- Are formed by letting <u>iron or nickel</u> react with <u>CO.</u>
- The reaction products are then decomposed to iron and nickel.

Comminution

Mechanical comminution involves crushing, milling in a ball mill.

Mechanical alloying (MA)

- Powders of two or more pure metals are mixed in a ball mill.
- This process forms <u>alloy powders</u>

Powder Production: Water-Atomizing-Process

Principle Atomizing the Melting by Means of Water Jet

Metal Scrap, Iron Ore, Roll Scale

Factors of Influence

1	Water Pressure	Melting Temperature	Flowrate of the Melting
Grain Size		-	1

Product Pure Iron or Alloy

source: Höganäs, EHW Thale

Principle of Water-Atomizing

- 1 Foundry Ladle
- 2 Melting Stream
- 3 High Pressure Water
- 4 Nozzle
- 5 Atomized Iron Powder

Particle Form and – Structure of Unalloyed Iron Powder

Scanning Electron Microscope-Picture

Cross Section

Sponge Iron Powder NC 100.24

Atomized Powder ASC 100.29

source: Höganäs

© WZL / IPT

RWITHAACHEN

Powder Production

1- Atomization

Types of atomization process

- 1- Water Atomization
- 2- Gas Atomization
- 3- other types

-Atomization principles

-Atomization production sequence

- Metal melting
- •Over heating.....
- Melt Composition
- Melt treatment
- Sample analysis.....
- Pouring
- Dewatering
- Draying.....
- Annealing....
- Screening
- Packing (pre-alloy, premix)

- Parameters that have to be adjusted on water atomization process.....
- ➤ Melt temperature...
- ➤ Melt pouring rate....
- ➤ Water pressure....
- ➤ Water temperature
- ➤ Water angle
- ➤ Water orifice size.... (angle, size, shape)
- 1502-1512-2505.....
- Affecting of atomization parameters on produced metal powders.....

Atomization Process

Water Atomization Setup

Atomization Nozzle Designs

Gas atomization: (a) Mannesmann process design (Ref 2). (b) Thompson design (Ref 3).

- (c) Naeser design (Ref 4). (d) Probst design (Ref 5). Water atomization: (e) Batten design (Ref 6).
- (f) Winstrom design (Ref 7)

(e)

(f)

Two Fluid Atomization Designs

Design characteristics: α , angle formed by free-falling molten metal and impinging gas; A, distance between molten metal and gas nozzle; D, diameter of confined molten metal nozzle; P, protrusion length of metal nozzle. Source: Ref 8

Water Jet Configurations

(a) Open flat stream V-jets. (b) Closed V-jets. Source: Ref 9

Particles Formation Stages During Atomization

Particles Formation Stages During Atomization

- •Stage I: Wave formation through initiation of small disturbance at the surface of the liquid.
- •Stage II: Wave fragment and ligament formation through shearing forces on the disturbance of stage I.
- •Stage III: <u>Breakdown</u> of ligaments into droplets (primarily atomization); <u>regular particle shape</u> formed by <u>high surface tension and low cooling rate</u>; <u>irregular particle shape</u> formed by <u>low surface tension and high cooling rate</u>.
- •Stage IV: <u>Further deformation</u> and thinning of droplets and wave fragments into smaller particles (secondary atomization).
- Stage V: Collision and coalescence of particles.

Atomization process

<u>2</u> <u>3</u>

<u>4</u> <u>5</u> <u>6</u>