PYRON PROCESS

- Mill scale
- Reducing agent ---- Hydrogen gas

contains oxides of tramp elements normally associated with steel, especially Si, Mn and Cr in the form of very finely dispersed oxides ----- difficult to reduce.

The mill scale is dried and ground up to the desired

particle size in a continuous ball mill. (- 100 mesh)

➤ Oxidation of the mill scale at 870 to 980 °C converts

FeO and Fe₃O₄ to ferric oxide (Fe₂O₃).

Mill scale is basically obtained from steel mills

The mill scale mainly consists of Fe_3O_4 , and also

which produce sheets, rods, wires, plates and pipes.

This process is essential to ensure uniform properties of Pyron-iron Powder.

- Reduction of ferric oxide by hydrogen is done in an electric furnace (30–40 meter long) at 980°C. (continuous belt furnace).
- ➤ Hydrogen is supplied by NH₃ cracking plant and reduction is done at 980 °C.

$$ightharpoonup Fe_2O_3 + 3H_2 \longrightarrow 2Fe + 3H_2O$$

- The reduction product is ground and mechanically densified to make it suitable for production of structural parts.
- Fine particle size -----faster sintering.

HYDRIDE DECOMPOSITION

This method of powder production is used for <u>precious</u> metals. **Hydrides** are <u>binary compounds of metals and hydrogen.</u>

The main steps are as follows:

(i) **Hydride Formation:**

In this step turnings of metals (Ti, U, Zr etc) are heated in hydrogen resulting in the formation of hydrides.

(ii) Milling:

Hydrides are <u>brittle</u> in nature and thus can be easily crushed and ground to fine powder.

(iii) **Dehydridation:**

The fine powder of hydrides is heated under vacuum at elevated temperature to eliminate hydrogen from metal, and consequently a fine metal powder is obtained.

PRECIPITATION FROM SOLUTIONS

- This method is used for <u>precious metals</u>.
- Leaching an ore or ore concentrate, followed by precipitating the metal from leach solution.

Steps Involved:

- i) Formation of insoluble compounds/precipitates:
 - The salts of metals are converted/precipitated as insoluble hydroxides, carbonates or oxalates etc.
- ii) Decomposition:
 - On heating, these compounds/ppts. decompose into <u>metal</u> or <u>metal oxides</u> and <u>gaseous products.</u>
 - *The examples of this technique are the production of uranium dioxide, platinum, selenium, silver, nickel and cadmium oxides.

THE CARBONYL PROCESS

- The only method for the manufacture of metal powder by the <u>pyrolysis</u> of a <u>gaseous compound</u> which has been used industrially on a substantial scale is the <u>carbonyl iron or nickel process</u>.
- When iron and nickel ores react under high **pressure** (70-300 atm.) with <u>carbon monoxide</u>, iron pentacarbonyl [Fe(CO)₅] or nickel tetracarbonyl [Ni(CO)₄] is formed, respectively.
- Both compounds are liquids at room temperature.
- Fe(CO)₅ evaporates at 103 °C and Ni(CO)₄ at 43 °C.

Precipitate Formation:

This step of the process is carried out according to the following scheme:

- The liquid carbonyles are stored under pressure in tanks submerged in water.
- The distilled and filtered liquids are conveyed to steam heating cylinders, where they are vaporized.
- The vapors of liquid are sent to decomposers.
- The decomposers are jacketed and heated, giving an internal temperature of 200-250 °C.
- These cylinders are 9-10 feet high with an internal dia of 3 feet, with conical bottoms.
- The incoming stream of vapors meets a tangential stream of ammonia gas.
- CO is removed here and precipitates of metals are formed which are then sieved, dried and may be milled to break up the agglomerates.
- The CO gas arising from the decomposition is recovered and reused.

- Carbonyl iron powder is used for the production of magnetic powder cores for radio or television applications.
- In P/M it is used for the manufacture of soft magnetic materials and permanent magnets.
- Because of its high price and poor die filling properties, it is not suitable for the manufacture of sintered structural components.
- The carbonyl process is also well suited for the extraction of both metals from lean ores.
- The process can be controlled so as to yield a spherical metal powder.

ELECTROCHEMICAL PROCESS

- These methods are based on the electrolysis of molten solutions of metals or fused salts.
- The metals are electrically deposited on the cathode of an electrolytic cell as a sponge or powder or at least in a physical form in which it can be easily disintegrated into a powder.

Advantages of the process:

- The technique has a number of advantages, e.g.
- The product is usually of a high commercial purity.
- A considerable range of powder qualities can be obtained by varying bath compositions.
- Frequently the product has excellent pressing and sintering properties.
- The cost of the operation may in some cases be low.

Limitations:

- Alloy powders cannot be produced.
- The product of process is frequently in active condition (presence of chemicals on powder particles) which may cause difficulties in washing and drying it (contamination/oxidation with atmospheric oxygen may occur).
- The cost of operation may be high in some cases.

Basic principle of the process and equipment used:

- The equipment used is an electrolytic bath made of steel, and lined from inside with rubber. Two electrodes are inserted in the bath.
- Cathode is made of lead while anode is made of the same metal whose powder is being produced.

•Principle:

- •The basic principle is the electrolysis process in which decomposition of a molten salt/aqueous solution into its ions is obtained by the passage of electric current.
- •The metallic ions are deposited at the cathode which can be removed with a brush and collected at the bottom.
- •The electrolytic tanks have conical bottoms with a valve.
- •Suction pipes are connected to these bottoms and powder is removed from the tank.
- •The efficiency of the tank/process depends on the deposition rate.

Figure: Electrolytic Cell Operation for Deposition of Powder --- Schematic.